CS5412: THE CLOUD VALUE PROPOSITION
Cloud Hype

- The cloud is cheaper!

- The cloud business model is growing at an unparalleled pace without any limit in sight

- In the future everything will be on the cloud

... can we find evidence to support, or refute, such claims?
Crossing the Chasm

Insight from Geoff Moore

Six phases of market development

Market
1. Group of people
2. Common need
3. Refer to each other

Diagram showing different market segments: Early Market, Chasm, Bowling Alley, Tornado, Mainstream, Total Assimilation.
How does the revenue picture look?

- One-time purchases
How does the revenue picture look?

- “Recurring” revenue: vendor keeps getting paid
A thought question

- Who pays for a “free” app?
 - Some games have advertising but many apps don’t
 - So what’s the interest in having the app?

- Even more extreme: Who pays for LinkedIn?
 - Huge number of users so it must cost a lot to run
 - Yet no advertising and the site is free
LinkedIn exists to either be acquired, or to eventually change its revenue model using ads.

- In the eventual profit case, the company would be sustained by venture capital in the interim period.
- Then an IPO lets the company cash in on its “value”.

But what does “value” ultimately mean if the company sells a product that doesn’t really create revenue at all?
These aren’t the only models

- What about a revenue-generating application
 - Why might it ever live on the cloud?

- Imagine that doctors pay “MedRecords4Us” a subscription fee

- Would it make sense for the company to migrate their application to a cloud?
Managing Demand

- **IT Capacity**
- **Forecast demand**
- **Compute capacity**
 - Over capacity
 - Under capacity

- **Time**

- **Entry barrier**
- **Potential business loss**
- **Wasted capacity**
Coping with Demand Bursts

Ouch! How do we deal with this?

Ticket sales open

Ticket sales open

Demand

Time

Concert ticket web site
IT Agility

- How quickly can you
 - Scale up the infrastructure and applications?
 - Upgrade to the latest OS?
 - Respond to a company merger with new requirements for business process and IT capacity?
 - Respond to a divestiture
Cloud Computing

- Shared, multi-tenant environment
- Pools of computing resources
- Resources can be requested as required
- Available via the Internet
 - Private clouds can be available via private WAN
- Pay as you go
Technologies and monetization

- Fundamentally, a technology *must be profitable to survive*.
 - Better technologies often fail
 - The technology everyone buys wins. Then eventually it might acquire features from the losing solutions

- Moreover, the income story needs to “scale”
Two more examples. Who wins?

- Company A has an amazing technology but you need to be an expert to use it.
 - So they hire and train experts of their own
 - When you buy their package they do the work for you

- Company B has a less amazing technology but it just installs itself and works
 - No need to hire experts
 - Just buy as many user accounts as you need
In addition to incorrectly assuming that better technology wins over inferior technology, people often confuse **competition** with **competitive success**

- Aggressive competition often *drives* pricing down
- Much better to be the owner of a unique niche: sole provider of such-and-such a must-have application
 - You can charge higher prices (although not too high or competitors move in aggressively). So profit margins will be sharply higher
 - You become a must-be-there platform for advertising aimed at your class of clients, bringing you revenue

- In effect: the best position to be in is to create your own niche and operate it as a mini-monopoly!
Company A will eventually be limited by the number of experts it can actually hire & train
- So after a period of growth it will stall
- The revenue stream peaks and this chokes investment in the evolution of the product
- Ultimately, company A will either fail or at least reach some sort of saturation point

Company B sees no end in sight and the money pours in
- This allows B to invest to improve its technology
- Eventually it will catch up with A on features
We need to ask which stage of the cloud we’ve reached!

- But one complication: it isn’t just “one” cloud
- The cloud is a “sum” of multiple business stories/models

Early business of the cloud was the initial Internet boom (it gave us pets.com and similar web sites)

- Only a few survived, like Amazon.com, Expedia
- Winning wasn’t easy for them or much fun!
Waves of the cloud revolution

- Early web browser stage
 - Search and advertising (Google)
 - Social Networking (Facebook, Twitter)
 - Cloud as your “home”: AOL, Yahoo!, MSN, Google

- Emergence of true web services model
 - Infrastructure as a service (“rent a VM”) Apps (Apple)
 - Frames, full cross-site federation
 - Full-featured scripting languages (Javascript, Caja, Silverlight, Adobe Flash...)

