
CS5412/LECTURE 10
CONSISTENT STORAGE FOR IOT

Ken Birman
CS5412 Spring 2020

1CORNELL UNIVERSITY CS5412 SPRING 2020

CONSIDER A SMART HIGHWAY

We have lots and lots of sensors deployed

Cars are getting some form of “guidance” and if they accept it
(and maybe pay a fee) get to drive faster.

Would we run into consistency issues of the sort seen in Lecture 9?

CORNELL UNIVERSITY CS5412 SPRING 2020 2

SMART HIGHWAY

3CORNELL UNIVERSITY CS5412 SPRING 2020

Blob store

Function tier implements this “routing” but
doesn’t do more, so we won’t discuss it – the
real work in this example is in the blob store.

MACHINE LEARNING TASKS IN THIS SYSTEM

Deciding which images are worth overloading: done on camera

Deciding if an image should be retained: Occurs in the smart service
that will then hold the data, if it is retained…

… later this same smart service responds when asked “did camera
HW101-018 capture any images of a women with a passanger on a
motorcycle at 10:02.035am on January 21 2017?”

Deciding which images to use in the “movie” we are creating to
document Trinity’s crazy driving

CORNELL UNIVERSITY CS5412 SPRING 2020 4

TRACKING TRINITY…

In this example, we are doing a few things all at once

 Data is being captured by IoT sensors and uploaded via a
function tier (it doesn’t do much).

 We are relaying it into a key-value storage layer, and
saving it in some sort of sharded, replicated form

 A “query” is pulling up images that show
Trinity with the KeyMaker on her motorcycle)

CORNELL UNIVERSITY CS5412 SPRING 2020 5

REMINDER: FLOCK OF GEESE

In the last lecture we saw how the concept of a causal snapshot
can help us create consistent views of a distributed system.

Can we use that same idea here?

Goals: We want temporally precise and causally consistent data,
and then will search it for clear images of Trinity’s ride.

CORNELL UNIVERSITY CS5412 SPRING 2020 6

ANIMATION: A WAVE IN AN AQUARIUM

To illustrate this point visually, we made a simulation.

Rather than a flock of geese, it simulates a wave in an aquarium,
or a phase-shift in a power grid, as sampled by a grid of
sensors. We captured this “IoT data” into files.

Then we took snapshots and made a movie.

CORNELL UNIVERSITY CS5412 SPRING 2020 7

CONSISTENCY PROBLEM: HDFS DOES BADLY!

8

HDFS

Existing file systems (like HDFS on the left) make mistakes when
handling real-time data. But we can fix such problems (right).

FFFS+Server Time FFFS+Sensor TIME

CORNELL UNIVERSITY CS5412 SPRING 2020

WHAT ACTUALLY HAPPENS HERE?

Each “cell” is like a small photo.

A new sensor reading is like a new
photo.

Here we see a blue sensor, a yellow, a green and a pink one that
each send 6 photos over a period of time.

CORNELL UNIVERSITY CS5412 SPRING 2020 9

Time →

A
m

pl
itu

de
 →

WHAT MADE HDFS SO NOISY?

It was confused about time. Sometimes a snapshot included data
from the frame prior to the one we wanted, or after it.

Sometimes data was completely missed. This is because HDFS is
slow to “settle” down after an update.

Sometimes it violated the gap-freedom property: inconsistent cuts!

CORNELL UNIVERSITY CS5412 SPRING 2020 10

WHY WOULD THERE BE A CAUSAL
CONNECTION BETWEEN SENSOR VALUES?
In fact there isn’t: Those are completely independent and parallel

But we often construct secondary indices (like our B-Tree in hw2)

Those depend on the data in them, and can evolve through
versions too, which creates a more complex happens-before
relationship that fits Lamport’s model well.

CORNELL UNIVERSITY CS5412 SPRING 2020 11

WHY IS CONSISTENCY SUCH A BIG DEAL?

Many machine learning systems are “tolerant” of noise, but HDFS
was way worse than just noisy: it was inconsistent!

We might not trust the system when it tracks Trinity.

Inconsistent inputs can defeat any algorithm!

12CORNELL UNIVERSITY CS5412 SPRING 2020

SMART SYSTEMS NEED CONSISTENCY!
As we saw, one dimension concerns time
After an event occurs, it should be rapidly processed
Any application using the platform should see it soon

Another centers on coordination and causality
Replicate for fault-tolerance and scale
Replicas should evolve through the same

values, and data shouldn’t be lost

13CORNELL UNIVERSITY CS5412 SPRING 2020

FREEZE FRAME FILE SYSTEM (FFFSV1)

This was created by the 2019 TA, Theo Gkountouvas, with Weijia
Song!

The idea was to bring Lamport’s model into the file system.

