14: Ethernet, Hubs, Bridges, Switches, Other Technologies used at the Link Layer, ARP

Last Modified: 4/9/2003 1:14:12 PM

Link Layer: Implementation
- Typically, implemented in "adapter"
 - e.g., PCMCIA card, Ethernet card
 - typically includes RAM, DSP chips, host bus interface, and link interface

Link Layer Services
- Framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - implement channel access if shared medium,
 - physical addresses used in frame headers to identify source, dest
 - different from IP address!
- Reliable delivery between two physically connected devices:
 - we learned how to do reliable delivery over an unreliable link
 - seldom used on low bit error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link Layer Services (more)
- Flow Control:
 - pacing between sender and receivers
- Error Detection:
 - errors caused by signal attenuation, noise
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- Error Correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission

LAN technologies
- Data link layer so far:
 - services, error detection/correction, multiple access
- Next: LAN technologies
 - Ethernet
 - hubs, bridges, switches
 - 802.11
 - PPP
 - ATM

Ethernet
- “dominant” LAN technology:
 - cheap $20 for 100Mbs!
 - first widely used LAN technology
 - Simpler, cheaper than token LANs and ATM
 - Kept up with speed race: 10, 100, 1000 Mbps

Metcalfe's Ethernet sketch
Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame:

- **Preamble:**
 - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - used to synchronize receiver, sender clock rates

Ethernet: uses CSMA/CD

A: sense channel, if idle:

```plaintext
then {
transmit and monitor the channel;
If detect another transmission
then {
  abort and send jam signal;
  update # collisions;
  delay as required by exponential backoff algorithm;
  goto A
}
else (done with the frame; set collisions to zero)
}
else (wait until ongoing transmission is over and goto A)
```

10Base2

- **10:** 10Mbps; **2:** under 200 meters max cable length
- thin coaxial cable in a bus topology
- Repeaters used to connect up to multiple segments
- Repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!

10BaseT and 100BaseT

- **10/100 Mbps rate; latter called "fast ethernet"
- **T** stands for Twisted Pair
- Hub to which nodes are connected by twisted pair, thus "star topology"
- **CSMA/CD implemented at hub**
10BaseT and 100BaseT (more)

- Max distance from node to Hub is 100 meters
- Hub can disconnect "jabbering adapter"
- Hub can gather monitoring information, statistics for display to LAN administrators

Gbit Ethernet

- use standard Ethernet frame format
- allows for point-to-point links and shared broadcast channels
- in shared mode, CSMA/CD is used; short distances between nodes to be efficient
- uses hubs, called here "Buffered Distributors"
- Full-Duplex at 1 Gbps for point-to-point links

Ethernet Limitations

Q: Why not just one big Ethernet?
- Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
- limited length: 802.3 specifies maximum cable length
- large "collision domain" (can collide with many stations)
- How can we get around some of these limitations?

Hubs

- Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces
- Hubs can be arranged in a hierarchy (or multi-tier design), with backbone hub at its top

Hubs (more)

- Each connected LAN referred to as LAN segment
- Hubs do not isolate collision domains: node may collide with any node residing at any segment in LAN
- Hub Advantages:
 - simple, inexpensive device
 - Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - extends maximum distance between node pairs (100m per Hub)

Hub limitations

- single collision domain results in no increase in max throughput
- multi-tier throughput same as single segment throughput
- individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100BaseT)
Bridges

- **Link Layer devices**: operate on Ethernet frames, examining frame header and selectively forwarding frame based on its destination
- **Bridge isolates collision domains** since it buffers frames
- When frame is to be forwarded on segment, bridge uses CSMA/CD to access segment and transmit

Bridges (more)

- **Bridge advantages**:
 - Isolates collision domains resulting in higher total max throughput, and does not limit the number of nodes nor geographical coverage
 - Can connect different type Ethernet since it is a store and forward device
 - Transparent: no need for any change to hosts LAN adapters

Bridges: frame filtering, forwarding

- Bridges filter packets
 - same-LAN -segment frames not forwarded onto other LAN segments
- **forwarding**:
 - how to know which LAN segment on which to forward frame?
 - looks like a routing problem (more shortly!)

