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Can the Cloud Support Real-Time? 
2 

 More and more “real time” applications are migrating 

into cloud environments 

 Monitoring of traffic in various situations, control of the 

traffic lights and freeway lane limitations 

 Tracking where people are and using that to support 

social networking applications that depend on location 

 Smart buildings and the smart power grid 

 

 Can we create a real-time cloud? 
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Core Real-Time Mechanism 
3 

 We’ve discussed publish-subscribe 

 Topic-based pub-sub systems (like the TIB system) 

 Content-based pub-sub solutions (like Sienna) 

 

 Real-time systems often center on a similar concept 

that is called a real-time data distribution service 

 DDS technology has become highly standardized 

 It mixes a kind of storage solution with a kind of pub-

sub interface but the guarantees focus on real-time 
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What is the DDS? 

CS5412 Spring 2014 

4 

 The Data Distribution Service for Real-Time 
Systems (DDS) is an Object Management Group 
(OMG) standard that aims to enable scalable, real-
time, dependable, high performance and 
interoperable data exchanges between publishers 
and subscribers.  

 DDS is designed to address the needs of 
applications like financial trading, air traffic control, 
smart grid management, and other big data 
applications.  



Air Traffic Example 
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 DDS combines database and pub/sub functionality 

Owner of flight plan updates it… 

there can only be one owner. 

DDS makes the update persistent, records the 

ordering of the event, reports it to client systems 

              … Other clients see  

real-time read-only updates 



Quality of Service options 
6 

 Early in the semester we discussed a wide variety of 

possible guarantees a group communication system 

could provide 

 

 Real-time systems often do this too but the more 

common term is quality of service in this case 

 Describes the quality guarantees a subscriber can count 

upon when using the DDS 

 Generally expressed in terms of throughput and latency 
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CASD (-T atomic multicast) 
7 

 Let’s start our discussion of DDS technology by 

looking at a form of multicast with QoS properties 

 This particular example was drawn from the US Air 

Traffic Control effort of the period 1995-1998 

 It was actually a failure, but there were many issues 

 At the core was a DDS technology that combined the 

real-time protocol we will look at with a storage solution 

to make it durable, like making an Isis2 group durable by 

having it checkpoint to a log file (you use g.SetPersistent() 

or, with SafeSend, enable Paxos logging) 

CASD: Flaviu Cristian, Houtan Aghili, Ray Strong and Danny Dolev.  

Atomic Broadcast: From Simple Message Diffusion to Byzantine Agreement (1985)  



Real-time multicast: Problem statement 
8 

 The community that builds real-time systems favors 

proofs that the system is guaranteed to satisfy its 

timing bounds and objectives 

 

 The community that does things like data replication 

in the cloud tends to favor speed 

 We want the system to be fast 

 Guarantees are great unless they slow the system down 
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Can a guarantee slow a system down? 

 Suppose we want to implement broadcast protocols 
that make direct use of temporal information 

 Examples: 

 Broadcast that is delivered at same time by all correct 
processes (plus or minus the clock skew) 

 Distributed shared memory that is updated within a known 
maximum delay 

 Group of processes that can perform periodic actions 
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A real-time broadcast 

p0 
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t 
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* 

* 
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* 
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Message is sent at time t by p0.  Later both p0 and p1 fail.  But 

message is still delivered atomically, after a bounded delay, and 

within a bounded interval of time (at non-faulty processes) CS5412 Spring 2014 
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A real-time distributed shared memory 

p0 

p1 

p2 

p3 

p4 

p5 

t 
t+a t+b 

At time t p0 updates a variable in a distributed shared memory.  

All correct processes observe the new value after a bounded 

delay, and within a bounded interval of time. 

set x=3 

x=3 
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Periodic process group: Marzullo 

p0 

p1 

p2 

p3 

p4 

p5 

Periodically, all members of a group take some action. 

Idea is to accomplish this with minimal communication 
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The CASD protocol suite 

 Also known as the “ -T” protocols 

 Developed by Cristian and others at IBM, was 

intended for use in the (ultimately, failed) FAA project 

 Goal is to implement a timed atomic broadcast 

tolerant of Byzantine failures 
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Basic idea of the CASD protocols 

 Assumes use of clock synchronization  

 Sender timestamps message 

 Recipients forward the message using a flooding 
technique (each echos the message to others) 

 Wait until all correct processors have a copy, then 
deliver in unison (up to limits of the clock skew) 
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CASD picture 
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p0, p1 fail.  Messages are lost when echoed by p2, p3 
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Idea of CASD 

 Assume known limits on number of processes that fail during 
protocol, number of messages lost 

 Using these and the temporal assumptions, deduce worst-case 
scenario 

 Now now that if we wait long enough, all (or no) correct 
process will have the message 

 Then schedule delivery using original time plus a delay 
computed from the worst-case assumptions 
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The problems with CASD 

 In the usual case, nothing goes wrong, hence the delay 
can be very conservative 

 Even if things do go wrong, is it right to assume that if 
a message needs between 0 and ms to make one 
hope, it needs [0,n*  ] to make n hops? 

