Recitation 01/22: Course Projects

Sagar Jha Kwanghyun Lim Theo Gkountouvas

About me

- 5th year PhD student in CS (https://www.cs.cornell.edu/~sagarjha/)
- Working with Prof. Ken Birman on Distributed Systems
- Interested in building efficient reliable systems, specially on RDMA networks
- ► TAed the course in 2018
- Office Hours Tuesdays 2pm 3 pm, Thursdays 12pm 1pm in Rhodes 405
- Meeting by appointment for project discussion

Recitations plan

- I will go over the lectures in more detail, at a slower pace
- ▶ I will answer questions about the course material, projects and logistics
- I will discuss solutions for homework/quizzes
- We will have guest lectures from time to time
- Next recitation will be Prof. Julio Giordano talking about dairy projects

Project Organization (tentative)

- Group Formation and Project Idea (February 7th)
- Project Plan (February 21st)
- Intermediate Report (March 27th)
- Peer Reviews (April 10th)
- Final Report (May 1st)
- Presentation/Poster/Demo (May 4th-May 7th)
 - > Exception might be made, since your presence is required.

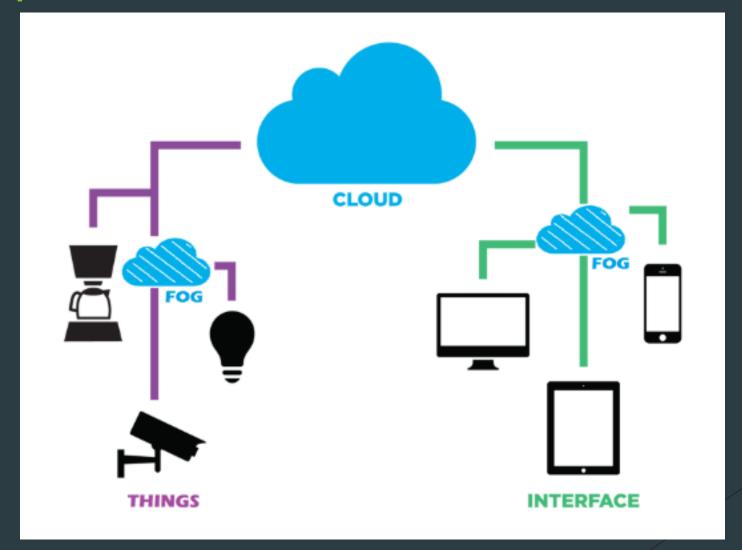
Project Grading

- > Project + homework accounts for ~50% of your total grade.
 - > 10% -> Intermediate report
 - > 10% -> Peer Reviews
 - > 20% -> Final Report
 - > 20% -> Poster
 - > 20% -> Presentation
 - > 20% -> Demo
 - > +10% -> Presentation in BOOM (April 29th).
- MEng Project
 - > MEng project grade same as the course grade

Group Formation & Project Idea

- List of group Members
 - > Name, Net ID
- If this is an M.Eng. project mention who is taking the M.Eng. credits.
- Two paragraphs about the project idea.
 - What are you trying to achieve?
 - Why is it useful?
 - Briefly mention how you are going to do it (input data, analysis, etc.) in one paragraph.

Intermediate & Final Report


Should consist of the following sections:

- 1. Motivation (idea, why it is useful, etc.)
- 2. Background (what is the current state?)
- 3. Design + Implementation
- 4. Evaluation
- 5. Conclusions

Project - IoT application

- Input
 - > Sensor Data
- Data Analysis
 - Machine Learning/Optimization
- Output
 - Visualization of Data
 - Control Actions
 - > Recommendations
 - Alarms

IoT application -Architecture

IoT application - Technical Challenges

- 1. Data Collection
 - Integrate data from possibly multiple sources
 - Integrate data from third-party sources (Weather)
- Data Analysis
 - Utilize ML/Optimization tools to analyze data.
- 3. Scalability
 - Scale up to million/thousands devices
- 4. Hardware on Site*
 - Tune devices on site to work accordingly
- 5. Cost-Effective Solutions

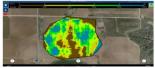
Digital agriculture projects

- Pair up with project groups from the dairy management course
- Some ideas include cow tracking, cow pregnancy analysis etc.
- Other projects: Analyze data from greenhouses
- Inter-disciplinary work: Interact with students from other departments
- Impactful projects

Project - Traditional cloud application

- Examples New key/value store, Storage system, Banking application etc.
- Guarantee availability and consistency across failures
- Manage application membership (sharding/replication/leaves/joins)
- Optimize for performance High throughput and low end-user latency
- Scalability Scale with number of user, request rates, internal resources
- Recommended for
 - Students interested in pursuing MS/PhD or a career in Systems

Azure Accounts


- Once you form groups, you will receive some Azure credits for your project.
- We will have examples using Azure technologies later in the course.
- > Other Cloud vendors might be used. We will not provide funding or assistance for them.