Fhey took advantage of the fact that HDFS has a snapshot API,
even though it didn’t work. FFFS “reimplements” this API!

CORNELL UNIVERSITY CS5412 SPRING 2020 14

HOW DOES IT WORK?

Normal file systems only store one copy of each file.

FFFS starts by keeping every update, as a distinct record. The
file system state at a particular moment is accessed by indexing
into the collection of records and showing the “last bytes” as of
that instant in time.

So FFFS looks just like a normal file system to its users.
CORNELL UNIVERSITY CS5412 SPRING 2020 15

REMINDER: CONSISTENT CUTS

We talked about this on Tuesday.

Lamport suggested “visiting” machines in a distributed system at a set
of instants that represent a gap-free snapshot of the execution.
 Math term: “closed under the → relationship”
 If B is included in the set, than any A → B is included too.
 He calls this a consistent snapshot. A consistent cut is the same

but doesn’t include the full history (it looks just at the state when
you visited the machines, at that moment).

CORNELL UNIVERSITY CS5412 SPRING 2020 16

HOW DOES IT WORK?

FFFS keeps a history of versions of the data it receives

 When you overwrite file records, it keeps the old version too!

 Data is indexed by time, but also by logical time.

 When you ask for a snapshot at time T, FFFS needs to ask the
servers what data each has for each sensor.

CORNELL UNIVERSITY CS5412 SPRING 2020 17

Due to clock skew, T could fall anywhere in [T-δ, T+δ]

[T-δ… …T+δ]

HOW DOES IT WORK?

FFFS is smart about Lamport’s → relationship

 It tracks down the candidate values to return using the time, T

 Above, notice that A happens at P, and C at Q, and A → C

 In fact, A could have “caused” C. Information about A reached C

 FFFS tracks causality, so that if some read returns C, FFFS would
return A or some subsequent state for P.

 In effect, FFFS does temporal reads along a consistent cut.

CORNELL UNIVERSITY CS5412 SPRING 2020 18

Due to clock skew, T could fall anywhere in [T-δ, T+δ]

[T-δ… …T+δ]

WHAT IF YOU DO MANY
READS? CONSISTENT CUTS!
In effect, each time your application does a read from a set of
files, that operation occurs along a consistent cut that:

 Is as accurate as FFFSv1 can make it, given clock precision limits

 If T’ ≥ T, the cut for T’ includes everything the cut for T included

 If you read multiple files, the results are causally consistent

 Reads are deterministic (other readers see the same data)

CORNELL UNIVERSITY CS5412 SPRING 2020 19

T0 T1 T2…

IN OUR HIGHWAY EXAMPLE?

When we query, we want the machine-learning tool to see data
as a series of consistent snapshots across the full data set.

Then it can select data that includes video-snippets of Trinity with
exactly one snippet per unit of time, no overlaps, no “lies”.

Thought question: How does the overlap issue relate to sensor
overlap from the Meta system, discussed previously?

CORNELL UNIVERSITY CS5412 SPRING 2020 20

REVISIT THE SMART HIGHWAY

21CORNELL UNIVERSITY CS5412 SPRING 2020

Use FFFS as the blob store!

FILE SYSTEM API GOT IN OUR WAY!

FFFSv1 is actually a bit slow, partly because it uses a file system
API. To talk to it, you open files, read/write/seek/close/delete.

This is not ideally matched to modern ML, where we prefer to use
computational patterns like MapReduce.

What we really would want is to have a set of servers host a
DHT and right next to the DHT, also host the computational task.

CORNELL UNIVERSITY CS5412 SPRING 2020 22

A DHT IS A MUCH MORE NATURAL CHOICE

If we track “versions” than we can use a DHT put operation.

The key is the sensor id. In our animation we had 400 of them.

Each value is a byte-array with a “new reading” from the sensor.
In fact these are really structured records that include highly
accurate time (“synchrophasor measurements”).

CORNELL UNIVERSITY CS5412 SPRING 2020 23

CASCADE: A DHT “LIKE” FFFSV1

So we decided to create a key-value store, versioned like FFFS,
but with a sharded structure like key-value products.

We called it Cascade. It is starting to work now.

It was built using Derecho.

CORNELL UNIVERSITY CS5412 SPRING 2020 24

CONCEPT: SERVERS THAT E AC H HOSTS A SHARD OF THE
DHT PLUS CODE TO COMPUTE ON SHARDED DATA

CORNELL UNIVERSITY CS5412 SPRING 2020 25

A server

A DHT “shard”

Some function we want
to use in MapReduce

MapReduce can talk to
the DHT shard without
going over the network

On this one machine, we have both the code MapReduce will run
and one of our DHT shards

CONCEPT: SERVERS THAT E AC H HOSTS A SHARD OF
THE DHT PLUS CODE TO COMPUTE ON SHARDED DATA

CORNELL UNIVERSITY CS5412 SPRING 2020 26

Our datacenter has many servers…

OUR CODE IS “SIDE BY SIDE” WITH THE SHARD
AND CAN ACCESS LOCAL DATA CHEAPLY!

