
CS5412: THE REALTIME

CLOUD

Ken Birman

1

Lecture XXIV

CS5412 Spring 2014

Can the Cloud Support Real-Time?
2

 More and more “real time” applications are migrating

into cloud environments

 Monitoring of traffic in various situations, control of the

traffic lights and freeway lane limitations

 Tracking where people are and using that to support

social networking applications that depend on location

 Smart buildings and the smart power grid

 Can we create a real-time cloud?

CS5412 Spring 2014

Core Real-Time Mechanism
3

 We’ve discussed publish-subscribe

 Topic-based pub-sub systems (like the TIB system)

 Content-based pub-sub solutions (like Sienna)

 Real-time systems often center on a similar concept

that is called a real-time data distribution service

 DDS technology has become highly standardized

 It mixes a kind of storage solution with a kind of pub-

sub interface but the guarantees focus on real-time

CS5412 Spring 2014

What is the DDS?

CS5412 Spring 2014

4

 The Data Distribution Service for Real-Time
Systems (DDS) is an Object Management Group
(OMG) standard that aims to enable scalable, real-
time, dependable, high performance and
interoperable data exchanges between publishers
and subscribers.

 DDS is designed to address the needs of
applications like financial trading, air traffic control,
smart grid management, and other big data
applications.

Air Traffic Example

CS5412 Spring 2014

5

 DDS combines database and pub/sub functionality

Owner of flight plan updates it…

there can only be one owner.

DDS makes the update persistent, records the

ordering of the event, reports it to client systems

 … Other clients see

real-time read-only updates

Quality of Service options
6

 Early in the semester we discussed a wide variety of

possible guarantees a group communication system

could provide

 Real-time systems often do this too but the more

common term is quality of service in this case

 Describes the quality guarantees a subscriber can count

upon when using the DDS

 Generally expressed in terms of throughput and latency

CS5412 Spring 2014

CASD (-T atomic multicast)
7

 Let’s start our discussion of DDS technology by

looking at a form of multicast with QoS properties

 This particular example was drawn from the US Air

Traffic Control effort of the period 1995-1998

 It was actually a failure, but there were many issues

 At the core was a DDS technology that combined the

real-time protocol we will look at with a storage solution

to make it durable, like making an Isis2 group durable by

having it checkpoint to a log file (you use g.SetPersistent()

or, with SafeSend, enable Paxos logging)

CASD: Flaviu Cristian, Houtan Aghili, Ray Strong and Danny Dolev.

Atomic Broadcast: From Simple Message Diffusion to Byzantine Agreement (1985)

Real-time multicast: Problem statement
8

 The community that builds real-time systems favors

proofs that the system is guaranteed to satisfy its

timing bounds and objectives

 The community that does things like data replication

in the cloud tends to favor speed

 We want the system to be fast

 Guarantees are great unless they slow the system down

CS5412 Spring 2014

Can a guarantee slow a system down?

 Suppose we want to implement broadcast protocols
that make direct use of temporal information

 Examples:

 Broadcast that is delivered at same time by all correct
processes (plus or minus the clock skew)

 Distributed shared memory that is updated within a known
maximum delay

 Group of processes that can perform periodic actions

CS5412 Spring 2014

9

A real-time broadcast

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*

Message is sent at time t by p0. Later both p0 and p1 fail. But

message is still delivered atomically, after a bounded delay, and

within a bounded interval of time (at non-faulty processes) CS5412 Spring 2014

10

A real-time distributed shared memory

p0

p1

p2

p3

p4

p5

t
t+a t+b

At time t p0 updates a variable in a distributed shared memory.

All correct processes observe the new value after a bounded

delay, and within a bounded interval of time.

set x=3

x=3

CS5412 Spring 2014

11

Periodic process group: Marzullo

p0

p1

p2

p3

p4

p5

Periodically, all members of a group take some action.

Idea is to accomplish this with minimal communication
CS5412 Spring 2014

12

The CASD protocol suite

 Also known as the “ -T” protocols

 Developed by Cristian and others at IBM, was

intended for use in the (ultimately, failed) FAA project

 Goal is to implement a timed atomic broadcast

tolerant of Byzantine failures

CS5412 Spring 2014

13

Basic idea of the CASD protocols

 Assumes use of clock synchronization

 Sender timestamps message

 Recipients forward the message using a flooding
technique (each echos the message to others)

 Wait until all correct processors have a copy, then
deliver in unison (up to limits of the clock skew)

CS5412 Spring 2014

14

CASD picture

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*

p0, p1 fail. Messages are lost when echoed by p2, p3

CS5412 Spring 2014

15

Idea of CASD

 Assume known limits on number of processes that fail during
protocol, number of messages lost

 Using these and the temporal assumptions, deduce worst-case
scenario

 Now now that if we wait long enough, all (or no) correct
process will have the message

 Then schedule delivery using original time plus a delay
computed from the worst-case assumptions

CS5412 Spring 2014

16

The problems with CASD

 In the usual case, nothing goes wrong, hence the delay
can be very conservative

 Even if things do go wrong, is it right to assume that if
a message needs between 0 and ms to make one
hope, it needs [0,n* ] to make n hops?

