
CS 5412/LECTURE 1
TOPICS IN CLOUD COMPUTING

Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

MY QUALIFICATIONS TO TEACH THIS
STUFF TO YOU…
 Created the “self-healing” software that ran the trading floors

of the New York Stock Exchange and the Swiss Exchange for 10+ years.
The US military uses this technology too.

 Designed the French portion of the European Air Traffic control system,
control and created the core software. They’ve used it since 1996.

 Oracle and Microsoft both use a technology I invented to track the
status of their clusters and data centers.

 Recently, I helped create the New England smart grid (for ISONE and
NYPA), and helped the Air Force figure out how to leverage the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

SOME SUPERSTAR PAST STUDENTS

Werner Vogels was in my group until 2005.
He has been CTO of Amazon since 2006.

Ranveer Chandra was the Farmbeats product lead at
Microsoft. Now he is also chief scientist for Azure.

Yee-Jiun Song: VP Engineering, Facebook

Qi Huang: Owns Facebook content delivery
Dalia Malkhi: In charge of Libra, Facebook’s new currency.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

… BLAH, BLAH, BLAH

But in fact, I didn’t actually invent the cloud. Jeff Dean (Google) did that,
with Sanjay Ghemawat (Sanjay went to Cornell, but wasn’t my student)

My real focus has always been on consistent data replication and fault-
tolerance. The cloud uses this stuff, but it isn’t the center of everything.

Still, I’m the guy Amazon turned to when they needed a lead expert
witness after they were sued for billions over a cloud issue. (We won).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

CLOUD COMPUTING

CS5412 is…

 A deep study of a big topic.

 In spring 2020 our focus will be on “smart farming” in Azure IoT Edge.

 The farming focus leverages a Cornell and Microsoft
interest (and an Azure product area) and makes it real.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

Today… people like you

Tomorrow… Bessie!

Fog computing!

250 PB/DAY!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

DATA IN THE CLOUD

1 Exabyte of data is 1,073,741,824 GB.
(Your hard disk probably holds 64GB, but is
way too slow by data-center standards)

The Internet has about 2B websites, and of
these, 644M have “active content”

… and all of this is “pre Internet of Things”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

YOU TELL ME…
• 2 GB/day

• 400 Exobytes

• 1B

• 100 Gbps
per fiber

• 322 Tbps

Total size of all the digital information acquired about you per day?

Total amount of stored data in the Internet?

How many web sites in the Internet today?

Speed of an Internet backbone link?

Speed of an Internet backbone router?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

CLOUD PROVIDERS NEED TO THINK “BIG”!

Google: 40,000 queries per second (1.2 Trillion per year)

YouTube: 1.9B active users per month, viewing 5B videos per day

Facebook: 2.23B active users, 8B video views,15M photos uploaed per day

Cloud: Nearly 4B of the world’s 7B accessed cloud resources in 2018

… the scale of computing to support these stories is just surreal!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

… AND THEY NEED TO THINK “PARALLEL”

At these scales, no computer can keep up.

By the nature of the cloud, it has to be massively parallel!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

YOU TELL ME…
How much DRAM in a datacenter server?
How fast is a single CPU in a NUMA machine?
How many cores does a NUMA server hold?
How many threads per core when hyperthreading is enabled?
How many servers per rack?
How many servers total in a datacenter?
How deep is a typical datacenter COS/SPINE routing tree?
How fast is a datacenter network today?
How big is 1-way node to node latency (due purely to the network)?
What is a typical round-trip latency for a datacenter RPC?

• 512GB-12TB
• 1.8Ghz
• 72 cores
• 2
• 48
• ~500,000
• 6 layers
• 56Gbps
• 1.25us
• 100us-25ms

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

YOU TELL ME…
How much storage capacity in a server’s RAID SSD drive?

How much in a RAID configuration?

How much storage in a cutting edge rotating disk (HDD)?

How much capacity in a memory-mapped Optane drive?

Peak PCIe bus data transfer speeds, per bus?

… peak transfer rate for an single SSD unit?

… access delay for a block of SSD storage?