- What next?
Each has its own revenue model!

- For each style of web solution need to ask what monetizes that model!
 - Google and Facebook make their money on advertising
 - Microsoft combines technology license revenue with advertising, but earns much more on technology
 - Apple earns money on every App
 - Amazon sells stuff but also runs massive data centers really well, and rents space on those
 - Infosys does rote tasks incredibly well and incredibly cheaply (because most of their employees earn $6,500/yr)

- Following the money is the key to understanding what directions each will follow
So the cloud is a sum of stories

Many of these revenue stories “superimposed”
Over the course of the next five years, enterprises will spend $112 billion cumulatively on SaaS, PaaS and IaaS combined.
Inescapable Conclusion?

- Some of today’s cloud computing stories will probably fail as business models
- Wallstreet may not realize this, yet!
The terms have many meanings!

- Everyone talks about cloud computing but there is very little consensus on what cloud computing means.
 - We’ve studied it all semester now.
 - But the cloud brings together a lot of technologies that each do very different things.

- Best definition so far is basically:
 - A style of computing that makes extensive use of network access to remote data and remote data centers, presented through web standards.
 - But this is so general it says almost nothing!
What is a Cloud Platform?
Some defining characteristics

- It lets developers create and run apps, store data, and more
- It provides self-service access to a pool of computing resources
- It allows granular, elastic allocation of resources
- It allows charging only for the resources an application uses
Public Clouds and Private Clouds

Typical definitions

- Public cloud: A cloud platform run by a service provider made available to many end-user organizations.

- Private cloud: A cloud platform run solely for a single end-user organization, such as a bank or retailer.
 - The technology can be much like public clouds, but the economics are different.

- Most organizations will probably use some hybrid of both.
Cloud Platform Technologies

- The most important today:
 - Computing
 - Infrastructure as a Service (IaaS)
 - Platform as a Service (PaaS)
 - Storage
 - Relational storage
 - Scale-out storage
 - Blobs

- There are many more
 - Messaging, identity, caching, …
Computing
Infrastructure as a Service (IaaS)

- Developers create virtual machines (VMs) on demand
 - They have full access to these VMs

- **Strengths:**
 - Can control and configure environment
 - Familiar technologies
 - Limited code lock-in

- **Weaknesses:**
 - Must control and configure environment
 - Requires administrative skills to use
Computing
Platform as a Service (PaaS)

- Developers provide an application, which the platform runs
 - They don’t work directly with VMs

- Strengths:
 - Provides higher-level services than IaaS
 - Requires essentially no administrative skills

- Weaknesses:
 - Allows less control of the environment
 - Can be harder to move existing software
Computing
What’s the most popular approach?

- IaaS is more widely used today than PaaS
 - Gartner estimates that public IaaS revenues are significantly greater than public PaaS revenues today

- Perspective:
 - IaaS is easier to adopt than PaaS
 - IaaS emulates your existing world in the cloud
 - Over time, PaaS is likely to dominate
 - PaaS should have an overall lower cost than IaaS
 - It’s typically a better choice for new applications
Traditional relational storage in the cloud

With support for SQL

Strengths:
- Familiar technologies
- Many available tools, e.g., for reporting
- Limited data lock-in
- Can be cheaper than on-premises relational storage

Weaknesses:
- Scaling to handle very large data is challenging
Massively scalable storage in the cloud
- No support for SQL

Strengths:
- Scaling to handle very large data is straightforward
- Can be cheaper than relational storage

Weaknesses:
- Unfamiliar technologies
- Few available tools
- Significant data lock-in
Storage
Blobs

