CS 5220: Load Balancing

David Bindel
2017-11-09
Inefficiencies in parallel code

Poor single processor performance

- Typically in the memory system
- Saw this in matrix multiply assignment
Inefficiencies in parallel code

Overhead for parallelism

- Thread creation, synchronization, communication
- Saw this in moshpit and shallow water assignments
Inefficiencies in parallel code

Load imbalance

- Different amounts of work across processors
- Different speeds / available resources
- Insufficient parallel work
- All this can change over phases
Where does the time go?

• Load balance looks like large sync cost
• ... maybe so does ordinary synchronization overhead!
• And spin-locks may make sync look like useful work
• And ordinary time sharing can confuse things more
• Can get some help from profiling tools
Many independent tasks

- Simplest strategy: partition by task index
 - What if task costs are inhomogeneous?
 - Worse: what if expensive tasks all land on one thread?

- Potential fixes
 - Many small tasks, randomly assigned to processors
 - Dynamic task assignment

- Issue: what about scheduling overhead?
Variations on a theme

How to avoid overhead? Chunks! (Think OpenMP loops)

- Small chunks: good balance, large overhead
- Large chunks: poor balance, low overhead

Variants:

- Fixed chunk size (requires good cost estimates)
- Guided self-scheduling (take \(\lceil (\text{tasks left})/p \rceil\) work)
- Tapering (size chunks based on variance)
- Weighted factoring (GSS with heterogeneity)
Static dependency and graph partitioning

- Graph $G = (V, E)$ with vertex and edge weights
- Goal: even partition with small edge cut (comm volume)
- Optimal partitioning is NP complete – use heuristics
- Tradeoff quality vs speed
- Good software exists (e.g. METIS)
The limits of graph partitioning

What if

• We don’t know task costs?
• We don’t know the communication/dependency pattern?
• These things change over time?

May want *dynamic* load balancing?

Even in regular case: not every problem looks like an undirected graph!
Dependency graphs

So far: Graphs for dependencies between unknowns.

For dependency between tasks or computations:

- Arrow from A to B means that B depends on A
- Result is a directed acyclic graph (DAG)
Example: Longest Common Substring

Goal: Longest sequence of (not necessarily contiguous) characters common to strings S and T.

Recursive formulation:

$$\text{LCS}[i, j] = \begin{cases}
\max(\text{LCS}[i-1, j], \text{LCS}[j, i-1]), & S[i] \neq T[j] \\
1 + \text{LCS}[i-1, j-1], & S[i] = T[j]
\end{cases}$$

Dynamic programming: Form a table of $\text{LCS}[i, j]$
Can process in any order consistent with dependencies. Limits to available parallel work early on or late!
Dependency graphs

Partition into coarser-grain tasks for locality?
Dependence between coarse tasks limits parallelism.
Recall LCS

\[
LCS[i, j] = \begin{cases}
\max(LCS[i - 1, j], LCS[j, i - 1]), & S[i] \neq T[j] \\
1 + LCS[i - 1, j - 1], & S[i] = T[j]
\end{cases}
\]

Two approaches to LCS:

- Solve subproblems from bottom up
- Solve from top down and memoize common subproblems

Parallel question: shared memoization (and synchronize) or independent memoization (and redundant computation)?
Load balancing and task-based parallelism

- Task DAG captures data dependencies
- May be known at outset or dynamically generated
- Topological sort reveals parallelism opportunities
Basic parameters

- Task costs
 - Do all tasks have equal costs?
 - Costs known statically, at creation, at completion?

- Task dependencies
 - Can tasks be run in any order?
 - If not, when are dependencies known?

- Locality
 - Should tasks be co-located to reduce communication?
 - When is this information known?
Task costs

- Easy: equal unit cost tasks (branch-free loops)
- Harder: different, known times (sparse MVM)
- Hardest: costs unknown until completed (search)
Dependencies

Easy: dependency-free loop (Jacobi sweep)

Harder: tasks have predictable structure (some DAG)

Hardest: structure is dynamic (search, sparse LU)
When do you communicate?

