The sheer size of the cloud requires a lot of resources. These are allocated *elastically*, meaning “on demand”.

Size: A company like Facebook needs to run data centers on every continent, and for the United States, has four major ones plus an extra 50 or so “point of presence” locations (mini-datacenters).

A single data center might deal with millions of simultaneous users and have many hundreds of thousands of servers.
LOAD SWINGS ARE INEVITABLE IN THIS MODEL

People sleep in Seattle while they are waking up in New York.

People work in Mumbia when nobody is working in the USA

So any particular datacenter sees huge variation in loads.
DIURNAL AND SEASONAL LOAD PATTERNS

The cloud emerged for tasks like Google search and Amazon eCommerce, but people sleep. So there are periods of heavy human cloud use, but also long periods when many human users are idle.

During those periods the cloud wants to reschedule machines for other tasks, like rebuilding indices for tomorrow morning, or finalizing purchases.

So the cloud needs a programming model in which we can just give the service more resources (more machines) on demand.
SHOULD THESE ELASTIC SERVICES BE BUILT AS ONE BIG THING, OR MANY SMALLER THINGS?

Much like our “how to implement a NUMA server topic”

Except here, we are scaling across nodes on a data center.
SINGLE BIG SERVICE PERFORMS POORLY... WHY?

Until 2005 “one server” was able to scale and keep up, like for Amazon’s shopping cart. A 2005 server often ran on a small cluster with, perhaps, 2-16 machines in the cluster.

This worked well.

But suddenly, as the cloud grew, this form of scaling broke. Companies threw unlimited money at the issue but critical services like databases still became hopelessly overloaded and crashed or fell far behind.
At Microsoft, Jim Gray anticipated this as early as 1996.

He and colleagues wrote a wonderful paper from their insights:

Basic message: divide and conquer is really the only option.
HOW THEIR PAPER APPROACHED IT

The paper uses a “chalkboard analysis” to think about scaling for a system that behaves like a database.

- It could be an actual database like SQL Server or Oracle
- But their “model” also covered any other storage layer where you want strong guarantees of data consistency.
- Mostly they talk about a single replicated storage instance, but look at structured versions too.
THE CORE ISSUE

The paper assumes that your goal is some form of lock-based consistency, which they model as database serializability (in CS5412 we might prefer “state machine replication”, but the idea is similar).

So applications will be using read locks, and write locks, and because we want to accommodate more and more load by adding more servers, the work spreads over the pool of servers.

This is a very common way to think about servers of all kinds.
Their setup, as a picture

Applications using the database: client processes

During the run, T concurrent requests are issued. Here, 3 are running right now, but T could be much larger.
For scalability, the number of servers (N) can be increased.
WHAT SHOULD BE THE GOALS?

A scalable system needs to be able to handle “more T’s” by adding to N

Instead, they found that the work the servers must do will increase as T^5

Worse, with an even split of work, deadlocks occur as N^3

Example: if 3 servers (N=3) could do 1000 TPS, with 5 servers the rate might drop to 300 TPS, purely because of deadlocks forcing abort/retry.
WHY DO SERVICES SLOW DOWN AT SCALE?

The paper pointed to several main issues:

- Lock contention. The more concurrent tasks, the more likely that they will try to access the same object (birthday paradox!) and wait for locks.

- Abort. Many consistency mechanisms have some form of optimistic behavior built in. Now and then, they must back out and retry. Deadlock also causes abort/retry sequences.

The paper actually explores multiple options for structuring the data, but ends up with similar negative conclusions except in one specific situation.
WHAT WAS THAT ONE GOOD OPTION?

Back in 1996, they concluded that you are forced to shard the database into a large set of much smaller databases, with distinct data in each. Jim set out to do this for a massive database of astronomy data.

By the time he died in 2007, Jim had shown that for every problem he ran into, it was possible to devise a sharded solution in which transactions only touched a single shard at a time.

In 1996, it wasn’t clear that every important service could be sharded. By the 2007 period, Jim had made the case that in fact, this is feasible!
We will often see this kind of picture. Cloud IoT systems make very heavy use of key-based sharding. A (key,value) store holds data in the shards.
SHARDING: THIS WORKS... BUT CAREFULLY

If a transaction does all its work at just one shard, never needing to access two or more, we can use state machine replication to do the work.

No locks or 2-phase commit are required. This scales very well.
DEFN: STATE MACHINE REPLICATION

This is a model in which we can read from any replica.

