Reminder: Conjugate Gradients

What if we only know how to multiply by A? About all you can do is keep multiplying!

$$K_k(A, b) = \text{span} \left\{ b, Ab, A^2 b, \ldots, A^{k-1} b \right\}.$$

Gives surprisingly useful information!

If A is symmetric and positive definite, $x = A^{-1} b$ minimizes

$$\phi(x) = \frac{1}{2} x^T A x - x^T b$$

$$\nabla \phi(x) = A x - b.$$

Idea: Minimize $\phi(x)$ over $K_k(A, b)$. Basis for the method of conjugate gradients
Convergence of CG

• KSPs are *not* stationary (no constant fixed-point iteration)
• Convergence is surprisingly subtle!
• CG convergence upper bound via *condition number*
 • Large condition number iff form $\phi(x)$ has long narrow bowl
 • Usually happens for Poisson and related problems
• *Preconditioned* problem $M^{-1}Ax = M^{-1}b$ converges faster?
• Whence M?
 • From a stationary method?
 • From a simpler/coarser discretization?
 • From approximate factorization?
Compute \(r^{(0)} = b - Ax \)
for \(i = 1, 2, \ldots \)

\[
\text{solve } Mz^{(i-1)} = r^{(i-1)}
\]

\[
\rho_{i-1} = (r^{(i-1)})^T z^{(i-1)}
\]

if \(i == 1 \)

\[
p^{(1)} = z^{(0)}
\]
else

\[
\beta_{i-1} = \rho_{i-1}/\rho_{i-2}
\]

\[
p^{(i)} = z^{(i-1)} + \beta_{i-1} p^{(i-1)}
\]
endif

\[
q^{(i)} = Ap^{(i)}
\]

\[
\alpha_i = \rho_{i-1}/(p^{(i)})^T q^{(i)}
\]

\[
x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)}
\]

\[
r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)}
\]
end

Parallel work:

- Solve with \(M \)
- Product with \(A \)
- Dot products
- Axpys

Overlap comm/comp.
PCG bottlenecks

Key: fast solve with M, product with A

- Some preconditioners parallelize better! (Jacobi vs Gauss-Seidel)
- Balance speed with performance.
 - Speed for set up of M?
 - Speed to apply M after setup?
- Cheaper to do two multiplies/solves at once...
 - Can’t exploit in obvious way — lose stability
 - Variants allow multiple products — Hoemmen’s thesis
- Lots of fiddling possible with M; what about matvec with A?
Consider 2D Poisson with 5-point stencil on an $n \times n$ mesh.

- Information moves one grid cell per matvec.
- Cost per matvec is $O(n^2)$.
- At least $O(n^3)$ work to get information across mesh!
CG convergence: a counting approach

- Time to converge \geq time to propagate info across mesh
- For a 2D mesh: $O(n)$ matvecs, $O(n^3) = O(N^{3/2})$ cost
- For a 3D mesh: $O(n)$ matvecs, $O(n^4) = O(N^{4/3})$ cost
- “Long” meshes yield slow convergence
- 3D beats 2D because everything is closer!
 - Advice: sparse direct for 2D, CG for 3D.
 - Better advice: use a preconditioner!
Define the condition number for $\kappa(L)$ s.p.d:

\[
\kappa(L) = \frac{\lambda_{\text{max}}(L)}{\lambda_{\text{min}}(L)}
\]

Describes how elongated the level surfaces of ϕ are.

- For Poisson, $\kappa(L) = O(h^{-2})$
- CG steps to reduce error by $1/2 = O(\sqrt{\kappa}) = O(h^{-1})$.

