
CS5412:
TORRENTS AND TIT-FOR-TAT

Ken Birman

1CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture VI

BitTorrent

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 Today we’ll be focusing on BitTorrent

 The technology really has three aspects
 A standard tht BitTorrent client systems follow
 Some existing clients, e.g. the free Torrent client, PPLive
 A clever idea: using “tit-for-tat” mechanisms to reward

good behavior and to punish bad behavior (reminder
of the discussion we had about RON...)

 This third aspect is especially intriguing!

The basic BitTorrent Scenario

 Millions want to download the same popular huge
files (for free)
 ISO’s
 Media (the real example!)

 Client-server model fails
 Single server fails
 Can’t afford to deploy enough servers

CS5412 Spring 2012 (Cloud Computing: Birman)

3

Why not use IP Multicast?

 IP Multicast not a real option in general WAN
settings
 Not supported by many ISPs
 Most commonly seen in private data centers

 Alternatives
 End-host based Multicast
 BitTorrent
 Other P2P file-sharing schemes (from prior lectures)

CS5412 Spring 2012 (Cloud Computing: Birman)

4

Router

“Interested”
End-host

Source

CS5412 Spring 2012 (Cloud Computing: Birman)

5

Router

“Interested”
End-host

Source

Client-Server

CS5412 Spring 2012 (Cloud Computing: Birman)

6

Router

“Interested”
End-host

Source

Client-Server
Overloaded!

CS5412 Spring 2012 (Cloud Computing: Birman)

7

Router

“Interested”
End-host

Source

IP multicast

CS5412 Spring 2012 (Cloud Computing: Birman)

8

Router

“Interested”
End-host

Source

End-host based multicast

CS5412 Spring 2012 (Cloud Computing: Birman)

9

End-host based multicast

 “Single-uploader” “Multiple-uploaders”
 Lots of nodes want to download
 Make use of their uploading abilities as well
 Node that has downloaded (part of) file will then

upload it to other nodes.
 Uploading costs amortized across all nodes

CS5412 Spring 2012 (Cloud Computing: Birman)

10

End-host based multicast

 Also called “Application-level Multicast”
 Many protocols proposed early this decade

 Yoid (2000), Narada (2000), Overcast (2000), ALMI
(2001)
 All use single trees
 Problem with single trees?

CS5412 Spring 2012 (Cloud Computing: Birman)

11

End-host multicast using single tree

Source

CS5412 Spring 2012 (Cloud Computing: Birman)

12

End-host multicast using single tree

Source

CS5412 Spring 2012 (Cloud Computing: Birman)

13

End-host multicast using single tree

Source

Slow data transfer

CS5412 Spring 2012 (Cloud Computing: Birman)

14

End-host multicast using single tree

 Tree is “push-based” – node receives data, pushes
data to children

 Failure of “interior”-node affects downloads in entire
subtree rooted at node

 Slow interior node similarly affects entire subtree
 Also, leaf-nodes don’t do any sending!
 Though later multi-tree / multi-path protocols

(Chunkyspread (2006), Chainsaw (2005), Bullet
(2003)) mitigate some of these issues

CS5412 Spring 2012 (Cloud Computing: Birman)

15

BitTorrent

 Written by Bram Cohen (in Python) in 2001
 “Pull-based” “swarming” approach

 Each file split into smaller pieces
 Nodes request desired pieces from neighbors
 As opposed to parents pushing data that they receive

 Pieces not downloaded in sequential order
 Previous multicast schemes aimed to support “streaming”;

BitTorrent does not

 Encourages contribution by all nodes

CS5412 Spring 2012 (Cloud Computing: Birman)

16

BitTorrent Swarm

 Swarm
 Set of peers all downloading the same file
 Organized as a random mesh

 Each node knows list of pieces downloaded by
neighbors

 Node requests pieces it does not own from
neighbors
 Exact method explained later

CS5412 Spring 2012 (Cloud Computing: Birman)

17

How a node enters a swarm
for file “popeye.mp4”

 File popeye.mp4.torrent
hosted at a (well-known)
webserver

 The .torrent has address of
tracker for file

 The tracker, which runs on a
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2012 (Cloud
Computing: Birman)

18

How a node enters a swarm
for file “popeye.mp4”

www.bittorrent.com

Peer

1

 File popeye.mp4.torrent
hosted at a (well-known)
webserver

 The .torrent has address of
tracker for file

 The tracker, which runs on a
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2012 (Cloud
Computing: Birman)

19

How a node enters a swarm
for file “popeye.mp4”