CORNELL UNIVERSITY CS5412 SPRING 2020 27

This looks like homework 2! A key-value DHT that lives on the same machines where some kind of
logic is running. In homework 2, it was a B-Tree. In this example, it would be MapReduce or

Hadoop…

CASCADE API (FFFSV2)

Extremely simple:
 Cascade::put(key, value),
 Cascade::get(key[, time]). You can also query the version # for the object
 Cascade::cput(key, value, new-intended-version-#)
 Cascade::watch(key, Callback f)

The key could be a string, an integer, even a complex object.
The value could be a byte array, a photo, a video, and can be huge.

28CORNELL UNIVERSITY CS5412 SPRING 2020

HOW YOUR CODE “REACHES” THE DHT

If your code uses a key that maps to the same node where it is
running now, the request is handled locally, with no network I/O.

If your key maps to some other shard, Cascade will fetch the
object over a high-speed RDMA link. If you did a put, it will use
Derecho state machine replication (multicast) to do the update.

CORNELL UNIVERSITY CS5412 SPRING 2020 29

LOCALITY BENEFIT

If the code is talking to the local shard, no locking or copying is
required, which makes access ultra-fast!

 We don’t need locks because any updates create new versions

 Cascade actually does support version overwrite too, but in
our example, it isn’t using that feature.

 We won’t need to copy the data (which could be big!) since
we can access it directly right where Cascade holds it

CORNELL UNIVERSITY CS5412 SPRING 2020 30

WHAT IF WE NEED A GPU FOR FAST COMPUTE?

Many ML algorithms are only feasible if we can do parallel
computing on a GPU or TPU chip.

Cascade is smart enough to remember what it downloads into
GPU memory. It won’t DMA the same object again and again.

In effect, Cascade “manages” GPU memory like a cache!

CORNELL UNIVERSITY CS5412 SPRING 2020 31

MAP-REDUCE ON DATA IN CASCADE

We obtain a completely
atomic MapReduce
primitive within Derecho!

CORNELL UNIVERSITY CS5412 SPRING 2020 32

N x N Shuffle

Map to k1, k2

AllReduce

Key-value pairs at “virtual time” T

VERSIONED OBJECTS
We configure the object store to track versions. put creates a new version:
 key: The object store always tracks information on a per-object basis
 version-number: Just an integer
 time: If the object itself lacks a timestamp, we just use “platform” time.

Now get can lookup most current version, or a specific one, even by time.
The object store is optimized to leverage non-volatile memory hardware.

33CORNELL UNIVERSITY CS5412 SPRING 2020

STORING DELTAS

Existing DHTs lack support for versioned data.

We implemented a highly optimized versioned data structure

We implement a temporal index, and cache frequently accessed data.

 A server still manages a map (since many keys map to it), but you can
think of the values for a specific key as being versioned.

 Sometimes deltas are more efficient. If you have a function to compute
the delta, we won’t even create a new version unless you tell us to.

 Values (or deltas) are saved on NVMe & replicated for fault-tolerance.
34CORNELL UNIVERSITY CS5412 SPRING 2020

SIMPLEST CASE

We take a subgroup, shard it (for example, 2 replicas)
 put maps your key to some shard. It holds the key,value pairs
 Replication uses an atomic multicast based on Paxos, so

all copies are in a consistent state.
 There is just one “most current” value, held by the store.
 get will fetch this most recently stored value.
 watch uses multicast to inform any watchers each time value changes.
 cput is like put, but only replaces the prior value if the version # matches

35CORNELL UNIVERSITY CS5412 SPRING 2020

WHAT IF WE DON’T WANT VERSIONS?

Version numbering is standard in Cascade. But it doesn’t always track
the version history.

For a given key, you can ask it to keep just the most current version, or
you can ask it to keep all prior versions.

In our power grid example, we used the “all prior versions” approach,
but for some kinds of data “just keep the current one” is best.

CORNELL UNIVERSITY CS5412 SPRING 2020 36

SEQUENCES OF VERSIONS

With concurrent applications, perhaps some task will do a get, then
compute a new version, then put. But if some other task simultaneously
does the same thing, they could try to create the same version.

In cput is a in the object store to address this kind of race condition. If
an update races occurs, cput notices that a task is trying to overwrite a
version that is already present. It “fails” so that the task can repeat
the get and try again. This yields consistency without locking!

CORNELL UNIVERSITY CS5412 SPRING 2020 37

WHY IS AVOIDING LOCKING SO IMPORTANT?

In a database course you are taught to lock an object, read it,
then write the new version and then commit.

