Caching for Data Analysis

Ken Birman, Theo Gkountouvas
Data Analysis

Data processing is growing very fast compared to the hardware acceleration.

1. Volume
2. Complexity
Spark RDDs

- Spark uses Resilient Distributed Datasets (RDDs) as a core structure.

- Word Count Example (Scala):
  ```scala
  val textRDD = sc.textFile("hdfs://...")
  val flatMapRDD = textRDD.flatMap(line => line.split(" "))
  val mapRDD = flatMapRDD.map(word => (word, 1))
  val counts = mapRDD.reduceByKey(_ + _)
  counts.saveAsTextFile("hdfs://...")
  ```
Lineage of RDDs and Lazy Execution

- **textRDD**
 Input RDD(s): -
 Operation: readFile

- **flatMapRDD**
 Input RDD(s): textRDD
 Operation: flatMap

- **mapRDD**
 Input RDD(s): flatMapRDD
 Operation: map

```scala
val counts = mapRDD.reduceByKey(_ + _)
```
Lineage of RDDs and Lazy Execution

<table>
<thead>
<tr>
<th>RDD Name</th>
<th>Input RDD(s)</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>textRDD</td>
<td>-</td>
<td>readFile</td>
</tr>
<tr>
<td>flatMapRDD</td>
<td>textRDD</td>
<td>flatMap</td>
</tr>
<tr>
<td>mapRDD</td>
<td>flatMapRDD</td>
<td>map</td>
</tr>
</tbody>
</table>

val counts = mapRDD.reduceByKey(_ + _)
Lineage of RDDs and Lazy Execution

- **textRDD**
 - Input RDD(s): -
 - Operation: readFile

- **flatMapRDD**
 - Input RDD(s): textRDD
 - Operation: flatMap

- **mapRDD**
 - Input RDD(s): flatMapRDD
 - Operation: map

```scala
val counts = mapRDD.reduceByKey(_ + _)
```
Lineage of RDDs and Lazy Execution

1. **textRDD**
 - Input RDD(s): -
 - Operation: readFile

2. **flatMapRDD**
 - Input RDD(s): textRDD
 - Operation: flatMap

3. **mapRDD**
 - Input RDD(s): flatMapRDD
 - Operation: map

```scala
val counts = mapRDD.reduceByKey(_ + _)
```
Lineage of RDDs and Lazy Execution

val counts = mapRDD.reduceByKey(_ + _)
Lineage of RDDs and Lazy Execution

- **textRDD**
 - Input RDD(s): -
 - Operation: readFile

- **flatMapRDD**
 - Input RDD(s): textRDD
 - Operation: flatMap

- **mapRDD**
 - Input RDD(s): flatMapRDD
 - Operation: map

```
val counts = mapRDD.reduceByKey(_ + _)
```
Lineage of RDDs and Lazy Execution

1. **textRDD**
 - Input RDD(s): -
 - Operation: readFile

2. **flatMapRDD**
 - Input RDD(s): textRDD
 - Operation: flatMap

3. **mapRDD**
 - Input RDD(s): flatMapRDD
 - Operation: map

```scala
val counts = mapRDD.reduceByKey(_ + _)
```
Lineage of RDDs and Lazy Execution

```

val counts = mapRDD.reduceByKey(_ + _)
```

“Hello World!”
“Hello Ithaca”

textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

Provide results
Lineage of RDDs and Lazy Execution

```
val counts = mapRDD.reduceByKey(_ + _)
```

- **textRDD**
 - Input RDD(s): -
 - Operation: readFile

- **flatMapRDD**
 - Input RDD(s): textRDD
 - Operation: flatMap

- **mapRDD**
 - Input RDD(s): flatMapRDD
 - Operation: map

Input: `[“Hello”,”World”, “Hello”, “Ithaca”]`
Lineage of RDDs and Lazy Execution

- **textRDD**
 Input RDD(s): -
 Operation: readFile

- **flatMapRDD**
 Input RDD(s): textRDD
 Operation: flatMap

- **mapRDD**
 Input RDD(s): flatMapRDD
 Operation: map

```scala
val counts = mapRDD.reduceByKey(_ + _)
```

Input Data:

```
["Hello",1],"World",1),
("Hello",1),("Ithaca",1)]
```
Lineage of RDDs and Lazy Execution

textRDD
Input RDD(s): -
Operation: readFile

flatMapRDD
Input RDD(s): textRDD
Operation: flatMap

mapRDD
Input RDD(s): flatMapRDD
Operation: map

val counts = mapRDD.reduceByKey(_ + _)
Dataflow - Logical Plan (Operations)
Dataflow - Execution Plan (Tasks)
Why caching in Spark is essential?

1. Cache intermediate results
2. Avoid re-execution of operations.
3. Save mostly CPU-cycles instead of I/O.
Multiple choices for caching

- NONE (Default)
- MEMORY_ONLY
- MEMORY_ONLY_SER
- MEMORY_AND_DISK
- MEMORY_AND_DISK_SER
- DISK_ONLY
- ...