 How realistic is it to bound the number of failures 
expected during a run? 
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CASD in a more typical run 
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... leading developers to employ more aggressive 

parameter settings 
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CASD with over-aggressive paramter settings starts to 

“malfunction” 

p0 
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* 

all processes look “incorrect” (red) from time to time 

* 

* 

* 
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CASD “mile high” 

 When run “slowly” protocol is like a real-time version 

of abcast 

 When run “quickly” protocol starts to give 

probabilistic behavior: 

 If I am correct (and there is no way to know!) then I am 

guaranteed the properties of the protocol, but if not, I may 

deliver the wrong messages 
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How to repair CASD in this case? 

 Gopal and Toueg developed an extension, but it 
slows the basic CASD protocol down, so it wouldn’t be 
useful in the case where we want speed and also 
real-time guarantees 

 Can argue that the best we can hope to do is to 
superimpose a process group mechanism over CASD 
(Verissimo and Almeida are looking at this).   
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Why worry? 

 CASD can be used to implement a distributed shared 
memory (“delta-common storage”) 

 But when this is done, the memory consistency 
properties will be those of the CASD protocol itself 

 If CASD protocol delivers different sets of messages 
to different processes, memory will become 
inconsistent 
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Why worry? 

 In fact, we have seen that CASD can do just this, if the 

parameters are set aggressively 

 Moreover, the problem is not detectable either by 

“technically faulty” processes or “correct” ones 

 Thus, DSM can become inconsistent and we lack any 

obvious way to get it back into a consistent state 
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Using CASD in real environments 

 Once we build the CASD mechanism how would we 

use it? 

 Could implement a shared memory 

 Or could use it to implement a real-time state machine 

replication scheme for processes 

 US air traffic project adopted latter approach 

 But stumbled on many complexities… 
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Using CASD in real environments 

 Pipelined computation 

 

 

 Transformed computation 
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Issues? 

 Could be quite slow if we use conservative parameter 
settings 

 But with aggressive settings, either process could be 
deemed “faulty” by the protocol 

 If so, it might become inconsistent 

 Protocol guarantees don’t apply 

 No obvious mechanism to reconcile states within the pair 

 Method was used by IBM in a failed effort to build a 
new US Air Traffic Control system 
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Can we combine CASD with consensus? 
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 Consensus-based mechanisms (Isis2, Paxos) give 

strong guarantees, such as “there is one leader” 

 

 CASD overcomes failures to give real-time delivery 

if parameterized correctly (clearly, not if 

parameterized incorrectly!) 

 

 Why not use both, each in different roles? 



A comparison 
29 

 Virtually synchronous Send is fault-tolerant and very 
robust, and very fast, but doesn’t guarantee realtime 
delivery of messages 

 

 CASD is fault-tolerant and very robust, but rather slow. 
But it does guarantee real-time delivery 

 

 CASD is “better” if our application requires absolute 
confidence that real-time deadlines will be achieved... 
but only if those deadlines are “slow” 
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Weird insight 
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 If a correctly functioning version of CASD would be 

way too slow for practical use, then a protocol like 

Send might be better even for the real-time uses! 

 

 The strange thing is that Send isn’t designed to 

provide guaranteed real-time behavior 

 

 But in practice it is incredibly fast, compared to 

CASD which can be incredibly slow… 



Which is better for  

real-time uses? 
31 

 Virtually synchronous Send or CASD? 

 CASD may need seconds before it can deliver, but 

comes with a very strong proof that it will do so 

correctly 

 Send will deliver within milliseconds unless strange 

scheduling delays impact a node 

 But actually delay limit is probably ~10 seconds 

 Beyond this, if ISIS_DEFAULT_TIMEOUT is set to a small value 

like 5s, node will be declared to have crashed 
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Back to the DDS concept 
32 

 In a cloud setting, a DDS is typically 

 A real-time protocol, such as CASD 

 Combined with a database technology, generally 

transactional with strong durability 

 Combined with a well defined notion of “objects”, for 

example perhaps in the IBM Air Traffic Control project 

something like “Flight Data Records” 

 Combined with a rule: when the FDR is updated, we will 

also use the DDS to notify any “subscribers” to that 

object.  So the object name is a topic in pub-sub terms. 
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IBM Air Traffic Concept 
33 

 Everyone uses the -Common storage abstraction and 
maintains a local “copy” of all FDRs relevant to the 
current air traffic control state 

 

 To update an FDR, there should be a notion of an owner 
who is the (single) controller allowed to change the FDR. 

