
CS 5412/LECTURE 13.
CEPH: A SCALABLE HIGH-PERFORMANCE

DISTRIBUTED FILE SYSTEM

Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

HDFS LIMITATIONS

Although many applications are designed to use the normal “POSIX” file
system API (operations like file create/open, read/write, close,
rename/replace, delete, and snapshot), some modern applications find
POSIX inefficient.

Some main issues:
 HDFS can handle big files, but treats them as sequences of fixed-size

blocks. Many application are object-oriented
 HDFS lacks some of the “file system management” tools big-data needs

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

CEPH PROJECT

Created by Sage Weihl, a PhD student at U.C. Santa Cruz

Later became a company and then was acquired into Red Hat Linux

Now the “InkStack” portion of Linux offers Ceph plus various tools to
leverage it, and Ceph is starting to replace HDFS worldwide.

Ceph is similar in some ways to HDFS but unrelated to it. Many big data
systems are migrating to the system.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

KEY IDEAS IN CEPH

The focus is on two perspectives: object storage for actual data, with much
better ways of tracking huge numbers of objects and automatic “striping” over
multiple servers for very large files or objects. Fault-tolerance is automatic.

MetaData Management. For any file or object, there is associated meta-data: a
kind of specialized object. In Ceph, meta-data servers (MDS) are accessed in a
very simple hash-based way using the CRUSH hashing function. This allows
direct metadata lookup

Object “boundaries” are tracked in the meta-data, which allows the application
to read “the next object.” This is helpful if you store a series of objects.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

CEPH HAS THREE “APIS”

First is the standard POSIX file system API. You can use Ceph in any
situation where you might use GFS, HDFS, NFS, etc.

Second, there are extensions to POSIX that allow Ceph to offer better
performance in supercomputing systems, like at CERN.

Finally, Ceph has a lowest layer called RADOS that can be used directly
as a key-value object store.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

WHY TALK DIRECTLY TO RADOS?
SERIALIZATION/DESERIALIZATION!
When an object is in memory, the data associated with it is managed by
the class (or type) definition, and can include pointers, fields with gaps or
other “subtle” properties, etc.

Example: a binary tree: the nodes and edges could be objects, but the
whole tree could also be one object composed of other objects.

Serialization is a computing process to create a byte-array with the data
in the object. Deserialization reconstructs the object from the array.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

GOOD AND BAD THINGS

A serialized object can always be written over the network or to a disk.

But the number of bytes in the serialized byte array might vary. Why?

… so the “match” to a standard POSIX file system isn’t ideal. Why?

This motivates Ceph.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

CEPH: A SCALABLE, HIGH-PERFORMANCE
DISTRIBUTED FILE SYSTEM

Original slide set from OSDI 2006

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrel D. E. Long

8HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

CONTENTS

Goals

System Overview

Client Operation

Dynamically Distributed Metadata

Distributed Object Storage

Performance

9HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

GOALS

Scalability
 Storage capacity, throughput, client performance. Emphasis on HPC.

Reliability
 “…failures are the norm rather than the exception…”

Performance
Dynamic workloads

10HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

11HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

12HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

SYSTEM OVERVIEW

13HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

KEY FEATURES

Decoupled data and metadata
CRUSH
 Files striped onto predictably named objects
 CRUSH maps objects to storage devices

Dynamic Distributed Metadata Management
Dynamic subtree partitioning
 Distributes metadata amongst MDSs

Object-based storage
OSDs handle migration, replication, failure detection and recovery

14HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

CLIENT OPERATION

Ceph interface
Nearly POSIX
Decoupled data and metadata operation

User space implementation
 FUSE or directly linked

15

FUSE is a software allowing to
implement a file system in a user space

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

CLIENT ACCESS EXAMPLE

Client sends open request to MDS

MDS returns capability, file inode, file size and stripe information

Client read/write directly from/to OSDs

MDS manages the capability

Client sends close request, relinquishes capability, provides details to MDS

16HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

SYNCHRONIZATION

Adheres to POSIX

Includes HPC oriented extensions
Consistency / correctness by default
Optionally relax constraints via extensions
 Extensions for both data and metadata

Synchronous I/O used with multiple writers or mix of readers and writers

17HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DISTRIBUTED METADATA

“Metadata operations often make up as much as half of file system
workloads…”

MDSs use journaling
 Repetitive metadata updates handled in memory
Optimizes on-disk layout for read access

Adaptively distributes cached metadata across a set of nodes

18HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DYNAMIC SUBTREE PARTITIONING

19HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DISTRIBUTED OBJECT STORAGE

Files are split across objects

Objects are members of placement groups

Placement groups are distributed across OSDs.

20HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DISTRIBUTED OBJECT STORAGE

21HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

CRUSH: A SPECIALIZED KEY HASHING FUNCTION

CRUSH(x): (osdn1, osdn2, osdn3)
 Inputs
 x is the placement group
 Hierarchical cluster map
 Placement rules

Outputs a list of OSDs

Advantages
Anyone can calculate object location
Cluster map infrequently updated

22HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DATA DISTRIBUTION

(not a part of the original PowerPoint presentation)

Files are striped into many objects

 (ino, ono) → an object id (oid)

Ceph maps objects into placement groups (PGs)
 hash(oid) & mask → a placement group id (pgid)

CRUSH assigns placement groups to OSDs

 CRUSH(pgid)→ a replication group, (osd1, osd2)

23HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

REPLICATION: RELIABLE BUT NOT PAXOS

Objects are replicated on OSDs within same PG
Client is oblivious to replication

24HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

FAILURE DETECTION AND RECOVERY

Down and Out

Monitors check for intermittent problems

New or recovered OSDs peer with other OSDs within PG

25HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

ACRONYMS USED IN PERFORMANCE SLIDES

CRUSH: Controlled Replication Under Scalable Hashing

EBOFS: Extent and B-tree based Object File System
HPC: High Performance Computing

MDS: MetaData server

OSD: Object Storage Device
PG: Placement Group

POSIX: Portable Operating System Interface for uniX

RADOS: Reliable Autonomic Distributed Object Store

26HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

PER-OSD WRITE PERFORMANCE

27HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

EBOFS PERFORMANCE

28HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

WRITE LATENCY

29HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

OSD WRITE PERFORMANCE

30HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DISKLESS VS. LOCAL DISK

31

Compare latencies of (a) a MDS where all metadata are
stored in a shared OSD cluster and (b) a MDS which has a
local disk containing its journaling HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

PER-MDS THROUGHPUT

32HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

AVERAGE LATENCY

33HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

LESSONS LEARNED

If applications are object oriented, they will write huge numbers of
variable-size records (some extremely large).

POSIX directories are awkward. A B+ tree index works much better.

Treat the records as byte arrays, track meta-data in one service and data
in a second one. Both share the RADOS layer for actual data storage.

34HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

LET’S SWITCH TOPICS A TINY BIT

What are the application level costs of this kind of object orientation?

To answer the question, let’s jump one level up and think about an object
oriented system that might use tools like Ceph, but in which the application
itself is our central focus.

Core issue: how costly is it that a system like Ceph is treating the object as
a byte array?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

CORBA AND OMG

Ceph is really an outgrowth of a consortium called the “Object
Management Group” or OMG.

They proposed a standard way to translate between internal
representations of objects and byte array external ones. They call this the
Common Object Request Broker Architecture or CORBA.

We can think of an application using Ceph as a kind of CORBA use case.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
A modern air traffic control system might have a structure like this:

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
Notice first that this architecture is actually a lot like Ceph or HDFS:

 The meta-data server in Ceph and HDFS is “like” the database of
flight plan versions

 The copies near the controllers are “like” the RADOS storage unit or
the HDFS store.

 And the message bus is “like” a live notification service for watched files

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
Also, think about objects in an ATC system:

 Flight plans: these are elaborate objects that might hold 10MB of data
and could have a great many internal fields

 Many other kinds of objects are used too. Each microservice probably
has a notifications channel of its own, and uses it to talk to individual
controllers or sets of them about relevant issues

 “Attention: In 2h 31m, BA 123 will approach US 654 on approach to CDG.
Plan corrective action to avoid a violation of flight separation rules.”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
An ATC system has many components, far more than were shown.

Often these are based on high-quality legacy versions and hence there can
be many programming languages in simultaneous use.

 Often we will see C/C++, Java, C#, F#, O’Caml, etc.

 Some use of Python and Fortran and Ada.

 With CORBA, we can easily integrate many modules into a single system

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

BUT HOW OFTEN WILL WE (DE)SERIALIZE?