...
User decides what to cache in Spark

Users have to define what they want to cache by using `cache()` or `persist()` keywords after RDD.

1. Static analysis for what to cache is harder than traditional cases. Instead of caching only initial data, Spark has the ability to cache intermediate results, too.

2. Multiple choices about where to cache complicate things (Memory, SSD, Disk, etc.).

3. Caching might lead to worse results than simply re-executing (especially with SSD, Disks, Serialization).
Eviction Policy

- Spark uses LRU for default eviction policy. Unlike selection about what to cache, eviction is automatic.
- However, classic eviction policies do not exploit structure of the graph.
Why LRU is not so good?
Experimental Study on Spark Bench (15 jobs)
LRC: Dependency-Aware Cache Management for Data Analytics Clusters

Yinghao Yu, Wei Wang, Jun Zhang, Khaled Ben Letaief
Definition (Reference Count):
For each data block b, the reference count is define as the number of child blocks that are derived from b, but have not yet been computed.
LRC: Least Reference Count
LRC: Least Reference Count

- Unused blocks with zero active references are evicted.
- Reference count is a better indicator for caching.
Solution - Architecture
Problem - Is this enough?
Problem - Peer Dependencies

- If results of A_i are not cached, then B_i results should not be cached and vice-versa.
- Latency will remain the same if A_i and B_i results have similar size even if we cache one of them (the other is going to be the bottleneck.)
Definition *(Effective Reference Count)*:

Let block b be referenced by task t. We say this reference is effective if task t’s dependent blocks, if computed, are all cached in memory.
Solution - LERC
Experiments - Platform and Setting

- Amazon EC2
 - Cluster with 20 nodes of type m4.large
 - 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor
 - 8 GB memory
- Zip application
 - 10 different independent jobs
 - 100 A blocks and 100 B blocks that are zipped together
 - 8 GB total size
Experiments - Performance
Experiments - Overall Cache Hit

![Graph showing cache hit ratio across different cache sizes]

- LRU
- LRC
- LERC
Experiments - Effective Cache Hit

![Graph showing Effective Cache Hit Ratio for different Cache Sizes.
- LRU
- LRC
- LERC
- Y-axis: Effective Cache Hit Ratio
- X-axis: Cache Size (GB)
- Data points for cache sizes 2.6, 3.5, 4.4, 5.3, 6.2, and 7 GB with error bars.]
Temporal Caching
[Work in Progress]
Theodoros Gkountouvas, Weijia Song, Haoze Wu, Ken Birman
Time-Series Data

- Timestamped Data
 - Large amount
 - High frequency
- Temporal Queries
 - Sophisticated queries (ML, Optimization)
 - Can be divided to:
 - Fixed Temporal Queries
 - Sliding Temporal Queries
Example - NYC taxi data
Fixed Temporal Query - Example
Fixed Temporal Query - Explanation

Space

Traffic Day | Current Time
Fixed Temporal Query - Explanation

Time

Traffic Day

Current Time

Space
Sliding Temporal Query - Example

[IEEE TIST, 2015, Wang]
Sliding Temporal Query - Explanation

Org (LaGuardia)
Dest (Manhattan)

Space

Time

Current Time - 1 Week
Current Time
Sliding Temporal Query - Explanation

Org(LaGuardia) Dest(Manhattan)

Current Time - 1 Week Current Time
ARIMA for Time-Series Data

\[\hat{y}_t = \mu + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p} - \theta_1 e_{t-1} - \cdots - \theta_q e_{t-q} \]

- Generic model for making predictions for time-series data.
- Trip Estimation application we saw before uses ARIMA to make the prediction. To date, it is one of the most accurate approaches for this type of prediction.
- ARIMA predictions make by construction sliding temporal queries to the underlying data.
Temporal Caching

- Claim: Traditional cache eviction techniques (LRU, LFU) are unable to capture the nature of Sliding Temporal Queries.
- Question: Can we devise better cache eviction policies for Sliding Temporal Queries?
LFU - Counting References

28 Jan 2017
6-7AM

RC:0

21 Jan 2017
6-7AM

RC:0

21 Jan 2017
7-8AM

RC:0

21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
6-7AM

RC:0

21 Jan 2017
6-7AM

RC:0

21 Jan 2017
7-8AM

RC:0

21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017 6-7AM

RC:1
21 Jan 2017 6-7AM

RC:0
21 Jan 2017 7-8AM

RC:0
21 Jan 2017 8-9AM
LFU - Counting References

28 Jan 2017
6-7AM

RC:1
21 Jan 2017
6-7AM

RC:0
21 Jan 2017
7-8AM

RC:0
21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
7-8AM

RC:1
21 Jan 2017
6-7AM

RC:0
21 Jan 2017
7-8AM

RC:0
21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
7-8AM

RC:1
21 Jan 2017
6-7AM

RC:0
21 Jan 2017
7-8AM

RC:0
21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
7-8AM

RC:1

21 Jan 2017
6-7AM

RC:1

21 Jan 2017
7-8AM

RC:0

21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
8-9AM

RC:1
21 Jan 2017
6-7AM

RC:1
21 Jan 2017
7-8AM

RC:0
21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
8-9AM

RC:1
21 Jan 2017
6-7AM

RC:1
21 Jan 2017
7-8AM

RC:0
21 Jan 2017
8-9AM
LFU - Counting References

28 Jan 2017
8-9AM

RC:1

21 Jan 2017
6-7AM

RC:1

21 Jan 2017
7-8AM

RC:1

21 Jan 2017
8-9AM
LFU - Sliding Temporal Queries

We calculate:

\[rr(rid, wt) = \frac{rc(rid, wt)}{nr\text{Queries}} \]

