CS 5220: Optimization basics

David Bindel
2017-08-31
Modern CPUs are
- Wide: start / retire multiple instructions per cycle
- Pipelined: overlap instruction executions
- Out-of-order: dynamically schedule instructions

- Lots of opportunities for instruction-level parallelism (ILP)
- Complicated! Want the compiler to handle the details
- Implication: we should give the compiler
 - Good instruction mixes
 - Independent operations
 - Vectorizable operations
Reminder: Memory systems

- Memory access are expensive!
- Flop time \(\ll\) bandwidth\(^{-1}\) \(\ll\) latency
- Caches provide intermediate cost/capacity points
- Cache benefits from
 - Spatial locality (regular local access)
 - Temporal locality (small working sets)
Goal: (Trans)portable performance

- Attention to detail has orders-of-magnitude impact
- Different systems = different micro-architectures, caches
- Want (trans)portable performance across HW
- Need *principles* for high-perf code along with tricks
Basic principles

- Think before you write
- Time before you tune
- Stand on the shoulders of giants
- Help your tools help you
- Tune your data structures
Think before you write
We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.

– Don Knuth
Wrong reading: “Performance doesn’t matter”

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.

– Don Knuth
What he actually said (with my emphasis)

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.

– Don Knuth

- Don’t forget the big efficiencies!
- Don’t forget the 3%!
- Your code is not premature forever!
Don’t sweat the small stuff

- Speed-up from tuning ϵ of code $< (1 - \epsilon)^{-1} \approx 1 + \epsilon$
- OK to write high-level stuff in Matlab or Python
- OK if configuration file reader is un-tuned
- OK if $O(n^2)$ prelude to $O(n^3)$ algorithm is not hyper-tuned?
Lay-of-the-land thinking

```c
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
        for (k = 0; k < n; ++k)
            C[i+j*n] += A[i+k*n] * B[k+j*n];
```

- What are the “big computations” in my code?
- What are the natural algorithmic variants?
 - Vary loop orders? Different interpretations!
 - Lower complexity algorithm (Strassen?)
- Should I rule out some options in advance?
- How can I code so it is easy to experiment?
How big is n?

Typical analysis: time is $O(f(n))$

- Meaning: $\exists C, N : \forall n \geq N, T_n \leq Cf(n)$.
- Says *nothing* about constant factors: $O(10n) = O(n)$
- Ignores lower order term: $O(n^3 + 1000n^2) = O(n^3)$
- Behavior at small n may not match behavior at large n!

Beware asymptotic complexity arguments about small-n codes!
bool any_negative1(int* x, int n) {
 bool result = false;
 for (int i = 0; i < n; ++i)
 result = (result || x[i] < 0);
 return result;
}

bool any_negative2(int* x, int n) {
 for (int i = 0; i < n; ++i)
 if (x[i] < 0)
 return false;
 return true;
}
Fast enough, right enough \implies Approximate when you can get away with it.
Do more with less (data)

Want lots of work relative to data loads:

- Keep data compact to fit in cache
- Use short data types for better vectorization
- But be aware of tradeoffs!
 - For integers: may want 64-bit ints sometimes!
 - For floating-point: will discuss in detail in other lectures
Example: Explicit PDE time stepper on 256^2 mesh

- 0.25 MB per frame (three fit in L3 cache)
- Constant work per element (a few flops)
- Time to write to disk ≈ 5 ms

If I write once every 100 frames, how much time is I/O?
Time before you tune
Hot spots and bottlenecks

- Often a little bit of code takes most of the time
- Usually called a “hot spot” or bottleneck
- Goal: Find and eliminate
 - Cute coinage: “de-slugging”
Practical timing

Need to worry about:

- System timer resolutions
- Wall-clock time vs CPU time
- Size of data collected vs how informative it is
- Cross-interference with other tasks
- Cache warm-start on repeated timings
- Overlooked issues from too-small timings
Manual instrumentation

Basic picture:

- Identify stretch of code to be timed
- Run it several times with “characteristic” data
- Accumulate the total time spent

Caveats: Effects from repetition, “characteristic” data
Manual instrumentation

- Hard to get *portable* high-resolution wall-clock time!
- Solution: `omp_get_wtime()`
- Requires OpenMP support (still not CLang)
Types of profiling tools

- Sampling vs instrumenting
 - Sampling: Interrupt every t_{profile} cycles
 - Instrumenting: Rewrite code to insert timers
 - Instrument at binary or source level

- Function level or line-by-line
 - Function: Inlining can cause mis-attribution
 - Line-by-line: Usually requires debugging symbols (-g)

- Context information?
 - Distinguish full call stack or not?