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→

UNIVERSAL REPRESENTATIONS ARE COSTLY!

It is very easy for a CORBA application to spend all its time on this one
action.

Ceph designers were aware of that, and decided it should only be done
under application control.

Thus Ceph is “object oriented” and yet reflects a choice not to have the
whole system understand every kind of object

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 42

HOW DO ATC SYSTEMS AVOID THESE COSTS?

The trick is to use “lazy” record access.

The ATC record is the main object being shared. Suppose that we have
two versions of an ATC object while in memory:

 Version A: The object is fully resident in memory and you can access all
fields, edit it to create a new version, etc.

 Version B: All the same methods are offered, but the in-memory data is
limited to a URL pointing to the record in the flight plan database

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43

WHY TWO “IDENTICAL” OBJECT VARIANTS?

Notice how easy it is to switch from representation B to A (or back).

In an ATC system most components don’t really look at the data fields and
for this reason, most components would be happy with representation B.
But a small object with just a URL in it is very cheap to serialize!

With “lazy deserialization”, we would convert from form B to form A only
when an application tries to touch the data.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44

OLD SINGLE VERSION APPROACH

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 45

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→ Wasted work!

DUAL VERSION APPROACH

We only do a costly action when the component will actually touch the
inner data fields!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 46

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Dual scheme reduces overheads!

A A B B B B B B B B B A B B B

O
ve

rh
ea

d
→

Here we fetch the full data for the flight
plan from the flight plan database

HOW SHOULD WE STORE THE FLIGHT PLAN
RECORDS?
The need is for a very simple append-only log managed by the version
manager.

It is easy to recognize this as a use case for state machine replication.

This situates the central safety question in one specific component, where
we can formalize it and use mathematical tools to prove that each plan
has just one sequence of versions, used consistently by all components.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 47

HOW SHOULD WE IMPLEMENT THE FLIGHT
PLAN MANAGER COMPONENT?

A (key-value) sharded service built on Derecho would be an ideal choice.

Derecho has been proved correct in several ways: by hand, but also using a
machine-verified proof in the Ivy protocol verification tool.

It is also scalable and extremely fast: important because this role is central.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 48

REVISITING THE STRUCTURE

A modern air traffic control system might have a structure like this:

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 49

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

If this one component is correct, the
whole system can be proved safe!

SUMMARY

Ceph is a file system that was created by taking the HDFS model, but then
extending it to be better matched to properties of object oriented code.

But it also reflects a decision that Ceph will not be aware of the data
representation used, and leaves that to the users. This could have high
costs, but there are ways for smart developers to work around them.

Ceph also uses a simple but “weak” form of data replication. It doesn’t
guarantee consistency.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 50

	 CS 5412/Lecture 13. �Ceph: A Scalable High-Performance Distributed File System
	HDFS limitations
	CEPH project
	Key ideas in Ceph
	Ceph has three “APIS”
	Why talk directly to RADOS?�Serialization/Deserialization!
	Good and bad things
	Ceph: A Scalable, High-Performance Distributed File System
	Contents
	Goals
	Slide Number 11
	Slide Number 12
	System Overview
	Key Features
	Client Operation
	Client Access Example
	Synchronization
	Distributed Metadata
	Dynamic Subtree Partitioning
	Distributed Object Storage
	Distributed Object Storage
	CRUSH: A specialized Key Hashing Function
	Data distribution
	Replication: Reliable but not Paxos
	Failure Detection and Recovery
	Acronyms Used in Performance Slides
	Per-OSD Write Performance
	EBOFS Performance
	Write Latency
	OSD Write Performance
	Diskless vs. Local Disk
	Per-MDS Throughput
	Average Latency
	Lessons learned
	Let’s switch topics a tiny bit
	CORBA and OMG
	Understanding Costs for CORBA’s universal Representations: ATC System
	Understanding Costs for CORBA’s universal Representations: ATC System
	Understanding Costs for CORBA’s universal Representations: ATC System
	Understanding Costs for CORBA’s universal Representations: ATC System
	But how often will we (DE)serialize?
	Universal representations are costly!
	How do ATC systems avoid these costs?
	Why two “identical” object variants?
	Old Single version approach
	Dual version approach
	How should we store the flight plan records?
	How should we Implement the flight plan manager component?
	Revisiting the structure
	Summary