Seek time for an HDD?

• 800 GB
• 100 TB
• 15 TB
• 16 GB
• 8.5GB/s
• 200 MB/s
• 100us
• 2.5-10ms

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

YOU TELL ME…
Size of one email in HTML encoding?

… a typical raw photo?

… that same typical photo, in a compressed format?

… a typical encoded 3-5 minute music video?

… a full length movie?

Maximum standard IP packet size?

Jumbo frame size?

• 10KB
• 4MB
• 250KB
• 10MB/min
• 4GB

• 1KB
• 8KB

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

HOW DID TODAY’S CLOUD EVOLVE?

Prior to ~2005, we had “data centers designed for high availability”.

Amazon had especially large ones, to serve its web requests
 This is all before the AWS cloud model

 The real goal was just to support online shopping

Their system wasn’t very reliable and the core problem was scaling

 Like a theoretical complexity growth issue.

 Amazon’s computers were overloaded and often crashed

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

YAHOO EXPERIMENT

At Yahoo, they tried an “alpha/beta” experiment

Customers who saw fast web page rendering (below 100ms) were happy.

For every 100ms delay, purchase rates noticeably dropped.

Speed at scale determines revenue, and revenue shapes technology: an
arms race to speed up the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

A sprint to render your web page!

STARTING AROUND 2006, AMAZON LED IN
REINVENTING DATA CENTER COMPUTING
Amazon reorganized their whole approach:

 Requests arrived at a “first tier” of very lightweight servers.

 These dispatched work requests on a message bus or queue.

 The requests were selected by “micro-services” running in elastic pools.

 One web request might involve tens or hundreds of µ-services!

They also began to guess at your next action and precompute what they
would probably need to answer your next query or link click.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

OLD APPROACH (2005)
Product List

Computers were mostly desktops

Internet routing was
pretty static, except
for load balancing

Web Server
built the page… in Seattle

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

NEW APPROACH (2008)
Product List

Computers became lightweight,
yet faster

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 18

Web Server built the page…
ten miles from the users

NEW APPROACH (2008)
Product List

Computers became lightweight,
yet faster

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

Web Server built the page…
ten miles from the users

More and more mobile apps

NEW APPROACH (2008)

Desktops with
snappier response

More and more mobile apps HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

Message Bus

Racks of highly parallel workers do much of
the data fetching and processing, ideally

ahead of need… The old databases are split
into smaller and highly parallel services.

Web Server becomes simpler
and does less of the real work

GeoReplication

TIER ONE / TIER TWO

We often talk about the cloud as a “multi-tier” environment.

Tier one: programs that generate the web page you see.

Tier two: services that support tier one. We will see one later
(DHT/KVS storage used to create a massive cache)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

TODAY’S CLOUD

Tier one runs on very lightweight servers:

 They use very small amounts of computer memory

 They don’t need a lot of compute power either

 They have limited needs for storage, or network I/O

Tier two µ-Services specialize in various aspects of the content delivered to
the end-user. They may run on somewhat “beefier” computers.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

Social Network

End-to-end Microservices (from Christina Delimitrou)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

Media Service

End-to-end Microservices (from Christina Delimitrou)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

EACH MICROSERVICE IS A PARALLEL “POOL”!

Every one of those little nodes is itself a small elastic pool of processes

A microservice (µ-service) is a kind of program designed so that the data
center can run one instance… or many instances, “elastically”, to deal with
dynamically varying demand.

The idea here is that any instance can handle any request equally well, so
there is no need for very careful “routing” of specific requests to specific
instances. This lets the data center adapt to changing loads easily!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

THESE POOLS ARE
MANAGED AUTOMATICALLY
In Azure, for example, there is a tool called the “App Service” (we’ll use it!)

The App Service manages a big collection of compute resources in the
cloud. Developers can install your own services in it (as “containers”).
Configuration files tell it when to launch them for you, automatically.

