CS 5220: Parallel Graph Algorithms

David Bindel
2017-11-14
Mathematically: $G = (V, E)$ where $E \subseteq V \times V$

- Convention: $|V| = n$ and $|E| = m$
- May be directed or undirected
- May have weights $w_V : V \rightarrow \mathbb{R}$ or $w_E : E \rightarrow \mathbb{R}$
- May have other node or edge attributes as well
- Path is $[\{(u_i, u_{i+1})\}]_{i=1}^{\ell} \in E^*$, sum of weights is length
- Diameter is max shortest path length between any $s, t \in V$

Generalizations:

- Hypergraph (edges in $V^d$)
- Multigraph (multiple copies of edges)
Types of graphs
Many possible structures:

- Lines and trees
- Completely regular grids
- Planar graphs (no edges need cross)
- Low-dimensional Euclidean
- Power law graphs
- ...

Algorithms are not one-size-fits-all!
## Ends of a spectrum

<table>
<thead>
<tr>
<th></th>
<th>Planar</th>
<th>Power law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex degree</td>
<td>Uniformly small</td>
<td>$P(\text{deg} = k) \sim k^{-\gamma}$</td>
</tr>
<tr>
<td>Radius</td>
<td>$\Omega(\sqrt{n})$</td>
<td>Small</td>
</tr>
<tr>
<td>Edge separators</td>
<td>$O(\sqrt{n})$</td>
<td>nothing small</td>
</tr>
<tr>
<td>Linear solve</td>
<td>Direct OK</td>
<td>Iterative</td>
</tr>
<tr>
<td>Prototypical apps</td>
<td>PDEs</td>
<td>Social networks</td>
</tr>
</tbody>
</table>

Calls for different methods!
Applications: Routing and shortest paths
Applications: Traversal, ranking, clustering

- Web crawl / traversal
- PageRank, HITS
- Clustering similar documents
Applications: Sparse solvers

- Ordering for sparse factorization
- Partitioning
- Graph coarsening for AMG
- Other preconditioning ops...
Applications: Dimensionality reduction
Common building blocks

• Traversals
• Shortest paths
• Spanning tree
• Flow computations
• Topological sort
• Coloring
• ...

... and most of sparse linear algebra.
Over-simple models

Let $t_p = \text{idealized time on } p \text{ processors}$

- $t_1 = \text{work}$
- $t_\infty = \text{span (or depth, or critical path length)}$
Don’t bother with parallel DFS! Span is $\Omega(n)$.
Let’s spend a few minutes on more productive algorithms...
Simple idea: parallelize across frontiers

- Pro: Simple to think about
- Pro: Lots of parallelism with small radius?
- Con: What if frontiers are small?
Assuming a high-diameter graph:

- Form set $S$ with start + random nodes, $|S| = \Theta(\sqrt{n} \log n)$ — long shortest paths must go through $S$ with high prob
- Take $\sqrt{n}$ steps of BFS from each seed in $S$
- Form aux weighted graph for distances between seeds
- Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?
• Indicate frontier at each stage by $x$
• $x' = A^T x$ (multiply=select, add=min)
Key ideas:

- At some point, switch from top-down expanding frontier (“are you my child?”) to bottom-up checking for parents (“are you my parent?”)
- Use 2D blocking of adjacency
- Temporally partition work: vertex processed by at most one processor at a time, cycle processors (“systolic rotation”)

Together gives state-of-art performance. But...
Single-source shortest path

Classic algorithm: Dijkstra

- Dequeue closest point from frontier and expand frontier
- Update priority queue of distances (can be done in parallel)
- Repeat

Or run serial Dijkstra from different sources for APSP.
Alternate idea: label correcting

Initialize $d[u]$ with distance over-estimates to source

- $d[s] = 0$
- Repeatedly relax $d[u] := \min_{(v,u) \in E} d[v] + w(v, u)$

Converges (eventually) as long as all nodes visited repeatedly, updates are atomic. If serial sweep in a consistent order, call it Bellman-Ford.
Single-source shortest path: $\Delta$-stepping