 How realistic is it to bound the number of failures
expected during a run?

CS5412 Spring 2014

17

CASD in a more typical run

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*

*

CS5412 Spring 2014

18

... leading developers to employ more aggressive

parameter settings

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*

*

CS5412 Spring 2014

19

CASD with over-aggressive paramter settings starts to

“malfunction”

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

all processes look “incorrect” (red) from time to time

*

*

*

CS5412 Spring 2014

20

CASD “mile high”

 When run “slowly” protocol is like a real-time version

of abcast

 When run “quickly” protocol starts to give

probabilistic behavior:

 If I am correct (and there is no way to know!) then I am

guaranteed the properties of the protocol, but if not, I may

deliver the wrong messages

CS5412 Spring 2014

21

How to repair CASD in this case?

 Gopal and Toueg developed an extension, but it
slows the basic CASD protocol down, so it wouldn’t be
useful in the case where we want speed and also
real-time guarantees

 Can argue that the best we can hope to do is to
superimpose a process group mechanism over CASD
(Verissimo and Almeida are looking at this).

CS5412 Spring 2014

22

Why worry?

 CASD can be used to implement a distributed shared
memory (“delta-common storage”)

 But when this is done, the memory consistency
properties will be those of the CASD protocol itself

 If CASD protocol delivers different sets of messages
to different processes, memory will become
inconsistent

CS5412 Spring 2014

23

Why worry?

 In fact, we have seen that CASD can do just this, if the

parameters are set aggressively

 Moreover, the problem is not detectable either by

“technically faulty” processes or “correct” ones

 Thus, DSM can become inconsistent and we lack any

obvious way to get it back into a consistent state

CS5412 Spring 2014

24

Using CASD in real environments

 Once we build the CASD mechanism how would we

use it?

 Could implement a shared memory

 Or could use it to implement a real-time state machine

replication scheme for processes

 US air traffic project adopted latter approach

 But stumbled on many complexities…

CS5412 Spring 2014

25

Using CASD in real environments

 Pipelined computation

 Transformed computation

CS5412 Spring 2014

26

Issues?

 Could be quite slow if we use conservative parameter
settings

 But with aggressive settings, either process could be
deemed “faulty” by the protocol

 If so, it might become inconsistent

 Protocol guarantees don’t apply

 No obvious mechanism to reconcile states within the pair

 Method was used by IBM in a failed effort to build a
new US Air Traffic Control system

CS5412 Spring 2014

27

Can we combine CASD with consensus?

CS5412 Spring 2014

28

 Consensus-based mechanisms (Isis2, Paxos) give

strong guarantees, such as “there is one leader”

 CASD overcomes failures to give real-time delivery

if parameterized correctly (clearly, not if

parameterized incorrectly!)

 Why not use both, each in different roles?

A comparison
29

 Virtually synchronous Send is fault-tolerant and very
robust, and very fast, but doesn’t guarantee realtime
delivery of messages

 CASD is fault-tolerant and very robust, but rather slow.
But it does guarantee real-time delivery

 CASD is “better” if our application requires absolute
confidence that real-time deadlines will be achieved...
but only if those deadlines are “slow”

CS5412 Spring 2014

Weird insight

CS5412 Spring 2014

30

 If a correctly functioning version of CASD would be

way too slow for practical use, then a protocol like

Send might be better even for the real-time uses!

 The strange thing is that Send isn’t designed to

provide guaranteed real-time behavior

 But in practice it is incredibly fast, compared to

CASD which can be incredibly slow…

Which is better for

real-time uses?
31

 Virtually synchronous Send or CASD?

 CASD may need seconds before it can deliver, but

comes with a very strong proof that it will do so

correctly

 Send will deliver within milliseconds unless strange

scheduling delays impact a node

 But actually delay limit is probably ~10 seconds

 Beyond this, if ISIS_DEFAULT_TIMEOUT is set to a small value

like 5s, node will be declared to have crashed

CS5412 Spring 2014

Back to the DDS concept
32

 In a cloud setting, a DDS is typically

 A real-time protocol, such as CASD

 Combined with a database technology, generally

transactional with strong durability

 Combined with a well defined notion of “objects”, for

example perhaps in the IBM Air Traffic Control project

something like “Flight Data Records”

 Combined with a rule: when the FDR is updated, we will

also use the DDS to notify any “subscribers” to that

object. So the object name is a topic in pub-sub terms.