 Owner performs some action, this updates the durable 
storage subsystem 

 Then when update is completely final, -T atomic multicast is 
used to update all the -Common storage records 

 Then this updates applications on all the controller screens 
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Safety needs? 
34 

 Clearly there needs to be a well defined guarantee 
of a single controller for each FDR 

 There must always be an assigned controller 

 … but there can only be one per FDR 

 

 Also we need the DDS to be reliable; CASD could 
be used, for example 

 

 But we also need a certain level of speed and 
latency guarantees 
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What makes it hard? 
35 

 As we see with CASD, sometimes the analysis used 
to ensure reliability “fights” the QoS properties 
needed for safety in the application as a whole 

 

 Moreover, we didn’t even consider delays 
associated with recovering the DDS storage 
subsystem when a failure or restart disrupts it 

 E.g. bringing a failed DDS storage element back online 

 We need to be sure that every FDR goes through a 
single well-defined sequence of “states” 
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If a system is too slow… 
36 

 … it may not be useable even if the technology 

that was used to build it is superb! 

 

 With real DDS solutions in today’s real cloud 

settings this entire issue is very visible and a serious 

problem for developers 

 

 They constantly struggle between application 

requirements and what the cloud can do quickly 
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Generalizing to the whole cloud 
37 

 Massive scale 

 

 And most of the thing gives incredibly fast 

responses: sub 100ms is a typical goal 

 

 But sometimes we experience a long delay or a 

failure 
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Traditional view of real-time control 

favored CASD view of assurances 
38 

 In this strongly assured model, the assumption was 

that we need to prove our claims and guarantee 

that the system will meet goals 

 

 And like CASD this leads to slow systems 

 And to CAP and similar concerns 
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And this leads back to our question 
39 

 So can the cloud do high assurance? 

 Presumably not if we want CASD kinds of proofs 

 But if we are willing to “overwhelm” delays with 

redundancy, why shouldn’t we be able to do well? 

 

 Suppose that we connect our user to two cloud 

nodes and they perform read-only tasks in parallel 

 Client takes first answer, but either would be fine 

 We get snappier response but no real “guarantee” 
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A vision: “Good enough assurance” 
40 

 Build applications to protect themselves against rare 
but extreme problems (e.g. a medical device might 
warn that it has lost connectivity) 

 This is needed anyhow: hardware can fail… 

 So: start with “fail safe” technology 

 

 Now make our cloud solution as reliable as we can 
without worrying about proofs 

 We want speed and consistency but are ok with rare 
crashes that might be noticed by the user 
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Will this do? 
41 

 Probably not for some purposes… but some things 

just don’t belong under computer control 

 

 For most purposes, this sort of solution might 

balance the benefits of the cloud with the kinds of 

guarantees we know how to provide 

 

 Use redundancy to compensate for delays, 

insecurity, failures of individual nodes 
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Summary: Should we trust the cloud? 
42 

 We’ve identified a tension centering on priorities 

 If your top priority is assurance properties you may be 
forced to sacrifice scalability and performance in ways that 
leave you with a useless solution 

 If your top priorities center on scale and performance and 
then you layer in other characteristics it may be feasible to 
keep the cloud properties and get a good enough version 
of the assurance properties 

 These tradeoffs are central to cloud computing! 

 But like the other examples, cloud could win even if in 
some ways, it isn’t the “best” or “most perfect” solution 

CS5412 Spring 2014 



But how can anyone trust the cloud? 
43 

 The cloud seems so risky that it makes no sense at 

all to trust it in any way! 

 

 Yet we seem to trust  

it in many ways 

 

 This puts the fate of your 

company in the hands of 

third parties! 
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The concept of “good enough” 
44 

 We’ve seen that there really isn’t any foolproof 

way to build a computer, put a large, complex 

program on it, and then run it with confidence 

 

 We also know that with effort, many kinds of 

systems really start to work very well 

 

 When is a “pretty good” solution good enough? 
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Life with technology is about tradeoffs 
45 

 Clearly, we err if we use a technology in a 

dangerous or inappropriate way 

 Liability laws need to be improved: they let software 

companies escape pretty much all responsibility 

 Yet gross negligence is still a threat to those who build 

things that will play critical roles and yet fail to take 

adequate steps to achieve assurance 
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