Alternate approach: *hybrid* algorithm

- Process a “bucket” at a time
- Relax “light” edges (weight $< \Delta$) which might add to current bucket
- When bucket empties, relax “heavy” edges a la Dijkstra
Maximal independent sets

- \( S \subseteq V \) independent if none are neighbors.
- \textit{Maximal} if no others can be added and remain independent.
- \textit{Maximum} if no other maximal independent set is bigger.
- Maximum is NP-hard; maximal is easy in one processor
Simple greedy MIS

- Start with $S$ empty
- For each $v \in V$ *sequentially*, add $v$ to $S$ if possible.
Luby’s algorithm

- Init $S := \emptyset$
- Init candidates $C := V$
- While $C \neq \emptyset$
  - Label each $v$ with a random $r(v)$
  - For each $v \in C$ in parallel, if $r(v) < \min_{\mathcal{N}(v)} r(u)$
    - Move $v$ from $C$ to $S$
    - Remove neighbors from $v$ to $C$

Very probably finishes in $O(\log n)$ rounds.
Luby's algorithm (round 1)
Luby’s algorithm (round 1)
A fundamental problem

Many graph ops are

- Computationally cheap (per node or edge)
- Bad for locality

**Memory bandwidth** as a limiting factor.
Consider:

- 323 million in US (fits in 32-bit int)
- About 350 Facebook friends each
- Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...
Graph representation: Adjacency matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...
Graph representation: Coordinate

- Tuples: \((i, j, w_{ij})\)
- Pro: Easy to update
- Con: Slow for multiply
Graph representation: Adj list

- Linked lists of adjacent nodes
- Pro: Still easy to update
- Con: May cost more to store than coord?
Graph representations: CSR

Pro: traversal? Con: updates
Graph representations: implicit

- Idea: Never materialize a graph data structure
- Key: Provide traversal primitives
- Pro: Explicit rep’n sometimes overkill for one-off graphs?
- Con: Hard to use canned software (except NLA?)
Graph algorithms and linear algebra

- Looks like LA
  - Floyd-Warshall
  - Breadth-first search?
- Really is standard LA
  - Spectral partitioning and clustering
  - PageRank and some other centralities
  - “Laplacian Paradigm” (Spielman, Teng, others...)
Semirings have $\oplus$ and $\otimes$ s.t.

- Addition is commutative+associative with an identity 0
- Multiplication is associative with identity 1
- Both are distributive
- $a \otimes 0 = 0 \otimes a = 0$
- But no subtraction or division

Technically have modules (vs vector spaces) over semirings
Example: min-plus

- $\oplus = \text{min}$ and additive identity $0 \equiv \infty$
- $\otimes = +$ and multiplicative identity $1 \equiv 0$
- Useful for breadth-first search (on board)
Graph BLAS

http://www.graphblas.org/

- Provisional API as of late May 2017
- (Opaque) internal sparse matrix data structure
- Allows operations over misc semirings
Graph frameworks

Several to choose from!

- Pregel, Apache Giraph, Stanford GPS, ...
- GraphLab family
  - GraphLab: Original distributed memory
  - PowerGraph: Tuned toward “natural” (power law) networks
  - GraphChi: Chiuhua – shared memory vs distributed
- Outperformed by Galois, Ligra, BlockGRACE, others
- But... programming model was easy
Graph frameworks

- “Think as a vertex”
  - Each vertex updates locally
  - Exchanges messages with neighbors
  - Runtime actually schedules updates/messages
- Message sent at super-step $S$ arrives at $S + 1$
- Looks like BSP
“Scalability! But at what COST?”
McSherry, Isard, Murray
HotOS 15

You can have a second computer once you’ve shown you know how to use the first one.
– Paul Barham (quoted in intro to HotOS15 paper)

- COST = Configuration that Outperforms a Single Thread
- Observation: many systems have unbounded COST!