- Time full run, or just part?
Hardware counters

- Counters track cache misses, instruction counts, etc
- Present on most modern chips
- May require significant permissions to access...
Automated analysis tools

• Examples: MAQAO and IACA
• Symbolic execution of *model* of a code segment
• Usually only practical for short segments
• But can give detailed feedback on (assembly) quality
Shoulders of giants
What makes a good kernel?

Computational kernels are

- Small and simple to describe
- General building blocks (amortize tuning work)
- Ideally high arithmetic intensity
 - Arithmetic intensity = flops/byte
 - Amortizes memory costs
Basic Linear Algebra Subroutines

- Level 1: $O(n)$ work on $O(n)$ data
- Level 2: $O(n^2)$ work on $O(n^2)$ data
- Level 3: $O(n^3)$ work on $O(n^2)$ data

Level 3 BLAS are key for high-perf transportable LA.
Other common kernels

- Apply sparse matrix (or sparse matrix powers)
- Compute an FFT
- Sort a list
Kernel trade-offs

- Critical to get *properly tuned* kernels
 - Kernel *interface* is consistent across HW types
 - Kernel *implementation* varies according to arch details
- General kernels *may* leave performance on the table
 - Ex: General matrix-matrix multiply for structured matrices
- Overheads may be an issue for small n cases
 - Ex: Usefulness of batched BLAS extensions
- But: Ideally, someone else writes the kernel!
 - Or it may be automatically tuned
Help your tools help you
What can your compiler do for you?

In decreasing order of effectiveness:

- Local optimization
 - Especially restricted to a “basic block”
 - More generally, in “simple” functions
- Loop optimizations
- Global (cross-function) optimizations
Local optimizations

- Register allocation: compiler > human
- Instruction scheduling: compiler > human
- Branch joins and jump elim: compiler > human?
- Constant folding and propagation: humans OK
- Common subexpression elimination: humans OK
- Algebraic reductions: humans definitely help
Mostly leave these to modern compilers

- Loop invariant code motion
- Loop unrolling
- Loop fusion
- Software pipelining
- Vectorization
- Induction variable substitution
Obstacles for the compiler

- Long dependency chains
- Excessive branching
- Pointer aliasing
- Complex loop logic
- Cross-module optimization
- Function pointers and virtual functions
- Unexpected FP costs
- Missed algebraic reductions
- Lack of instruction diversity

Let's look at a few...
Ex: Long dependency chains

Sometimes these can be decoupled (e.g. reduction loops)

```
// Version 0
float s = 0;
for (int i = 0; i < n; ++i)
    s += x[i];
```

Apparent linear dependency chain. Compilers might handle this, but let’s try ourselves...
Ex: Long dependency chains

Key: Break up chains to expose parallel opportunities

```c
// Version 1
float s[4] = {0, 0, 0, 0};
int i;

// Sum start of list in four independent sub-sums
for (i = 0; i < n-3; i += 4)
    for (int j = 0; j < 4; ++j)
        s[j] += x[i+j];

// Combine sub-sums and handle trailing elements
float s = (s[0]+s[1]) + (s[2]+s[3]);
for (; i < n; ++i)
    s += x[i];
```
Why can this not vectorize easily?

```c
void add_vecs(int n, double* result, double* a, double* b) {
    for (int i = 0; i < n; ++i)
        result[i] = a[i] + b[i];
}
```

Q: What if `result` overlaps `a` or `b`?
C99: Use `restrict` keyword

```c
void add_vecs(int n, double* restrict result,
                double* restrict a, double* restrict b);
```

Implicit promise: these point to different things in memory.

Fortran forbids aliasing — part of why naive Fortran speed beats naive C speed!
Compiler must assume arbitrary wackiness from “black box” function calls

```c
double foo(double* restrict x)
{
    double y = *x; // Load x once
    bar(); // Assume bar is a 'black box' fn
    y += *x; // Must reload x
    return y;
}
```
Ex: Floating point issues

Several possible optimizations available:

- Use different precisions
- Use more/less accurate special function routines
- Underflow is flush-to-zero or gradual

Problem: This changes semantics!