- Storage for *Binary Large OBjects* in the cloud
 - Such as video, back-ups, etc.
- **Strengths:**
 - Globally accessible way to store and access large data
 - Can be cheaper than on-premises storage
- **Weaknesses:**
 - Provides only simple unstructured storage
CLOUD PLATFORMS: BUILDING A FRAMEWORK
Cloud Platforms

Representative technologies and vendors

<table>
<thead>
<tr>
<th>Computing</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IaaS</td>
<td>Relational</td>
</tr>
<tr>
<td>IaaS</td>
<td>Scale-Out</td>
</tr>
<tr>
<td>PaaS</td>
<td>Blobs</td>
</tr>
</tbody>
</table>

Key
- Cloud Platform Service
- Cloud Platform Software

- Amazon
- Google
- Salesforce
Cloud Service or Cloud Software?

Understanding the alternatives

- **Cloud platform service**
 - A hardware/software combination
 - Typically provided by organizations that run Internet-scale services, e.g., Microsoft, Amazon, and Google
 - They write their own software

- **Cloud platform software**
 - Provided by software vendors and open source projects
 - Hosters can use this software to offer a public cloud service
 - The same software can also be used in private clouds
Applying Public Cloud Platforms (1)

Some characteristics of typical applications

- Apps that need high reliability
 - Example: A SaaS application

- Apps that need massive scale
 - Example: A Web 2.0 application

- Apps with variable load
 - Example: An on-line ticketing application

- Apps that do parallel processing
 - Example: A financial modeling application
Applying Public Cloud Platforms (2)

Some characteristics of typical applications

- Apps with a short or unpredictable lifetime
 - Example: An app created for a marketing campaign

- Apps that must fail fast or scale fast
 - Example: Start-ups

- Apps that don’t fit well in an organization’s data center
 - Example: A business unit that wishes to avoid its IT department

- Apps that can benefit from external storage
 - Example: An application that archives data
From Server Virtualization to Private Clouds

- IaaS allows allocating, managing, and charging for VMs in a more effective way

- This idea first appeared in a public cloud platform
 - If it makes sense there, why not use it in your own data center?

- Private clouds provide IaaS in your data center
 - Although they can also offer more application-oriented services
Microsoft

Private and public cloud platform software

<table>
<thead>
<tr>
<th>Computing</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IaaS</td>
<td>IaaS</td>
</tr>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosters: Hyper-V Cloud</td>
</tr>
</tbody>
</table>

Key

- Cloud Platform Service
- Cloud Platform Software
VMware

Private and public cloud platform software

<table>
<thead>
<tr>
<th>IaaS</th>
<th>IaaS</th>
<th>PaaS</th>
<th>Relational</th>
<th>Scale-Out</th>
<th>Blobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosters: Hyper-V Cloud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosters: vCloud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- Cloud Platform Service
- Cloud Platform Software
Windows Azure Platform

Public cloud platform

<table>
<thead>
<tr>
<th>IaaS</th>
<th>PaaS</th>
<th>Relational</th>
<th>Scale-Out</th>
<th>Blobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Cloud</td>
<td>Windows Azure</td>
<td>SQL Azure</td>
<td>Windows Azure Tables</td>
<td>Windows Azure Blobs</td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosters: vCloud</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- Cloud Platform Service
- Cloud Platform Software
Windows Azure Platform

Pricing examples (in US dollars)

- **Compute:** $0.05/hour to $0.96/hour for each instance (depending on instance size)

- **Storage:**
 - Blobs and tables:
 - Data: $0.15/GB per month
 - Access: $0.01/10,000 operations
 - Relational:
 - $9.99/GB per month

- **Bandwidth:**
 - Inbound: Free
 - Outbound: $0.15/GB
VMware Cloud Foundry
Public cloud platform software

<table>
<thead>
<tr>
<th>Computing</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IaaS</td>
<td>IaaS</td>
</tr>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosters: Hyper-V Cloud</td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosters: vCloud</td>
</tr>
<tr>
<td>Amazon</td>
<td></td>
</tr>
<tr>
<td>Google</td>
<td></td>
</tr>
<tr>
<td>Salesforce</td>
<td></td>
</tr>
</tbody>
</table>