To do an update, we use anatomic multicast or a durable Paxos write (multicast if the state is kept in-memory, and durable if on disk).

The replicas see the same updates in the same sequence and so we can keep them in a consistent state. We package the transaction into a message so “delivery of the message” performs the transactional action.
Transactions that touch multiple shards need locks and 2-phase commit.

Jim Gray’s analysis applies: as we scale this case up, performance collapses.
EXAMPLE: A μ-SERVICE FOR CACHING

Let’s look closely at the concept of caching as it arises in a cloud, and at how we can make such a service elastic.

This is just one example, but in fact is a great example because key-value data structures are very common in the cloud.
ACCESSING SHARDED STORAGE

Each machine has a set of (key,value) tuples stored in a local “Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!

Key=Birman Value=Hash("Birman")%100000
MANY SYSTEMS USE A SECOND COPY AS A BACKUP, FOR HIGHER AVAILABILITY

Key="Ken" Value=

Hash("Ken")%100000

These two machines both store a copy of the (key,value) tuple in a local “Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!
TERMINOLOGY

This is called a “key value store” (KVS) or a “distributed hash table” (DHT)

Each replica holds a “shard” of the KVS: a distinct portion of the data.

Hashing is actually done using a cryptographic function like SHA 256.
ELASTICITY ADDS A FURTHER DIMENSION

If we expect changing patterns of load, the cache may need a way to dynamically change the pattern of sharding.

Since a cache “works” even if empty, we could simply shut it down and restart with some other number of servers and some other sharding policy. But cold caches perform very badly.

Instead, we would ideally “shuffle” data.
ELASTIC SHUFFLE

Perhaps we initially had data spread over 4 shards.

We could drop down to 2 shards during low-load periods. Of course half our items (hopefully, less popular ones) are dropped.
ELASTIC SHUFFLE

Here, we shuffle data to map from 4 shards down to 2.

... later, we could shuffle it again to elastically expand the cache.
A second issue now arises: how can applications that use the cache find out that the pattern just changed?

Typically, big data centers have a management infrastructure that owns this kind of information and keeps it in files (lists of the processes currently in the cache, and the parameters needed to compute the shard mapping).

If the layout changes, applications are told to reread the configuration. Later we will learn about one tool for this (Zookeeper).
TYPICAL DHT API?

The so-called MemCached API was the first widely popular example.

Today there are many important DHTs (Cassandra, Dynamo DB, MemCached, and the list just goes on and on).

All support some form of (key,value) put, get, and (most) offer watch.

Some hide these basic operations behind file system APIs, or “computer-to-computer email” APIs (publish-subscribe or queuing), or database APIs.
Facebook’s CDN is a cloud-scale infrastructure that runs on point of presence datacenters in which key-value caches are deployed.

Role is to serve videos and images for end-users. Weak consistency is fine because videos and images are immutable (each object is written once, then read many times).

Requirements include speed, scaling, fault-tolerance, self-management
THE FB BLOB CACHE IS PART OF A HIERARCHY DEPLOYED AT GLOBAL SCALE...

We think of Facebook as having one core database or knowledge repository… but in fact the data is replicated...
... THE DATA IS JUST “BLOBS”

Facebook image data is stored in “blobs”: Binary Large Objects

- This includes original images, videos
- Resized versions, and ones with different playback quality
- Versions that have been processed to tag people, augmented reality
HAYSTACK

Holds the real image and video data in huge “film strips”, write-once.

Designed to retrieve any object with a single seek and a single read. Optimized for SSD (these have good transfer rates but are best for write-once, reread many loads, and have a long delay for starting a write).

Facebook doesn’t run a lot of copies

- One on the West Coast, one more on the East Coast
- Each has a backup right next to it.

Main issue: Haystack would easily get overloaded without caching
A CACHE FOR BLOBS?

The keys would be photo or video id’s.

For each unique blob, FB has a special kind of tag telling us the resized dimensions of the particular instance we are looking at.

Resizing takes time and requires a GPU. So FB wants to avoid recomputing them.
True data center holds the original photo in Haystack

First, FB fetches your feed. This will have URLs with the image ID embedded in them. The browser tells the system what size of screen it has.

If you’ve recently seen the image, Facebook finds the blob in a cache on your computer.
With a UID and a target size, we can search for the blob in the nearest point of presence cache.