Peer

Tracker

2

www.bittorrent.com

 File popeye.mp4.torrent
hosted at a (well-known)
webserver

 The .torrent has address of
tracker for file

 The tracker, which runs on a
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2012 (Cloud
Computing: Birman)

20

How a node enters a swarm
for file “popeye.mp4”

Peer

Tracker3

www.bittorrent.com

Swarm

 File popeye.mp4.torrent
hosted at a (well-known)
webserver

 The .torrent has address of
tracker for file

 The tracker, which runs on a
webserver as well, keeps
track of all peers
downloading file

CS5412 Spring 2012 (Cloud
Computing: Birman)

21

Contents of .torrent file

 URL of tracker
 Piece length – Usually 256 KB
 SHA-1 hashes of each piece in file

 For reliability

 “files” – allows download of multiple files

CS5412 Spring 2012 (Cloud Computing: Birman)

22

Terminology

 Seed: peer with the entire file
 Original Seed: The first seed

 Leech: peer that’s downloading the file
 Fairer term might have been “downloader”

 Sub-piece: Further subdivision of a piece
 The “unit for requests” is a subpiece
 But a peer uploads only after assembling complete

piece

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Peer-peer transactions:
Choosing pieces to request

 Rarest-first: Look at all pieces at all peers, and
request piece that’s owned by fewest peers
 Increases diversity in the pieces downloaded
 avoids case where a node and each of its peers have

exactly the same pieces; increases throughput
 Increases likelihood all pieces still available even if

original seed leaves before any one node has
downloaded entire file

CS5412 Spring 2012 (Cloud Computing: Birman)

24

Choosing pieces to request

 Random First Piece:
 When peer starts to download, request random piece.
 So as to assemble first complete piece quickly
 Then participate in uploads

 When first complete piece assembled, switch to rarest-
first

CS5412 Spring 2012 (Cloud Computing: Birman)

25

Choosing pieces to request

 End-game mode:
 When requests sent for all sub-pieces, (re)send requests

to all peers.
 To speed up completion of download
 Cancel request for downloaded sub-pieces

CS5412 Spring 2012 (Cloud Computing: Birman)

26

Tit-for-tat as incentive to upload

 Want to encourage all peers to contribute
 Peer A said to choke peer B if it (A) decides not to

upload to B
 Each peer (say A) unchokes at most 4 interested peers

at any time
 The three with the largest upload rates to A
 Where the tit-for-tat comes in

 Another randomly chosen (Optimistic Unchoke)
 To periodically look for better choices

CS5412 Spring 2012 (Cloud Computing: Birman)

27

Anti-snubbing

 A peer is said to be snubbed if each of its peers
chokes it

 To handle this, snubbed peer stops uploading to its
peers

 Optimistic unchoking done more often
 Hope is that will discover a new peer that will upload

to us

CS5412 Spring 2012 (Cloud Computing: Birman)

28

Why BitTorrent took off

 Better performance through “pull-based” transfer
 Slow nodes don’t bog down other nodes

 Allows uploading from hosts that have downloaded
parts of a file
 In common with other end-host based multicast schemes

CS5412 Spring 2012 (Cloud Computing: Birman)

29

Why BitTorrent took off

 Practical Reasons (perhaps more important!)
 Working implementation (Bram Cohen) with simple well-

defined interfaces for plugging in new content
 Many recent competitors got sued / shut down
 Napster, Kazaa

 Doesn’t do “search” per se. Users use well-known, trusted
sources to locate content
 Avoids the pollution problem, where garbage is passed off as

authentic content

CS5412 Spring 2012 (Cloud Computing: Birman)

30

Pros and cons of BitTorrent

 Pros
 Proficient in utilizing partially downloaded files
 Discourages “freeloading”
 By rewarding fastest uploaders

 Encourages diversity through “rarest-first”
 Extends lifetime of swarm

 Works well for “hot content”

CS5412 Spring 2012 (Cloud Computing: Birman)

31

Pros and cons of BitTorrent

 Cons
 Assumes all interested peers active at same time;

performance deteriorates if swarm “cools off”
 Even worse: no trackers for obscure content

CS5412 Spring 2012 (Cloud Computing: Birman)

32

Pros and cons of BitTorrent

 Dependence on centralized tracker: pro/con?
 Single point of failure: New nodes can’t enter swarm

if tracker goes down
 Lack of a search feature
 Prevents pollution attacks
 Users need to resort to out-of-band search: well known

torrent-hosting sites / plain old web-search

CS5412 Spring 2012 (Cloud Computing: Birman)

33

“Trackerless” BitTorrent

 To be more precise, “BitTorrent without a centralized-
tracker”

 E.g.: Azureus
 Uses a Distributed Hash Table (Kademlia DHT)
 Tracker run by a normal end-host (not a web-server

anymore)
 The original seeder could itself be the tracker
 Or have a node in the DHT randomly picked to act as the

tracker

CS5412 Spring 2012 (Cloud Computing: Birman)

34

Prior to Netflix “explosion”, BitTorrent
dominated the INternet!