Key
- Cloud Platform Service
- Cloud Platform Software
VMware Cloud Foundry

Essentials

- Cloud Foundry is an open source PaaS platform
 - Led by VMware
- Designed to support diverse technologies:
 - Frameworks: Spring, Rails, etc.
 - Storage: MySQL, MongoDB, etc.
- Not yet available as a service
 - VMware provides a public dev/test service
 - Partners will provide commercial public platforms
Amazon Web Services

Public cloud platform

<table>
<thead>
<tr>
<th>IaaS</th>
<th>IaaS</th>
<th>PaaS</th>
<th>Relational</th>
<th>Scale-Out</th>
<th>Blobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosts: Hyper-V Cloud</td>
<td>Windows Azure</td>
<td>SQL Azure</td>
<td>Windows Azure Tables</td>
<td>Windows Azure Blobs</td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosts: vCloud</td>
<td>Cloud Foundry Frameworks</td>
<td>Cloud Foundry Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Compute Cloud (EC2)</td>
<td>Elastic Beanstalk</td>
<td>Relational Database Service (RDS)</td>
<td>SimpleDB</td>
<td>Simple Storage Service (S3)</td>
<td></td>
</tr>
</tbody>
</table>

Key
- Cloud Platform Service
- Cloud Platform Software
A Broader View of IaaS/PaaS

An aside

- More than cloud compute can be viewed through the IaaS/PaaS lens

- Example: Cloud options for relational storage
 - Run a database server in an AWS EC2 VM
 - An IaaS storage service
 - Use a managed database server with AWS RDS
 - Use a managed database service with SQL Azure
 - A PaaS storage service
Amazon Web Services
Pricing examples

- **Compute:** $0.02/hour to $3.68/hour for each VM (depending on size and OS)

- **Storage (blobs):**
 - Data: $0.14/GB per month to $0.037/GB per month (depending on data size and redundancy)
 - Access: $0.01/1,000 PUT, COPY, POST, LIST operations, $0.01/10,000 GET operations

- **Bandwidth:** Free inbound, $0.12/GB to $0.05/GB out (depending on volume)
Eucalyptus
Private cloud software

<table>
<thead>
<tr>
<th>IaaS</th>
<th>IaaS</th>
<th>PaaS</th>
<th>Relational</th>
<th>Scale-Out</th>
<th>Blobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosters: Hyper-V Cloud</td>
<td>Windows Azure</td>
<td>SQL Azure</td>
<td>Windows Azure Tables</td>
<td>Windows Azure Blobs</td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosters: vCloud</td>
<td>Cloud Foundry Framework</td>
<td>Cloud Foundry Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>Elastic Compute Cloud (EC2)</td>
<td>Elastic Beanstalk</td>
<td>Relational Database Service (RDS)</td>
<td>SimpleDB</td>
<td>Simple Storage Service (S3)</td>
</tr>
</tbody>
</table>

Key
- Cloud Platform Service
- Cloud Platform Software
The Commoditization of IaaS

An aside

- Public IaaS compute service is widely available today

- Providers include:
 - GoGrid Cloud Hosting
 - Terremark vCloud Express
 - IBM SmartCloud Enterprise
 - Rackspace Cloud Servers
 - A leader in creating OpenStack, open source IaaS private/public cloud platform software
Google App Engine
Public cloud platform

<table>
<thead>
<tr>
<th>IaaS</th>
<th>IaaS</th>
<th>PaaS</th>
<th>Relational</th>
<th>Scale-Out</th>
<th>Blobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosters: Hyper-V Cloud</td>
<td>Windows Azure</td>
<td>SQL Azure</td>
<td>Windows Azure Tables</td>
<td>Windows Azure Blobs</td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosters: vCloud</td>
<td>Cloud Foundry Frameworks</td>
<td>Cloud Foundry Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>Elastic Compute Cloud (EC2)</td>
<td>Elastic Beanstalk</td>
<td>Relational Database Service (RDS)</td>
<td>SimpleDB</td>
<td>Simple Storage Service (S3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key
- Cloud Platform Service
- Cloud Platform Software