Among the features is a way for it to watch the queue of requests and
automatically add instances or shut instances down to match loads.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

Advantages of µ-services:
Modular easier to understand
 Speed of development & deployment
On-demand provisioning, elasticity
 Language/framework heterogeneity

Motivation for µ-services (Delimitrou)

webserver

databases

recommender

ads
photos

posts

ads
posts

photos
recommender

webserver databases

Monolith Microservices

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

Brings many benefits… but complicates cluster management & performance debugging

Dependencies cause cascading QoS violations

Difficult to isolate root cause of performance unpredictability

Performance management (Delimitrou)

Netflix Twitter Amazon

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

Dependencies cause cascading QoS violations

Empirical performance debugging too slow,
bottlenecks propagate

Long recovery times for performance

Performance visualization

AmazonNetflix

Social Network

29

WHAT DID WE JUST SEE?

The cloud scheduler watched each µ-service pool (each is shown as one dot, with
color telling us how long the task queue was, and the purple circle showing how
CPU loaded it is).

The picture didn’t show how many instances were active – that makes it too hard
to render. But each pool had varying numbers of instances. The App Server
was automatically creating and removing instances.

Each time the scheduler realized that it should add instances to a slow service,
some of the “deadline violations” went away.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

WHAT DOES IT MEAN TO “ADD INSTANCES”?

For some applications (ones with NUMA threading for parallelism) we add
instances by launching new threads on additional cores.

For others, we literally run two or more identical copies of the same
program, on different computers! They use a “load balancer” to send
requests to the least loaded instances.

And you can even combine these models…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

WHY POOLS OF INSTANCES?

This is really just one of a few ways to get parallelism

Let’s look at some of the choices and try to understand why the cloud
favors the approach we just saw on the Delimitrou visualization.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

SCALABILITY ISSUES ARISE EVEN INSIDE A
SINGLE µ-SERVICE INSTANCE
We’ve been acting as if each µ-service is a set of “processes” but ignoring
how those processes were built.

In fact they will use parallel programming of some form because modern
computers have NUMA architectures.

How do cloud developers think about this form of parallelism?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

DEEP DIVE: BEST WAY TO LEVERAGE
PARALLELISM

Not every way of scaling is equally effective. Pick poorly and you might
make less money!

To see this, we’ll spend a minute on just one example.

This may feel like a small detour but actually is typical of CS5412

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34Slight digression

TIER-ONE FOCUSES ON EASY STORIES

Which is better:
One multithreaded server, per node?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35Slight digression

TIER-ONE FOCUSES ON EASY STORIES

Which is better:
Multithreaded servers?
Or multiple single-threaded servers?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36Slight digression

WHAT YOU LEARNED IN O/S COURSE

Probably, you just took a class where the big focus was concurrency and
threaded programs, and probably they taught you to go for multithreading

The story you heard was something like this:
 Because of Moore’s law, modern computers are NUMA multiprocessors.
 To leverage that power, create lots of threads, link with a library like

“pthreads”, and request that your program be allocated multiple cores.
 Use thread synchronization/critical sections to ensure correctness.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37Slight digression

BUT IS THIS THE RIGHT CHOICE?

First, we should identify other design options, even ones that look dumb at
first glance.

Then we can evaluate based on a variety of considerations:

 Expected speed and scaling (more is good)

 Complexity of the solution (more is bad)

 Cost of the solution (more is bad)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

WHAT YOU LEARNED IN O/S COURSE

Another thing you learned about was the virtual machine approach.

With true virtualization, programs run on private virtual machines.

Today, a recent alternative is “containers”, which give the illusion of a
private virtual machine in a Linux process address space, not a true VM.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39Slight digression

… EVEN OUR “EASY” CLOUD POSES CHOICES!

Are those threads?
… Linux processes?
… virtual machines?
… Linux containers?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

Are those threads?

Slight digression

HOW WOULD YOU DECIDE BETWEEN THEM?