Similar back-of-the-envelope estimates for some other PDEs. But these are not always that useful... can be pessimistic if there are only a few extreme eigenvalues.
CG convergence: a frequency-domain approach

FFT of e_0

FFT of e_{10}

Error e_k after k steps of CG gets smoother!
Choosing preconditioners for 2D Poisson

- CG already handles high-frequency error
- Want something to deal with lower frequency!
- Jacobi useless
 - Doesn’t even change Krylov subspace!
- Better idea: block Jacobi?
 - Q: How should things split up?
 - A: Minimize blocks across domain.
 - Compatible with minimizing communication!
Restrictive Additive Schwartz (RAS)

- Get **ghost cell data**
- Solve *everything* local (including neighbor data)
- Update **local values** for next step
- Default strategy in PETSc
Multilevel Ideas

• RAS propagates information by one processor per step
• For scalability, still need to get around this!
• Basic idea: use multiple grids
 • Fine grid gives lots of work, kills high-freq error
 • Coarse grid cheaply gets info across mesh, kills low freq

More on this another time.
Two ways to get better performance from CG:

1. Better preconditioner
 • Improves asymptotic complexity?
 • ... but application dependent

2. Tuned implementation
 • Improves constant in big-O
 • ... but application independent?

Benchmark idea (?): no preconditioner, just tune.
Tuning PCG

Compute \(r^{(0)} = b - Ax \)

for \(i = 1, 2, \ldots \)

solve \(Mz^{(i-1)} = r^{(i-1)} \)

\(\rho_{i-1} = (r^{(i-1)})^T z^{(i-1)} \)

if \(i == 1 \)

\(p^{(1)} = z^{(0)} \)

else

\(\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \)

\(p^{(i)} = z^{(i-1)} + \beta_{i-1} p^{(i-1)} \)

endif

\(q^{(i)} = Ap^{(i)} \)

\(\alpha_i = \rho_{i-1}/(p^{(i)})^T q^{(i)} \)

\(x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \)

\(r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \)

end

- Most work in \(A, M \)
- Vector ops synchronize
- Overlap comm, comp?
Tuning PCG

Compute \(r^{(0)} = b - Ax \)
\[p_{-1} = 0; \beta_{-1} = 0; \alpha_{-1} = 0 \]
\[s = L^{-1}r^{(0)} \]
\[\rho_0 = s^T s \]
for \(i = 0, 1, 2, \ldots \)
\[w_i = L^{-T} s \]
\[p_i = w_i + \beta_{i-1} p_{i-1} \]
\[q_i = Ap_i \]
\[\gamma = p_i^T q_i \]
\[x_i = x_{i-1} + \alpha_{i-1} p_{i-1} \]
\[\alpha_i = \rho_i / \gamma_i \]
\[r_{i+1} = r_i - \alpha q_i \]
\[s = L^{-1}r_{i+1} \]
\[\rho_{i+1} = s^T s \]
Check convergence (\(\|r_{i+1}\| \))

Split \(z = M^{-1}r \) into \(s, w_i \)

Overlap

- \(p_i^T q_i \) with \(x \) update
- \(s^T s \) with \(w_i \) eval
- Computing \(p_i, q_i, \gamma \)
- Pipeline \(r_{i+1}, s \)?
- Pipeline \(p_i, w_i \)?

Parallel Numerical LA,
Demmel, Heath, van der Vorst
Can also tune

- Preconditioner solve (hooray!)
- Matrix multiply
 - Represented implicitly (regular grids)
 - Or explicitly (e.g. compressed sparse column)

Or further rearrange algorithm (Hoemmen, Demmel).
Tuning sparse matvec

- Sparse matrix blocking and reordering (Im, Vuduc, Yelick)
 - Packages: Sparsity (Im), OSKI (Vuduc)
 - Available as PETSc extension
- Optimizing stencil operations (Datta)
for i = 1:n
 y[i] = 0;
 for jj = ptr[i] to ptr[i+1]-1
 y[i] += A[jj]*x[col[jj]];
 end
end

Problem: y[i] += A[jj]*x[col[jj]];
Memory traffic in CSR multiply

Memory access patterns:

- Elements of y accessed sequentially
- Elements of A accessed sequentially
- Access to x are all over!

Can help by switching to block CSR.
Switching to single precision, short indices can help memory traffic, too!
Parallelizing matvec

- Each processor gets a piece
- Many partitioning strategies
- Idea: re-order so one of these strategies is “good”
Reordering for matvec

SpMV performance goals:

• Balance load?
• Balance storage?
• Minimize communication?
• Good cache re-use?

