A topic that has received a lot of recent attention

Today we’ll look at three representative approaches

- Scribe, a topic-based pub-sub system that runs on the Pastry DHT (slides by Anne-Marie Kermarrec)
- Sienna, a content-subscription overlay system (slides by Antonio Carzaniga)
- T-Man, a general purpose system for building complex network overlays (slides by Ozalp Babaoglu)
Research done by the Pastry team, at MSR lab in Cambridge England

Basic idea is simple

- Topic-based publish/subscribe
- Use topic as a key into a DHT
 - Subscriber registers with the “key owner”
 - Publisher routes messages through the DHT owner

Optimization to share load

- If a subscriber is asked to forward a subscription, it doesn’t do so and instead makes note of the subscription. Later, it will forward copies to its children
Architecture

Scalable communication service

P2P location and routing layer

Internet

TCP/IP

DHT

SCRIBE

Subscription management
Event notification

PASTRY

CS5412, Spring 2014
Design

- Construction of a multicast tree based on the Pastry network
 - Reverse path forwarding
 - Tree used to disseminate events
- Use of Pastry route to create and join groups
SCRIBE: Tree Management

- **Create**: route to `groupId`

- **Join**: route to `groupId`

- **Tree**: union of `Pastry` routes from members to the root.

- **Multicast**: from the root down to the leaves

- Low link stress

- Low delay

CS5412, Spring 2014
SCRIBE: Tree Management

Name space

Proximity space

CS5412, Spring 2014
Concerns?

- Pastry tries to exploit locality but could these links send a message from Ithaca... to Kenya... to Japan...

- What if a relay node fails? Subscribers it serves will be cut off
 - They refresh subscriptions, but unclear how often this has to happen to ensure that the quality will be good
 - (Treat subscriptions as “leases” so that they evaporate if not refreshed... no need to unsubscribe...)
SCRIBE: Failure Management

- Reactive fault tolerance
- Tolerate root and nodes failure
- Tree repair: local impact
 - Fault detection: heartbeat messages
 - Local repair
Scribe: performance

- 1500 groups, 100,000 nodes, 1 msg/group
- Low delay penalty
- Good partitioning and load balancing
 - Number of groups hosted per node: 2.4 (mean) 2 (median)
- Reasonable link stress:
 - Mean msg/link: 2.4 (0.7 for IP)
 - Maximum link stress: 4*IP
Topic distribution

Windows Update

Stock Alert

Instant Messaging

Topic Rank

Group Size

CS5412, Spring 2014
Concern about this data set

- Synthetic, may not be terribly realistic
 - In fact we know that subscription patterns are usually power-law distributions, so that’s reasonable
 - But unlikely that the explanation corresponds to a clean Zipf-like distribution of this nature (indeed, totally implausible)
 - Unfortunately, this sort of issue is common when evaluating very big systems using simulations
- Alternative is to deploy and evaluate them in use... but only feasible if you own Google-scale resources!
Delay penalty

Mean = 1.66
Median = 1.56
Node stress: 1500 topics

Mean = 6.2
Median = 2
Link stress

- **Mean** = 1.4
- **Median** = 0

- **Maximum stress**
T-Man