Basically, we have four options:

1. Keep my server busy by running one multithreaded application on it

2. Keep it busy by running N unthreaded versions of my application as
virtual machines, sharing the hardware

3. Keep it busy by running N side by side processes, but don’t virtualize

4. Keep it busy by running N side by side processes using containers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41Slight digression

Slight digression

WHY DOESN’T A MULTI-THREADED SOLUTION
PERFORM BEST?
This is almost always a surprise to CS5412 students. To appreciate the
issue, we need to understand more about modern server hardware

Early days of the web were before we fell off Moore’s curve. Today’s
servers are NUMA machines with many cores.

32-core Intel Aubrey
chip. Some servers

have as many as 128
cores today!

42HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

NUMA ARCHITECTURE

A NUMA computer is really a small rack of computers on a chip
Each has its own L2 cache, and small groups of them share DRAM.
With, say, 12 cores you might have 4 DRAM modules serving 3 each.
 Accessing your nearby DRAM is rapid
 Accessing the other DRAM modules is much slower, 15x or more

NUMA hardware provides cache consistency and locking, but costs can be
quite high if these features have much work to do.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43Slight digression

MULTITHREADING ON A NUMA.

On a NUMA architecture, many threaded programs slow down on > 1
cores! Many reasons:
 Locking and NUMA memory coherency,
 Weak control over “placement” (which memory is on which DRAM?),
 Higher scheduling delays,
 Issues of reduced L2 cache hit rate

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44Slight digression

OTHER OPTIONS: VMS AND
CONTAINERS.

Another approach is to just run multiple programs side by side. But how
can we avoid risk of interference?

 Virtual machines (VMs) are a tool for making one compute emulate
a cluster of computers and even run several different O/S instances.

 Containers are a different tool that does less but has lower overheads.
Each container has one or a set of processes that are isolated from
other containers, but not with a full VM.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 45Slight digression

DEEP DIVE ON THAT QUESTION

How does true virtualization work?

 The VM solution (like VMWare or Oracle VirtualBox) has a way to
package a whole computer as a single executable.

 Now we won’t have memory contention: each program lives in an
isolated context. We use more memory, because sharing is harder.

 But the virtualization layer causes page-table translation slowdown,
and I/O operations might also be slower. DMA might not work.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 46Slight digression

DEEP DIVE ON THAT QUESTION

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 47

A container is a normal Linux process with a library that mimics a full VM.
 The system looks “private” but without full virtualization.
 Eliminates the 10% or so performance overheads seen with true VMs.
 Also, containers launch and shut down much faster than a full VM,

because we don’t need to load the whole OS.
 We won’t see NUMA memory contention problems.
 Security and “isolation” are nearly as good as for VMs.

Popular options? Kubenetes and Docker.

Slight digression

CHOICES AS A TABLE

Option Speed Complexity Costs

1. Multithreaded
server

Poor Poor Development: expensive. Use of resources:
best. But may be hard to administer.

2. Single-thread +
VM

Poor Good Inexpensive development, but inefficient use
of memory resources, high overheads

3. Single-threaded
process model

Very good if
interference can
be avoided

Least complex! Inexpensive development, but administering
to ensure that the processes won’t somehow
interfere can be tricky.

4. Single-threaded,
containers

Best of all. Just like a single-
threaded process
model.

Inexpensive development. The approach
helps by protecting containerized apps
from most forms of interference.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 48Slight digression

WHY CONTAINER MODEL “WINS”…

We want the edge of the cloud to be as cost-effective as possible.

Development and management complexity is one kind of cost.

Also think about CPU load, memory, and context switching overheads:

 Best would be a single program with multiple threads

 Containers offer isolation and can share code pages, saving memory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 49Slight digression

AHA!

50

Build single threaded server, optimized to run on behalf of a single client.

Run lots of copies on each NUMA server (perhaps hundreds).

Use containers for isolation, container O/S smart about DRAM memory issues.

 Share read-only pages only between cores that share the same DRAM

 Make one copy per DRAM for read-only shared data, like code pages!

Slight digression HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

MORE TOPICS WE WILL TALK ABOUT

Azure’s IoT Edge

 Sensors and actuators: what are they?

 How smart are they likely to be?