(From CacheLogic, 2004)

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Why is (studying) BitTorrent important?

 BitTorrent consumes significant amount of internet
traffic today
 In 2004, BitTorrent accounted for 30% of all internet

traffic (Total P2P was 60%), according to CacheLogic
 Slightly lower share in 2005 (possibly because of legal

action), but still significant
 BT always used for legal software (linux iso) distribution

too
 Recently: legal media downloads (Fox)

CS5412 Spring 2012 (Cloud Computing: Birman)

36

Example finding from a recent study

CS5412 Spring 2012 (Cloud Computing: Birman)

37

 Gribble showed that most BitTorrent streams “fail”
 He found that the number of concurrent users is often

too small, and the transfer too short, for the incentive
structure to do anything

 No time to “learn”

 His suggestion: add a simple history mechanism
 Behavior from yesterday can be used today. But of

course this ignores “dynamics” seen in the Internet...

BAR Gossip

CS5412 Spring 2012 (Cloud Computing: Birman)

38

 Work done at UT Austin looking at gossip model
 Same style of protocol seen in Kelips

 They ask what behaviors a node might exhibit
 Byzantine: the node is malicious
 Altrustic: The node answers every request
 Rational: The node maximizes own benefit

 Under this model, is there an optimal behavior?
[BAR Gossip. Harry C. Li, Allen Clement, Edmund L. Wong, Jeff
Napper, Indrajit Roy, Lorenzo Alvisi, Michael Dahlin. OSDI 2006]

Basic strategy

CS5412 Spring 2012 (Cloud Computing: Birman)

39

 They assume cryptographic keys (PKI)
 Used to create signatures: detect and discard junk
 Also employed to prevent malfactor from pretending

that it send messages but they were lost in network

 This is used to create a scheme that allows nodes to
detect and punish non-compliance

Key steps in BAR Gossip

CS5412 Spring 2012 (Cloud Computing: Birman)

40

1. History exchange: two parties learn about the
updates the other party holds

2. Update exchange: each party copies a subset of
these updates into a briefcase that is sent,
encrypted, to the other party
 Two cases: balanced exchange for normal operation
Optimistic push to help one party catch up

3. Key exchange, where the parties swap the keys
needed to access the updates in the two
briefcases.

Obvious concern: Failed key exchange

CS5412 Spring 2012 (Cloud Computing: Birman)

41

 What if a rational node chooses not to send the key (or
sends an invalid key)?
 Can’t “solve” this problem; they prove a theorem
 But by tracking histories, BAR gossip allows altruistic and

rational nodes to operate fairly enough
 Central idea is that the balanced exchange should

reflect the quality of data exchanged in past
 This can be determined from the history and penalizes a

node that tries to cheat during exchange
 Nash equillibrium strategy is to send the keys, so rational

nodes will do so!

Outcomes achieved

CS5412 Spring 2012 (Cloud Computing: Birman)

42

 BAR gossip protocol provides good convergence as
long as:
 No more than 20% of nodes are Byzantine
 No more than 40% collude.

 Generally seen as the “ultimate story” for
BitTorrent-like schemes

Insights gained?

CS5412 Spring 2012 (Cloud Computing: Birman)

43

 Collaborative download schemes can improve
download speeds very dramatically
 They avoid sender overload
 Are at risk when participants deviate from protocol
 Game theory suggests possible remedies

 BitTorrent is a successful and very practical tool
 Widely used inside data centers
 Also popular for P2P downloads
 In China, PPLive media streaming system very successful

and very widely deployed

References

 BitTorrent
 “Incentives build robustness in BitTorrent”, Bram Cohen
 BitTorrent Protocol Specification:

http://www.bittorrent.org/protocol.html

 Poisoning/Pollution in DHT’s:
 “Index Poisoning Attack in P2P file sharing systems”
 “Pollution in P2P File Sharing Systems”

CS5412 Spring 2012 (Cloud Computing: Birman)

44