- A daring compiler will pretend floats are reals and hope
- This will break some of my codes!
- Human intervention is indicated
Optimization flags

- **-O[0123]** (no optimization – aggressive optimization)
 - `-O2` is usually the default
 - `-O3` is useful, but might break FP codes (for example)

- Architecture targets
 - Usually a “native” mode targets current architecture
 - Not always the right choice (e.g. consider Totient head/compute)

- Specialized optimization flags
 - Turn on/off specific optimization features
 - Often the basic `-Ox` has reasonable defaults
Auto-vectorization and compiler reports

- Good compilers try to vectorize for you
 - Intel is pretty good at this
 - GCC / CLang are OK, not as strong
- Can get reports about what prevents vectorization
 - Not necessarily by default!
 - Helps a lot for tuning
Profile-guided optimization

Basic workflow:

- Compile code with optimizations
- Run in a profiler
- Compile again, provide profiler results

Helps compiler optimize branches based on observations.
Data layout matters
“Speed-of-light” analysis

For compulsory misses to load cache:

\[T_{\text{data}} (s) \geq \frac{\text{data required (bytes)}}{\text{peak BW (bytes/s)}} \]

Possible optimizations:

- Shrink working sets to fit in cache (pay this once)
- Use simple unit-stride access patterns

Reality is generally more complicated...
When and how to allocate

Why is this an $O(n^2)$ loop?

```matlab
x = []; for i = 1:n x(i) = i; end
```
When and how to allocate

- Access is not the only cost!
 - Allocation / de-allocation also costs something
 - So does garbage collection (where supported)
 - Beware hidden allocation costs (e.g. on resize)
 - Often bites naive library users

- Two thoughts to consider
 - Pre-allocation (avoid repeated alloc/free)
 - Lazy allocation (if alloc will often not be needed)
Desiderata:

• Compact (fit lots into cache)
• Traverse with simple access patterns
• Avoids pointer chasing
Multi-dimensional arrays

Two standard formats:

- Col-major (Fortran): Each column stored consecutively
- Row-major (C/C++): Each row stored consecutively

Ideally, traverse arrays with unit stride! Layout affects choice.

More sophisticated multi-dim array layouts may be useful...
Blocking / tiling

Classic example: Matrix multiply

- Load $b \times b$ block of A
- Load $b \times b$ block of B
- Compute product of blocks
- Accumulate into $b \times b$ block of C

Have $O(b^3)$ work for $O(b^2)$ memory references!
• Vector load/stores faster if *aligned* (start at memory addresses that are multiples of 64 or 256)
• Can ask for aligned blocks of memory from allocator
• Then want aligned offsets into aligned blocks
• Have to help compiler recognize aligned pointers!
Data alignment and cache contention

Issue: What if strided access causes conflict misses?
 • Example: Walk across row of col-major matrix
 • Example: Parallel arrays of large-power-of-2 size

Not the most common problem, but one to watch for.
Structure layouts

- Want b-byte type to start on b-byte memory boundary.
- Compiler may pad structures to enforce this.
- Advice: arrange structure fields in decreasing size order.
// Struct of Arrays (parallel arrays)
typedef struct {
 double* x;
 double* y;
} aos_points_t;

// Array of Structs
typedef struct {
 double x;
 double y;
} point_t;
typedef point_t* soa_points_t;
SoA vs AoS

- SoA: Structure of Arrays
 - Friendly to vectorization
 - Poor locality to access all of one item
 - Awkward for lots of libraries and programs

- AoS: Array of Structs
 - Naturally supported default
 - Not very SIMD-friendly

- Possible to combine the two...
Copy between formats to accelerate computations, e.g.

- Copy piece of AoS to SoA format
- Perform vector operations on SoA data
- Copy back out

Performance gains > copy costs? Plays great with tiling!
For the control freak

Can get (some) programmer control over

- Pre-fetching
- Uncached memory stores

But usually best left to compiler / HW.
• This was a lot of stuff in a short time!
• Best way to digest it is try some things out
• First project: tune matrix-matrix multiply
• Due Sep 12 (about two weeks)
 • Gives enough time to play with some ideas
 • Not enough time for obsessive tuning to ruin lives
• We encourage partners – try to cross disciplines!
Recommended strategy

- Start with a small “kernel” multiply
 - Maybe odd sizes, strange layouts – just go fast!
 - Intel compiler may do fine with simple-looking code
 - Deserves its own timing rig

- Use blocking to build up larger multiplies

- Will have to do something reasonable with edge blocks...
References

- My serial tuning notes.
- Ulrich Drepper, *What Every Programmer Should Know About Memory*
- Intel Optimization Manual
- Hager and Wellein, *Intro to HPC for Scientists and Engineers*
- Goedecker and Hoisie, *Performance Optimization of Numerically Intensive Codes*
- Agner Fog’s Software Optimization Manuals