 Customizing the IoT Edge

 Filtering and transforming data

Fault Tolerance

Challenges of dealing with real-time data

 Time synchronization, temporal storage

 Concepts of consistency for the cloud edge

Azure’s Intelligent IoT Cloud

 Details of the µ-services concept

 Customizing the intelligent cloud

 Roles played by edge µ-services

 Hardware accelerators for intelligence

Big data analytics to support IoT use cases

 The Apache ecosystem: Zookeeper,
Hadoop, Pig, Hive, HBase, etc.

 Spark and its RDD model.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 51

ORGANIZATIONAL STUFF Spring 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 52

ORGANIZATIONAL TOPICS/FAQ

Projects and extra credit opportunities

In-class quizzes

Final exam

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 53

YOUR FINAL GRADE

A curve. For most people B+ to A. A few get A+, a few get B or worse.

Formula?

 Half comes from programming assignments (homeworks in weeks 1-4,
then project). Extra credit can help with points lost here.

 Extra credit comes from working with “smart dairy” students, hackathon, BOOM
 Homework assignments often have extra credit built in, too.

 Half from exams (quizzes, then a final). Extra credit doesn’t help here.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 54

EVERYONE NEEDS TO DO A PROJECT!

You can work alone, or in teams. We encourage teaming, either with
people you already know, or through “looking for teammates” on Piazza.

We can also help you form a team if you don’t know anyone.

Teams can accomplish more, and some team projects even become startups

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 55

PROJECT TOPICS

You are welcome to invent one of your own, but it has to be a really good
fit for cloud computing and not just some random computing project.

Many people want suggestions. In spring 2020 we are teaming up with
some “smart farming” researchers and they have great ideas:

 Various cloud-computing + IoT applications seen on dairy farms.

 Drone and robot image processing that arises in greenhouses.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 56

CS5999 (MENG PROJECT CREDITS)

Some people expand CS5412 projects by adding 3 credits of CS5999,
which allows them to count the project towards MEng project credits.

But this means six hours more work per week, starting this week!

Those projects are always more ambitious, harder to build, and we closely
monitor to make sure that they extra hours really were reflected in extra
accomplishments.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 57

AZURE ACCOUNTS

Our TAs will be providing Azure accounts you can use for CS5412

Azure is operated by Microsoft. You can select a variety of OS options
such as Ubuntu Linux, Windows Server, etc. Linux is the most common.

Then you can log into your instances and set them up any way you like.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 58

	 CS 5412/Lecture 1 �Topics in Cloud Computing
	My qualifications to teach this�stuff to you…
	Some superstar past students
	… blah, blah, blah
	Cloud Computing
	250 PB/Day!
	Data in the cloud
	You tell me…
	Cloud Providers need to think “big”!
	… and they need to think “parallel”
	You tell me…
	You tell me…
	You tell me…
	How did today’s Cloud evolve?
	Yahoo Experiment
	Starting around 2006, Amazon led in reinventing data center computing
	Old Approach (2005)
	New Approach (2008)
	New Approach (2008)
	New Approach (2008)
	Tier one / Tier Two
	Today’s Cloud
	Slide Number 23
	Slide Number 24
	Each microservice is a parallel “pool”!
	These pools are �managed automatically
	Slide Number 27
	Slide Number 28
	Slide Number 29
	What did we just see?
	What does it mean to “add instances”?
	Why pools of instances?
	Scalability issues arise even inside a single -service instance
	Deep Dive: Best Way to Leverage Parallelism
	Tier-One focuses on easy stories
	Tier-One focuses on easy stories
	What you learned in O/S course
	But is this the right choice?
	What you learned in O/S course
	… even our “easy” cloud poses choices!
	How would you decide between them?
	Why doesn’t a multi-threaded solution perform best?
	NUMA architecture
	Multithreading on a NUMA.
	Other options: VMs and �Containers.
	Deep Dive On that Question
	Deep Dive On that Question
	Choices as a table
	Why container model “wins”…
	Aha!
	More topics we will talk about
	Organizational Stuff
	Organizational topics/FAQ
	Your final grade
	Everyone needs to do a project!
	Project topics
	CS5999 (MEng ProjecT Credits)
	Azure accounts