CS5412 Spring 2014

IBM Air Traffic Concept
33

 Everyone uses the -Common storage abstraction and
maintains a local “copy” of all FDRs relevant to the
current air traffic control state

 To update an FDR, there should be a notion of an owner
who is the (single) controller allowed to change the FDR.

 Owner performs some action, this updates the durable
storage subsystem

 Then when update is completely final, -T atomic multicast is
used to update all the -Common storage records

 Then this updates applications on all the controller screens

CS5412 Spring 2014

Safety needs?
34

 Clearly there needs to be a well defined guarantee
of a single controller for each FDR

 There must always be an assigned controller

 … but there can only be one per FDR

 Also we need the DDS to be reliable; CASD could
be used, for example

 But we also need a certain level of speed and
latency guarantees

CS5412 Spring 2014

What makes it hard?
35

 As we see with CASD, sometimes the analysis used
to ensure reliability “fights” the QoS properties
needed for safety in the application as a whole

 Moreover, we didn’t even consider delays
associated with recovering the DDS storage
subsystem when a failure or restart disrupts it

 E.g. bringing a failed DDS storage element back online

 We need to be sure that every FDR goes through a
single well-defined sequence of “states”

CS5412 Spring 2014

If a system is too slow…
36

 … it may not be useable even if the technology

that was used to build it is superb!

 With real DDS solutions in today’s real cloud

settings this entire issue is very visible and a serious

problem for developers

 They constantly struggle between application

requirements and what the cloud can do quickly

CS5412 Spring 2014

Generalizing to the whole cloud
37

 Massive scale

 And most of the thing gives incredibly fast

responses: sub 100ms is a typical goal

 But sometimes we experience a long delay or a

failure

CS5412 Spring 2014

Traditional view of real-time control

favored CASD view of assurances
38

 In this strongly assured model, the assumption was

that we need to prove our claims and guarantee

that the system will meet goals

 And like CASD this leads to slow systems

 And to CAP and similar concerns

CS5412 Spring 2014

And this leads back to our question
39

 So can the cloud do high assurance?

 Presumably not if we want CASD kinds of proofs

 But if we are willing to “overwhelm” delays with

redundancy, why shouldn’t we be able to do well?

 Suppose that we connect our user to two cloud

nodes and they perform read-only tasks in parallel

 Client takes first answer, but either would be fine

 We get snappier response but no real “guarantee”

CS5412 Spring 2014

A vision: “Good enough assurance”
40

 Build applications to protect themselves against rare
but extreme problems (e.g. a medical device might
warn that it has lost connectivity)

 This is needed anyhow: hardware can fail…

 So: start with “fail safe” technology

 Now make our cloud solution as reliable as we can
without worrying about proofs

 We want speed and consistency but are ok with rare
crashes that might be noticed by the user

CS5412 Spring 2014

Will this do?
41

 Probably not for some purposes… but some things

just don’t belong under computer control

 For most purposes, this sort of solution might

balance the benefits of the cloud with the kinds of

guarantees we know how to provide

 Use redundancy to compensate for delays,

insecurity, failures of individual nodes

CS5412 Spring 2014

Summary: Should we trust the cloud?
42

 We’ve identified a tension centering on priorities

 If your top priority is assurance properties you may be
forced to sacrifice scalability and performance in ways that
leave you with a useless solution

 If your top priorities center on scale and performance and
then you layer in other characteristics it may be feasible to
keep the cloud properties and get a good enough version
of the assurance properties

 These tradeoffs are central to cloud computing!

 But like the other examples, cloud could win even if in
some ways, it isn’t the “best” or “most perfect” solution

CS5412 Spring 2014

But how can anyone trust the cloud?
43

 The cloud seems so risky that it makes no sense at

all to trust it in any way!

 Yet we seem to trust

it in many ways

 This puts the fate of your

company in the hands of

third parties!

CS5412 Spring 2014

The concept of “good enough”
44

 We’ve seen that there really isn’t any foolproof

way to build a computer, put a large, complex

program on it, and then run it with confidence

 We also know that with effort, many kinds of

systems really start to work very well

 When is a “pretty good” solution good enough?

CS5412 Spring 2014

Life with technology is about tradeoffs
45

 Clearly, we err if we use a technology in a

dangerous or inappropriate way

 Liability laws need to be improved: they let software

companies escape pretty much all responsibility

 Yet gross negligence is still a threat to those who build

things that will play critical roles and yet fail to take

adequate steps to achieve assurance

CS5412 Spring 2014