- Easy: Only at start/end (embarrassingly parallel)
- Harder: In a predictable pattern (elliptic PDE solver)
- Hardest: Unpredictable (discrete event simulation)
How much we can do depends on cost, dependency, locality

- **Static scheduling**
 - Everything known in advance
 - Can schedule offline (e.g. graph partitioning)
 - Example: Shallow water solver

- **Semi-static scheduling**
 - Everything known at start of step (for example)
 - Can use offline ideas (e.g. Kernighan-Lin refinement)
 - Example: Particle-based methods

- **Dynamic scheduling**
 - Don’t know what we’re doing until we’ve started
 - Have to use online algorithms
 - Example: most search problems
Search problems

- Different set of strategies from physics sims!
- Usually require dynamic load balance
- Example:
 - Optimal VLSI layout
 - Robot motion planning
 - Game playing
 - Speech processing
 - Reconstructing phylogeny
 - ...

Example: Tree search

- Tree unfolds dynamically during search
- May be common problems on different paths (graph)
- Graph may or may not be explicit in advance
Search algorithms

Generic search:

Put root in stack/queue
while stack/queue has work
 remove node n from queue
 if n satisfies goal, return
 mark n as searched
 add viable unsearched children of n to stack/queue
(Can branch-and-bound)

Variants: DFS (stack), BFS (queue), A* (priority queue), ...
Simple parallel search

Static load balancing:

• Each new task on an idle processor until all have a subtree
• Not very effective without work estimates for subtrees!
• How can we do better?
Centralized scheduling

Idea: obvious parallelization of standard search

- Locks on shared data structure (stack, queue, etc)
- Or might be a manager task
Centralized scheduling

Teaser: What could go wrong with this parallel BFS?

Put root in queue
fork
 obtain queue lock
while queue has work
 remove node \(n \) from queue
 release queue lock
 process \(n \), mark as searched
 obtain queue lock
 enqueue unsearched children of \(n \)
 release queue lock
join
Centralized scheduling

Teaser: What could go wrong with this parallel BFS?

Put root in queue; \texttt{workers active = 0}
fork
 obtain queue lock
 while queue has work \texttt{or workers active > 0}
 remove node n from queue; \texttt{workers active ++}
 release queue lock
process n, mark as searched
obtain queue lock
enqueue unsearched children of n; \texttt{workers active --}
release queue lock
join
Centralized task queue

- Called *self-scheduling* when applied to loops
 - Tasks might be range of loop indices
 - Assume independent iterations
 - Loop body has unpredictable time (or do it statically)

- Pro: dynamic, online scheduling
- Con: centralized, so doesn’t scale
- Con: high overhead if tasks are small
Beyond centralized task queue

Worker 0
Worker 1
Worker 2
Worker 3

Yoink!
Next?
Beyond centralized task queue

Basic *distributed* task queue idea:

- Each processor works on part of a tree
- When done, get work from a peer
- *Or* if busy, push work to a peer
- Requires asynch communication

Also goes by work stealing, work crews...

Implemented in OpenMP, Cilk, X10, CUDA, QUARK, SMPss, ...
Picking a donor

Could use:

• Asynchronous round-robin
• Global round-robin (keep current donor pointer at proc 0)
• Randomized – optimal with high probability!
Diffusion-based balancing

• Problem with random polling: communication cost!
 • But not all connections are equal
 • Idea: prefer to poll more local neighbors

• Average out load with neighbors \Rightarrow diffusion!
Mixed parallelism

- Today: mostly coarse-grain *task* parallelism
- Other times: fine-grain *data* parallelism
- Why not do both? *Switched* parallelism.
• Lots of ideas, not one size fits all!
• Axes: task size, task dependence, communication
• Dynamic tree search is a particularly hard case!
• Fundamental tradeoffs
 • Overdecompose (load balance) vs keep tasks big (overhead, locality)
 • Steal work globally (balance) vs steal from neighbors (comm. overhead)
• Sometimes hard to know when code should stop!