Also reorder for

• Stability of Gauss elimination,
• Fill reduction in Gaussian elimination,
• Improved performance of preconditioners...
Reminder: Sparsity and partitioning

Matrix

Graph

Want to partition sparse graphs so that

• Subgraphs are same size (load balance)
• Cut size is minimal (minimize communication)

Matrices that are “almost” diagonal are good?
Reordering for bandedness

Natural order

RCM reordering

Reverse Cuthill-McKee

- Select “peripheral” vertex \(v \)
- Order according to breadth first search from \(v \)
- Reverse ordering
From iterative to direct

- RCM ordering is great for SpMV
- But isn’t narrow banding good for solvers, too?
 - LU takes $O(nb^2)$ where b is bandwidth.
 - Great if there’s an ordering where b is small!
Skylines and profiles

- Profile solvers generalize band solvers
- Skyline storage for storing lower triangle: for each row i,
 - Start and end of storage for nonzeros in row.
 - Contiguous nonzero list up to main diagonal.
- In each column, first nonzero defines a profile.
- All fill-in confined to profile.
- RCM is again a good ordering.
Beyond bandedness

• Bandedness only takes us so far
 • Minimum bandwidth for 2D model problem? 3D?
 • Skyline only gets us so much farther
• But more general solvers have similar structure
 • Ordering (minimize fill)
 • Symbolic factorization (where will fill be?)
 • Numerical factorization (pivoting?)
 • ... and triangular solves
Reminder: Matrices to graphs

• $A_{ij} \neq 0$ means there is an edge between i and j
• Ignore self-loops and weights for the moment
• Symmetric matrices correspond to undirected graphs
Troublesome Trees

One step of Gaussian elimination *completely* fills this matrix!
Full Gaussian elimination generates no fill in this matrix!
Consider first steps of GE

1. $A(2:\text{end},1) = A(2:\text{end},1)/A(1,1)$;
2. $A(2:\text{end},2:\text{end}) = A(2:\text{end},2:\text{end}) - ...$
3. $A(2:\text{end},1)*A(1,2:\text{end})$;

Nonzero in the outer product at (i,j) if $A(i,1)$ and $A(j,1)$ both nonzero — that is, if i and j are both connected to 1.

General: Eliminate variable, connect remaining neighbors.
Order leaves to root \Rightarrow
on eliminating i, parent of i is only remaining neighbor.
Nested Dissection

- Idea: Think of block tree structures.
- Eliminate block trees from bottom up.
- Can recursively partition at leaves.
- Rough cost estimate: how much just to factor dense Schur complements associated with separators?
- Notice graph partitioning appears again!
 - And again we want small separators!
Model problem: Laplacian with 5 point stencil (for 2D)

- ND gives optimal complexity in exact arithmetic (George 73, Hoffman/Martin/Rose)
- 2D: $O(N \log N)$ memory, $O(N^{3/2})$ flops
- 3D: $O(N^{4/3})$ memory, $O(N^2)$ flops
Minimum Degree

- Locally greedy strategy
 - Want to minimize upper bound on fill-in
 - Fill $\leq \text{(degree in remaining graph)}^2$
- At each step
 - Eliminate vertex with smallest degree
 - Update degrees of neighbors
- Problem: Expensive to implement!
 - But better variants via *quotient graphs*
 - Variants often used in practice
• Variables (columns) are nodes in trees
• j a descendant of k if eliminating j updates k
• Can eliminate disjoint subtrees in parallel!
Basic idea: exploit “supernodal” (dense) structures in factor

- e.g. arising from elimination of separator Schur complements in ND
- Other alternatives exist (multifrontal solvers)
Pivoting is painful, particularly in distributed memory!

- Cholesky — no need to pivot!
- Threshold pivoting — pivot when things look dangerous
- Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals
Can improve solution by *iterative refinement*:

\[
PAQ \approx LU \\
x_0 \approx QU^{-1}L^{-1}Pb \\
r_0 = b - Ax_0 \\
x_1 \approx x_0 + QU^{-1}L^{-1}Pr_0
\]

Looks like approximate Newton on \(F(x) = Ax - b = 0 \).
This is just a stationary iterative method!
Nonstationary methods work, too.
Variations on a theme

If we’re willing to sacrifice some on factorization,

• Single precision factor + double precision refinement?
• Sloppy factorizations (marginal stability) + refinement?
• Modify m small pivots as they’re encountered (low rank updates), fix with m steps of a Krylov solver?