Amazo
- vCloud

Google
- Hyper-V Cloud

Salesforce
- Eucalyptus

App Engine
- Datastore
- Blobstore
Google App Engine
Pricing examples (today)

- **Compute:** $0.10/CPU hour
- **Storage:**
 - Datastore: $0.15/GB per month
 - Blobstore: $0.15/GB per month
- **Bandwidth:** $0.10/GB in, $0.12/GB out

- App Engine also allows some free usage every day
 - Other platforms have a free tier as well
Salesforce.com Force.com

Public cloud platform

<table>
<thead>
<tr>
<th>IaaS</th>
<th>IaaS</th>
<th>PaaS</th>
<th>Relational</th>
<th>Scale-Out</th>
<th>Blobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Cloud</td>
<td>For Hosts: Hyper-V Cloud</td>
<td>Windows Azure</td>
<td>SQL Azure</td>
<td>Windows Azure Tables</td>
<td>Windows Azure Blobs</td>
</tr>
<tr>
<td>vCloud</td>
<td>For Hosts: vCloud</td>
<td>Cloud Foundry Frameworks</td>
<td>Cloud Foundry Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>Elastic Compute Cloud (EC2)</td>
<td>Elastic Beanstalk</td>
<td>Relational Database Service (RDS)</td>
<td>SimpleDB</td>
<td>Simple Storage Service (S3)</td>
</tr>
<tr>
<td></td>
<td>App Engine</td>
<td></td>
<td></td>
<td>Datastore</td>
<td>Blobstore</td>
</tr>
</tbody>
</table>

Key
- Cloud Platform Service
- Cloud Platform Software
- For Hosts: Hyper-V Cloud
- For Hosts: vCloud
- Cloud Foundry Frameworks
- Cloud Foundry Storage
- AppEngine
Salesforce.com Force.com

Pricing examples

- One (small) application is free
- Enterprise Edition: $50/user per month
 - Compute: up to 10 applications
 - Storage: up to 200 database objects
 - Bandwidth: No extra charge
- Unlimited Edition: $75/user per month
 - Compute: unlimited applications
 - Storage: up to 2,000 database objects
 - Bandwidth: No extra charge
Challenges to Adoption

Cloud Computing Brings New Legal Challenges

By Shari Claire Lewis
July 08, 2009

In the early days of personal computing, users depended on “local” drives and stored their data on floppy disks kept in containers on desktops or in drawers. Applications from software manufacturers permitted users to create, manage and manipulate their business and personal information.

But in short order, software became more and more sophisticated and floppy disks were replaced by hard drives. Operating systems became faster, hard drives were developed with even more capacity and programs grew in size and scope.

Eventually the advent of networks allowed ever bigger programs to be shared among multiple users accessing ever-growing data banks. Nevertheless, networks remained largely tethered to the location of the users, who, at least theoretically, maintained both physical possession and control over the data.

The trend today is toward something different: Whereas companies may still prefer their employees to be in geographic proximity to urban centers of business and government, the cost of prime real estate, and the availability of fast online interconnectedness in many locations that would otherwise be considered remote, make cloud computing a viable and cost-effective alternative. Accordingly, data and application data that are kept in a cloud may be physically located in one or more remote servers but are nevertheless transparently available to company users.
<table>
<thead>
<tr>
<th>Area</th>
<th>Specific Challenge</th>
<th>Ownership Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Private Cloud</td>
</tr>
<tr>
<td>Understanding of the Paradigm</td>
<td>Agreement on Definition</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Confusion on What Provided</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Multi-Tenancy Concerns</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Unrealistic Vendor Claims</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>CIO Role Changes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Cloud Lock-In</td>
<td>Low to NA</td>
</tr>
<tr>
<td>Implementation/Operations</td>
<td>Architecture Immaturity</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Manageability</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>VM Memory Limits</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>WAN Performance</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Potential Loss of Control</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Provisioning</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Licensing Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Governance</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Confidence</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Service Provider Motivation</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Provider SLAs</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Provider SLAs</td>
<td>Low</td>
</tr>
<tr>
<td>Security/Compliance</td>
<td>Adequate Threat Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Workable Cross-Domain Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Data-at-Rest Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Auditability</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Accepted Accreditation Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Accepted Compliance Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Physical Location</td>
<td>Low to NA</td>
</tr>
</tbody>
</table>
Challenges to Adoption (continued)