Examples of projects

My internship project with FarmBeats

A Case Study in Smart Agriculture

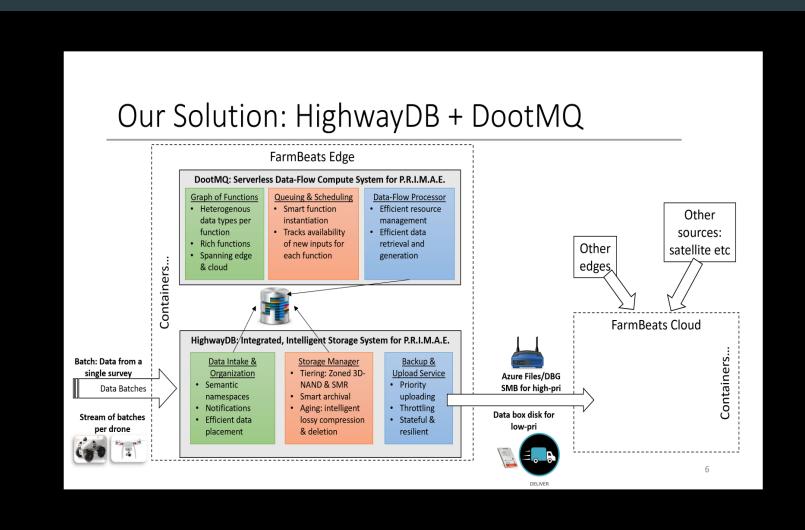
Connected Farms

Data collection with sensor deployments, drone flights, and farm equipment

Al-based Advisory

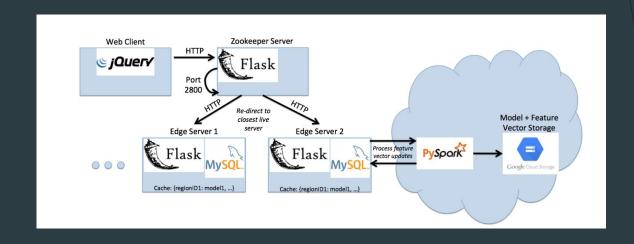
Real-time, actionable insights based on the ground conditions combined with remote sensing and weather patterns

Precision Farming


Irrigation, Fertilizing, Weeding and Spraying applications

Traceability

Use of blockchain to track usage & compliance



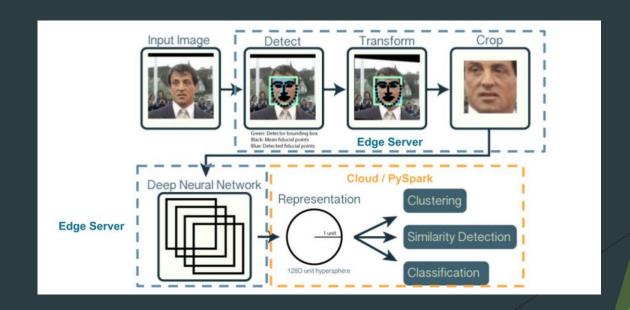
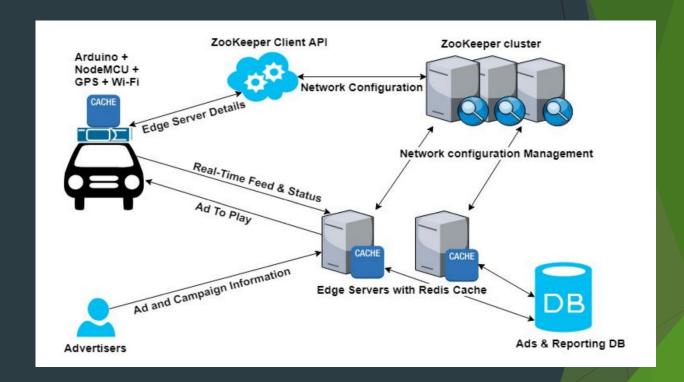
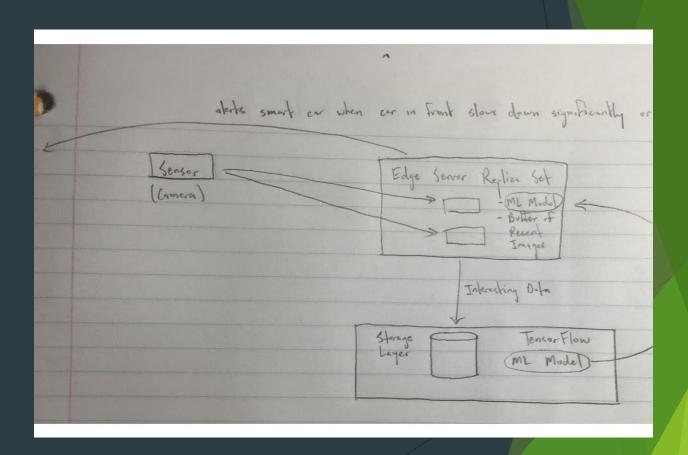

My internship project with FarmBeats

Image-based authentication for banking


Yu Gu, Gloria Xiao, George Li


Admomo

Saksham Papreja, Vidhant Maini

Smart Highway Simulation

Cameron Love