We normalize:

\[nrr(rid, wt) = \frac{rr(rid, wt)}{\max_{rid', wt'} \{rr(rid', wt')\}} \]
Count References in Relative Timeline

- Pin current time as a constant time point (no shift).
- Sliding temporal queries will access data that is identified by constant time now. For our previous example we would access data at time:

 Current Time - 1 Week

 no matter when we make the query.
- Effectively, sliding temporal queries look like fixed queries for the relative timeline now.
Counting References on Relative Timeline

28 Jan 2017
6-7AM

curTime
-1 week

RC:0

21 Jan 2017
6-7AM

curTime
-1 week
+1 hour

RC:0

21 Jan 2017
7-8AM

curTime
-1 week
+2 hour

RC:0

21 Jan 2017
8-9AM

59
Counting References on Relative Timeline

- **28 Jan 2017 6-7AM**
 - curTime -1 week
 - RC:0

- **21 Jan 2017 6-7AM**
 - curTime -1 week
 - +1 hour
 - RC:0

- **21 Jan 2017 8-9AM**
 - curTime -1 week
 - +2 hour
 - RC:0
Counting References on Relative Timeline

28 Jan 2017
6-7AM

curTime
-1 week

RC:1

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

curTime
-1 week
+1 hour

RC:0

21 Jan 2017
8-9AM

curTime
-1 week
+2 hour

RC:0
Counting References on Relative Timeline

- **28 Jan 2017 7-8AM**
 - `curTime -1 week`
 - RC:1

- **21 Jan 2017 6-7AM**
 - `curTime -1 week +1 hour`
 - RC:0

- **21 Jan 2017 7-8AM**
 - `curTime -1 week +2 hour`
 - RC:0

- **21 Jan 2017 8-9AM**

28 Jan 2017 7-8AM

curTime

- `-1 week`

- RC:1

21 Jan 2017 6-7AM

curTime

- `-1 week +1 hour`

- RC:0

21 Jan 2017 7-8AM

curTime

- `-1 week +2 hour`

- RC:0

21 Jan 2017 8-9AM
Counting References on Relative Timeline

- 28 Jan 2017
 - 7-8AM
 - curTime: -1 week
 - RC: 1

- 21 Jan 2017
 - 6-7AM

- 21 Jan 2017
 - 7-8AM
 - curTime: -1 week
 - RC: 0

- 21 Jan 2017
 - 8-9AM
 - curTime: -1 week, +2 hour
 - RC: 0
Counting References on Relative Timeline

28 Jan 2017
7-8AM

curTime -1 week
RC:2

curTime -1 week
+1 hour
RC:0

curTime -1 week
+2 hour
RC:0

21 Jan 2017
6-7AM
21 Jan 2017
7-8AM
21 Jan 2017
8-9AM
Counting References on Relative Timeline

- 28 Jan 2017 8-9AM
 - curTime -1 week
 - RC:2

- curTime -1 week +1 hour
 - RC:0

- curTime -1 week +2 hour
 - RC:0

- 21 Jan 2017 6-7AM
- 21 Jan 2017 7-8AM
- 21 Jan 2017 8-9AM
Counting References on Relative Timeline

28 Jan 2017
8-9AM

curTime
-1 week
RC:2

21 Jan 2017
6-7AM

curTime
-1 week
+1 hour
RC:0

21 Jan 2017
7-8AM

curTime
-1 week
+2 hour
RC:0

21 Jan 2017
8-9AM
Counting References on Relative Timeline

28 Jan 2017
8-9AM

curTime -1 week
RC:3

curTime -1 week +1 hour
RC:0

curTime -1 week +2 hour
RC:0

21 Jan 2017
6-7AM

21 Jan 2017
7-8AM

21 Jan 2017
8-9AM
LFU on Relative Timeline - Sliding Temporal Queries

We calculate:

$$rr(rid, wt) = \frac{rc(rid, wt)}{nrQueries}$$

We normalize:

$$nrr(rid, wt) = \frac{rr(rid, wt)}{\max_{rid', wt'} \{rr(rid', wt')\}}$$
Evaluation

Warm Up: 168 hours, Period: 60 days, 2247 GAccesses

- LRU
- LFU
- LFU rel

Hit Ratio (%) vs. Cache Size / Workload Size (%)
Evaluation

Cache Size 4096 KRecords

Hit Ratio (%)

Time (hours)

LRU
LFU
LFU rel
Future Work: Dataflow Cache for Time-Series Data.
Questions