CS 5220: Performance basics

David Bindel
2017-08-24
• The goal is right enough, fast enough — not flop/s.
• Performance is not all that matters.
 • Portability, readability, debuggability matter too!
 • Want to make intelligent trade-offs.
• The road to good performance starts with a single core.
 • Even single-core performance is hard.
 • Helps to build on well-engineered libraries.
• Parallel efficiency is hard!
 • \(p \) processors \(\neq \) speedup of \(p \)
 • Different algorithms parallelize differently.
 • Speed vs a naive, untuned serial algorithm is cheating!
The Cost of Computing

Consider a simple serial code:

```c
// Accumulate C += A*B for n-by-n matrices
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
        for (k = 0; k < n; ++k)
            C[i+j*n] += A[i+k*n] * B[k+j*n];
```

Simplest model:

1. Dominant cost is $2n^3$ flops (adds and multiplies)
2. One flop per clock cycle
3. Expected time is

 $$\text{Time (s)} \approx \frac{2n^3 \text{ flops}}{2.4 \cdot 10^9 \text{ cycle/s} \times 1 \text{ flop/cycle}}$$

Problem: Model assumptions are wrong!
Dominant cost is $2n^3$ flops (adds and multiplies)?

- Dominant cost is often memory traffic!
- Special case of a *communication cost*
- Two pieces to cost of fetching data

Latency Time from operation start to first result (s)

Bandwidth Rate at which data arrives (bytes/s)

- Usually latency \gg bandwidth$^{-1} \gg$ time per flop
- Latency to L3 cache is 10s of ns, DRAM is 3–4× slower
- Partial solution: caches (to discuss next time)

See: Latency numbers every programmer should know
The Cost of Computing

One flop per clock cycle? For cluster CPU cores:

\[
\frac{2 \text{flops}}{\text{FMA}} \times \frac{4 \text{FMA}}{\text{vector FMA}} \times \frac{2 \text{vector FMA}}{\text{cycle}} = 16 \frac{\text{flops}}{\text{cycle}}
\]

Theoretical peak (one core) is

\[
\text{Time (s)} \approx \frac{2n^3 \text{flops}}{2.4 \cdot 10^9 \text{cycle/s} \times 16 \text{flop/cycle}}
\]

Makes DRAM latency look even worse! DRAM latency \(\sim 100 \) ns:

\[
100 \text{ ns} \times \frac{2.4 \text{cycle}}{\text{ns}} \times 16 \frac{\text{flops}}{\text{cycle}} = 3840 \text{ flops}
\]
Theoretical peak for matrix-matrix product (one core) is

\[\text{Time (s)} \approx \frac{2n^3 \text{ flops}}{2.4 \cdot 10^9 \text{ cycle/s} \times 16 \text{ flop/cycle}} \]

For 12 core node, theoretical peak is 12× faster.

- But lose orders of magnitude if too many memory refs
- And getting full vectorization is also not easy!
- We’ll talk more about (single-core) arch next week
Sanity check: What is the theoretical peak of a Xeon Phi 5110P accelerator?

Wikipedia to the rescue!
What to take away from this performance modeling example?

- Start with a simple model
 - Simplest model is asymptotic complexity (e.g. $O(n^3)$ flops)
 - Counting every detail just complicates life
 - But we want enough detail to predict something

- Watch out for hidden costs
 - Flops are not the only cost!
 - Memory/communication costs are often killers
 - Integer computation may play a role as well

- Account for instruction-level parallelism, too!

And we haven’t even talked about more than one core yet!
The Cost of (Parallel) Computing

Simple model:

- Serial task takes time T (or $T(n)$)
- Deploy p processors
- Parallel time is $T(n)/p$

... and you should be suspicious by now!
Why is parallel time not T/p?

- **Overheads**: Communication, synchronization, extra computation and memory overheads
- **Intrinsically serial** work
- **Idle time** due to synchronization
- **Contention** for resources

We will talk about all of these in more detail.
Quantifying Parallel Performance

- Starting point: good serial performance
- Scaling study: compare parallel to serial time as a function of number of processors (p)

 \[
 \text{Speedup} = \frac{\text{Serial time}}{\text{Parallel time}}
 \]

 \[
 \text{Efficiency} = \frac{\text{Speedup}}{p}
 \]

- Barriers to perfect speedup
 - Serial work (Amdahl’s law)
 - Parallel overheads (communication, synchronization)
Amdahl’s Law

Parallel scaling study where some serial code remains:

\[p = \text{number of processors} \]
\[s = \text{fraction of work that is serial} \]
\[t_s = \text{serial time} \]
\[t_p = \text{parallel time} \geq st_s + (1 - s)t_s/p \]

Amdahl’s law:

\[\text{Speedup} = \frac{t_s}{t_p} = \frac{1}{s + (1 - s)/p} > \frac{1}{s} \]

So 1% serial work \(\implies \text{max speedup} < 100\times \), regardless of \(p \).
Ahmdahl looks bad! But two types of scaling studies:

Strong scaling Fix problem size, vary p

Weak scaling Fix work per processor, vary p

For weak scaling, study *scaled speedup*

$$S(p) = \frac{T_{\text{serial}}(n(p))}{T_{\text{parallel}}(n(p), p)}$$

Gustafson’s Law:

$$S(p) \leq p - \alpha(p - 1)$$

where α is the fraction of work that is serial.
A task is “pleasingly parallel” (aka “embarrassingly parallel”) if it requires very little coordination, for example:

- Monte Carlo computations with many independent trials
- Big data computations mapping many data items independently

Result is “high-throughput” computing – easy to get impressive speedups! Says nothing about hard-to-parallelize tasks.
Main pain point: dependency between computations

1. \(a = f(x) \)
2. \(b = g(x) \)
3. \(c = h(a, b) \)

Compute \(a \) and \(b \) in parallel, but finish both before \(c \)!
Limits amount of parallel work available.

This is a true dependency (read-after-write). Also have false dependencies (write-after-read and write-after-write) that can be dealt with more easily.
Granularity

- Coordination is expensive — including parallel start/stop!
- Need to do enough work to amortize parallel costs
- Not enough to have parallel work, need big chunks!
- How big the chunks must be depends on the machine.
If your task is not pleasingly parallel, you ask:

- What is the best performance I reasonably expect?
- How do I get that performance?

Look at examples somewhat like yours – a parallel pattern – and maybe seek an informative benchmark. Better yet: reduce to a previously well-solved problem (build on tuned kernels).

NB: Easy to pick uninformative benchmarks and go astray.