But Jim Gray told us this won’t scale, so we don’t want to do that.
It led to Eric Brewer’s CAP conjecture, and weak consistency.

Cascade has strong consistency from state machine replication
plus versioning. cput avoids locking, avoiding Gray’s concern!

CORNELL UNIVERSITY CS5412 SPRING 2020 38

WHY IS AVOIDING LOCKING SO IMPORTANT?

Summary: conditional version put:

cput allows you to read a version. When you update it, you’ll do
a cput but you also specify the required version number.

 This will normally be successful.

 But if the version was changed under your feet, you get an
error. Then throw away the update and try again.

CORNELL UNIVERSITY CS5412 SPRING 2020 39

OBJECT STORE AS A FILE SYSTEM

A file system is really an abstraction over a block store.

We plan to offer the Ceph object-oriented enhanced Posix API.
 Here we configure the object store to be versioned and persistent.
 Paxos for fault-tolerant updates, guaranteeing consistency.

This will offer back-compatibility, but for peak speed users should still
use put/get/watch

40CORNELL UNIVERSITY CS5412 SPRING 2020

OBJECT STORE AS A “BUS”

We can implement “publish” using put.
 Acts as a message bus in the non-versioned case
 Acts as a message queue in the versioned mode.
… and we can support “subscribe” using watch

Thus the object store can support pub-sub APIs such as the OMG DDS
specification, Kafka, OpenSplice, etc. We can also offer message
queuing APIs such as the Azure or AWS queuing services.

41CORNELL UNIVERSITY CS5412 SPRING 2020

WHAT ABOUT BIG OBJECTS?

If objects are large, and watchers just want “some” objects, we
recommend a simple two step approach:

 Create a uid, and put the (uid, obj) pair, first.

 put a “meta-data” record that lists the uid.

 Now, via get or watch, clients learn about the update from the
meta-data, which can list various attributes.

 They call get a second time to fetch object, if desired.

42CORNELL UNIVERSITY CS5412 SPRING 2020

HOW IS CASCADE IMPLEMENTED?

The entire key-value architecture is being built over Derecho

In effect, you talk to Cascade (put/get/watch) and it “translates”
your actions into Derecho’s state machine replication operations,
which run on RDMA (if available).

Effect is that your Cascade operation is extremely fast

CORNELL UNIVERSITY CS5412 SPRING 2020 43

A LIBRARY? OR A µ-SERVICE?

Cascade can be set up as a separate µ-service on its machines.

 In this configuraton it could replace a blob store, or a DHT
like CosmosDB or Cassandra or Dynamo.

 But your code wouldn’t run on the same machines.

Used as a library, Cascade can run on the same machine as your
code. This eliminates extra copying and message passing.

CORNELL UNIVERSITY CS5412 SPRING 2020 44

SUMMARY

Lamport’s ideas give us a way to fix the inconsistencies seen in
existing cloud storage systems, like HDFS or the Azure blob store

In prior work, Cornell created a file system, FFFSv1 to show this.

Right now, the newer Cascade project is recreating the same
options but in a (key,value) DHT approach that fits nicely with
today’s most popular ML and AI platforms.

CORNELL UNIVERSITY CS5412 SPRING 2020 45

	CS5412/Lecture 10�Consistent Storage For IoT
	Consider a Smart Highway
	Smart Highway
	Machine Learning tasks in this system
	Tracking Trinity…
	RemindeR: Flock of Geese
	Animation: A wave in an aquarium
	Consistency Problem: HDFS does badly!
	What actually happens here?
	What made HDFS so noisy?
	Why would there be a causal connection between sensor values?
	Why is consistency such a big deal?
	Smart Systems Need Consistency!
	Freeze FramE File System (FFFSv1)
	How does it work?
	Reminder: Consistent cuts
	How does it work?
	How does it work?
	What if you do many�Reads? Consistent cuts!
	In our Highway example?
	Revisit the Smart Highway
	File system API got in our way!
	A DHT is a much more natural choice
	Cascade: A DHT “like” FFFSv1
	Concept: Servers that each hosts a shard of the DHT plus code to compute on sharded data
	Concept: Servers that each hosts a shard of the DHT plus code to compute on sharded data
	Our code is “side by side” with the shard and can access local data cheaply!
	Cascade API (FFFSv2)
	How your code “reaches” the DHT
	Locality benefit
	What if we need a GPU for fast compute?
	Map-Reduce On Data in Cascade
	Versioned objects
	Storing deltas
	Simplest case
	What if we don’t want versions?
	Sequences of versions
	Why is avoiding locking so important?
	Why is avoiding locking so important?
	Object store as a file system
	Object store as a “bus”
	What about big objects?
	How is Cascade implemented?
	A library? Or a -service?
	Summary