<table>
<thead>
<tr>
<th>Area</th>
<th>Specific Challenge</th>
<th>Ownership Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding of the Paradigm</td>
<td>Agreement on Definition</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Confusion on What Provided</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Multi-Tenancy Concerns</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Unrealistic Vendor Claims</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>CIO Role Changes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Cloud Lock-In</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Implementation/Operations</td>
<td>Architecture Immaturity</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Manageability</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>System Availability</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Performance</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Potential Loss of Control</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Provisioning</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Licensing Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Governance</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Confidence</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Provider SLAs</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Physical Location</td>
<td>Low to NA</td>
</tr>
<tr>
<td>Security/Compliance</td>
<td>Adequate Threat Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Workable Cross-Domain Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Data-at-Rest Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Auditablety</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Accepted Accreditation Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Accepted Compliance Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Physical Location</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>
Understanding of the Paradigm (continued)

- **Role changes**: The CIO (or equivalent) may need to evolve to a general contractor in many areas.

- **Lock-In**:
 - How difficult would it be to move large volumes of data to a different cloud (cloud provider)?
 - This is both a procedural and a technical issue (format, bandwidth)
Challenges to Adoption (continued)

- **Implementation and Operations**
 - **Architecture:**
 - There is much disagreement over the necessary elements for a cloud technical architecture, and the elements are not mature.
 - In addition, SOA is the best approach for interface to the cloud, yet culture for SOA success is immature.
 - There is much discussion over common cloud APIs, but none exist.

- **Manageability:**
 - Manageability: from the user perspective:
 - Existing management tools do not seem to be able to track metrics for applications that may reside on a varying number of different systems (not a problem where solution is a single VM).
 - How does asset management change in the cloud?
 - Distributed Management: The Distributed Management Task Force (DMTF) has initiated a working group to address:
 - DMTF has initiated a working group to address cloud incubator.

- **Memory limits within VM technology:** VMs, which are approaching being a requisite design element, can address less memory than the physical OS. The latest product releases largely obviate this limitation.

- **WAN performance:** Many geographies still are limited in their backbone capacity.

<table>
<thead>
<tr>
<th>Area</th>
<th>Specific Challenge</th>
<th>Ownership Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Private Cloud</td>
</tr>
<tr>
<td>Understanding of the Paradigm</td>
<td>Agreement on Definition</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Confusion on What Provided</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Multi-Tenancy Concerns</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>CIO Role Changes</td>
<td>Low</td>
</tr>
<tr>
<td>Implementation/Operations</td>
<td>Architecture Immaturity</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Manageability</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>VM Memory Limits</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Potential Loss of Control</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Licensing Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Governance</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Confidence</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Service Level Agreement</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Security/Compliance</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Adequate Threat Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Workable Cross-Domain Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Data-at-Rest Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Accepted Accreditation Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Accepted Compliance Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Physical Location</td>
<td>Low to NA</td>
</tr>
</tbody>
</table>
Implementation and Operations (continued)

- **Loss of control:** Will business elements of the enterprise bypass the enterprise’s IT organization?

- **Governance:**
 - In which deployment models and use-cases does this play?
 - Is governance antithetical to the concept of cloud?
 - Will lack of governance aggravate problems already associated with lack of SOA governance?

- **Provisioning:** For SaaS, how will applications and application components be provisioned?

- **Licensing:** Vendors have been slow to develop appropriate models.