If the image wasn’t found in your browser cache, maybe it can be found in an “edge” cache.
Origin: Coordinated FIFO
Main goal: traffic sheltering

In the limit, fetch from Haystack. It has a cache too.
ARCHITECTURAL DETAIL (COMPLEX)
DARK GRAY: WE INSTRUMENTED IT
PALE GRAY: WE CAN FIGURE OUT ITS BEHAVIOR
ARCHITECTURAL DETAIL (WE WEREN’T ABLE TO INSTRUMENT THE PINK PART)
WHAT WE OBSERVED

Month long trace of photo accesses, which we sampled and anonymized. Captures cache hits and misses at every level.
CACHES SEE “CIRCADIAN” PATTERNS

Accesses vary by time of day...

... and by photo: Some are far more popular than others
PHOTO CACHEABILITY BY POPULARITY

The main job of each layer is different.

This is further evidence that cache policy should vary to match details of the actual workload.
One way to do far better turns out to be for caches to collaborate at a WAN layer – some edge servers may encounter “suddenly popular” content earlier than others, and so those would do resizing operations first.

WAN collaboration between Edge caches is faster than asking for it from Haystack, and also reduces load on the Haystack platform.

Key insight: the Facebook Internet is remarkably fast and stable, and this gives better than scaling because the full cache can be exploited.
Remote fetch:
cooperation between
point-of-presence
cache systems to share
load and resources

In Ithaca, most of your content probably comes from a point of presence in
the area, maybe the red one (near Boston)

But if Boston doesn’t have it or is overloaded, they casually reach out to
places like Spokane, or Arizona, especially during periods when those are
lightly loaded, like 5am PT!
Facebook was using an LRU policy.

We used our trace to evaluate a segmented scheme called S4LRU.

It outperforms all other algorithms we looked at.
Here we see that S4LRU is far better than normal LRU.
SO... SWITCH TO S4LRU, RIGHT?

They decided to do so...

Total failure!

Why didn’t it help?
S4LRU Didn’t Really Work Well!

It turned out that the algorithm worked well in theory but created a pattern of reads and writes that were badly matched to flash memory.

Resulted in a whole two year project to redesign the “operating system” layer for big SSD disk arrays based on flash memory.

Once this change was made, S4LRU finally worked as hoped!
RIPQ: KEY INNOVATIONS

Only write large objects to the SSD once: treats SSD like an append-only “strip of images”. Same trick was needed in Haystack.

- SSD is quite good at huge sequential writes. So this model is good.

But how can they implement “priority”?

- The cache is an in-memory data structure with pointers onto the SSD.
- They checkpoint the whole cache periodically, enabling warm restart.
RIPQ ENTRIES ARE **POINTERS** TO SSD OBJECTS
They actually store data in long “strips” to amortize the access delay across a large number of reads or writes.

And they cache hot images, plus have an especially efficient representation of the lists of pointers (for the various levels of the cache)

All of this ensures that they run the SSD in its best performance zone.
RIPQ HAS HIGH FIDELITY

RIPQ achieves ≤0.5% difference for all algorithms
RIPQ HAS HIGH FIDELITY

+16% hit-ratio \Rightarrow 23% fewer backend IOs
RIPQ HAS HIGH THROUGHPUT

RIPQ throughput comparable to FIFO (≤10% diff.)
WHAT DID WE LEARN TODAY?

A good example of a µ-service is a key-value cache, sharded by key.

The shard layout will depend on how many servers are running, and whether they are replicated. These are examples of configuration data.

Many µ-services are designed to vary the number of servers elastically.
MORE TAKE-AWAYS

Even a sharded cache poses questions about consistency.

In fact for a cache of images, CAP is a great principle.

But this doesn’t make the problem trivial, it just takes us to the next level of issues.
MORE TAKE-AWAYS

A company like Facebook wants critical μ-services to make smart use of knowledge about photo popularity, and about patterns of access.

With this information it can be intelligent about what to retain in the cache, and could even prefetch data or precompute resized versions it will probably need.

Fetching from another cache, even across wide-area links, is advantageous.
CONCLUSIONS?

In a cloud setting, we need massive scalability. This comes from hierarchy, replication and sharding. But we also need to match solutions to the setting.

Sharing in a (key,value) model is a great way to deal with scale. But that only gets you to the next set of questions. At cloud-scale nothing is trivial!

Facebook’s caching “product” is an amazing global system. Even if it was based on simple decisions, the global solution isn’t simple at all!