- **Confidence:** As to reliability, scalability, and security in public clouds (economics will also drive cloud vendors to minimize costs)
Challenges to Adoption (continued)

- Implementation and Operations (continued)
 - **Motivation for the Provider:**
 - Ideally, providers keep just ahead of demand
 - May provide motivation for providers to federate and sell capacity to each other as do utility companies. Are there lessons from the power utility companies?
 - Aggravates manageability problem
 - Is the capacity really there for surge levels? Will another tenant’s surge impede your ability to do the same?
 - **Service-Level Agreements:** There have been effectively no substantive guarantees from public cloud providers.
Challenges to Adoption (continued)

- **Security/Compliance**
 - **Adequate Threat Models**: Low to Medium
 - **Workable Cross-Domain Security**: Low
 - **Acceptance of some security accreditation processes**: Medium
 - **Accepted Accreditation Processes**: Medium
 - **Accepted Compliance Processes**: Medium
 - **Physical Location**: Low to Medium

<table>
<thead>
<tr>
<th>Area</th>
<th>Specific Challenge</th>
<th>Ownership Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding of the Paradigm</td>
<td>Agreement on Definition</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Workload on Cloud Profiling</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Multi-tenant Concerns</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Unrealistic Vendor Claims</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Cloud Lock-In</td>
<td>Medium</td>
</tr>
<tr>
<td>Implementation/Operations</td>
<td>Architecture Immaturity</td>
<td>High NA</td>
</tr>
<tr>
<td></td>
<td>Manageability</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>WAN Performance</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Potential Loss of Control</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Provisioning</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Billing Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Governance</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Confidence</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Service Provider Motivation</td>
<td>Low to NA</td>
</tr>
<tr>
<td></td>
<td>Provider SLAs</td>
<td>High</td>
</tr>
<tr>
<td>Security/Compliance</td>
<td>Adequate Threat Models</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Workable Cross-Domain Security</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Acceptance of some security</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Accepted Accreditation Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Accepted Compliance Processes</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Physical Location</td>
<td>Low to NA</td>
</tr>
</tbody>
</table>

Examples:
- Dynamic virtual machines – How much control to the user?
- Resource isolation (appropriate isolation measures are needed):
 - VM-to-VM attacks
 - Data leakage
- Weakened perimeter – Firewall ports enabling user access are a vulnerability
- Patch and security control management becomes the user’s responsibility; aggravated by VM dynamism
- Consistency of control; ensuring the user understands where their data resides

Ownership Dimension

<table>
<thead>
<tr>
<th>Private Cloud</th>
<th>Public Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Low to NA</td>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Low to NA</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
Challenges to Adoption (continued)

- **Security and Compliance (continued)**
 - **Cross-Domain Security:** How does an organization extend or federate its authentication and authorization mechanisms into the cloud?
 - **Data-at-Rest Security:** What encryption and segregation mechanisms are provided?
 - **Auditability:** Can access to the data be audited?
 - Are data storage formats even amenable to auditing (more of an issue for chunking types of storage that lose the concept of a file)?
 - Forensics, as applications are not linked to physical infrastructure and the number of physical assets in play may vary
 - **Accreditation in the Cloud:**
 - How can you tell a cloud is “secure”?
 - Is there governing policy and procedures to accredit a cloud?
 - What processes and controls must be in place? (Pre-accredited clouds may actually simplify this process)
Challenges to Adoption (continued)

- Security and Compliance (continued)
 - **Compliance**: May preclude cloud paradigm in some cases due to:
 - Physical chain of custody requirements
 - Regulatory requirements
 - **Physical Location**:
 - Do you know what country your cloud resides in?
 - Would you know if it changed?
 - What compliance requirements change?
 - Is there governing law that recognizes the paradigm?

- Conclusions:
 - There are many challenges to adoption of the cloud paradigm
 - Public clouds and private clouds have different sets of challenges, with some overlap
The last word

- Joni Mitchell summed it up best:

 I've looked at clouds from both sides now
 From up and down, and still somehow
 It's cloud illusions I recall...
 I really don't know clouds at all

- The cloud is a very complex marketplace and evolving rapidly.
 - Economics are the key
 - But nobody really understands cloud economics
 - There are many barriers to entry