Bridge Filtering

- **bridges learn** which hosts can be reached through which interfaces: maintain filtering tables
 - when frame received, bridge “learns” location of sender: incoming LAN segment
 - records sender location in filtering table
- filtering table entry:
 - (Node LAN Address, Bridge Interface, Time Stamp)
 - stale entries in Filtering Table dropped (TTL can be 60 minutes)

Backbone Bridge

Interconnection Without Backbone

- Not recommended for two reasons:
 - single point of failure at Computer Science hub
 - all traffic between EE and SE must path over CS segment
Bridge Filtering

- filtering procedure:
 - if destination is on LAN on which frame was received
 - then drop the frame
 - else (lookup filtering table)
 - if entry found for destination
 - then forward the frame on interface indicated
 - else flood - "*forward on all but the interface on which the frame arrived*/

Bridge Learning: example

Suppose C sends frame to D and D replies back with frame to C

- C sends frame, bridge has no info about D, so floods to both LANs
 - bridge notes that C is on port 1
 - frame ignored on upper LAN
 - frame received by D

- D generates reply to C, sends
 - bridge sees frame from D
 - bridge notes that D is on interface 2
 - bridge knows C on interface 1, so selectively forwards frame out via interface 1

Bridges Spanning Tree

- for increased reliability, desirable to have redundant, alternate paths from source to dest
- with multiple simultaneous paths, cycles result - bridges may multiply and forward frame forever
- solution: organize bridges in a spanning tree by disabling subset of interfaces

Spanning Tree Algorithm

Ethernet Switches

- Sophisticated bridges
 - Switches usually switch in hardware, bridges in software
 - large number of interfaces
- Like bridges, layer 2 (frame) forwarding, filtering using LAN addresses
- Can support combinations of shared/dedicated, 10/100/1000 Mbps interfaces
Switching
- Switching: A-to-B and A’-to-B’ simultaneously, no collisions
- Cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame
 - Slight reduction in latency
- Store and forward switching: entire frame received before transmission out an output port
- Fragment-free switching: compromise, before send out the output port receive enough of the packet to do some error checking (e.g., detect and drop partial frames)

Common Topology

Bridges vs. Switches vs. Routers
- Switches = sophisticated multi-port bridges
- All store-and-forward devices
 - Routers: Layer 3 (network layer) devices
 - Bridges/switches are Layer 2 (Link Layer) devices
- Routers maintain routing tables, implement routing algorithms
- Bridges/switches maintain filtering tables, implement filtering, learning and spanning tree algorithms

Routers vs. Bridges
- Bridges + and -
 + Bridge operation is simpler requiring less processing bandwidth
 - Topologies are restricted with bridges: a spanning tree must be built to avoid cycles
 - Bridges do not offer protection from broadcast storms (endless broadcasting by a host will be forwarded by a bridge)

Routers vs. Bridges

Summary
- Layer 3 Devices (Network Layer)
 - Router
- Layer 2 Devices (Link Layer)
 - Bridge
 - Switch
- Layer 1 Devices (Physical Layer)
 - Repeaters
 - Hubs
IEEE 802.11 Wireless LAN

- Wireless LANs: untethered (often mobile) networking
- IEEE 802.11 standard:
 - MAC protocol
 - Unlicensed frequency spectrum: 900MHz, 2.4GHz
- Basic Service Set (BSS) (a.k.a. "cell") contains:
 - Wireless hosts
 - Access point (AP): base station
- BSSs combined to form distribution system (DS)

Ad Hoc Networks

- Ad hoc network: IEEE 802.11 stations can dynamically form network without AP
- Applications:
 - "Laptop" meeting in conference room, car
 - Interconnection of "personal" devices
 - Battlefield
- IETF MANET (Mobile Ad hoc Networks) working group

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 CSMA: sender
- If sense channel idle for DISF sec., then transmit entire frame (no collision detection)
- If sense channel busy, then binary backoff

802.11 CSMA receiver:
- If received OK, return ACK after SIFS

IEEE 802.11 MAC Protocol

802.11 CSMA Protocol: others
- NAV: Network Allocation Vector
- 802.11 frame has transmission time field
- Others (hearing data) defer access for NAV time units

Hidden Terminal effect

- Hidden terminals: A, C cannot hear each other
 - Obstacles, signal attenuation
 - Collisions at B
- Goal: avoid collisions at B
- CSMA/CA: CSMA with Collision Avoidance

Collision Avoidance: RTS-CTS exchange

- CSMA/CA: explicit channel reservation
 - Sender: send short RTS: request to send
 - Receiver: reply with short CTS: clear to send
- CTS reserves channel for sender, notifying (possibly hidden) stations
- Avoid hidden station collisions
Collision Avoidance: RTS-CTS exchange

- RTS and CTS short:
 - collisions less likely, of shorter duration
 - end result similar to collision detection
- IEEE 802.11 allows:
 - CSMA
 - CSMA/CA: reservations
 - polling from AP

Token Passing: IEEE802.5 standard

- 4 Mbps
- max token holding time: 10 ms, limiting frame length
- SD, ED mark start, end of packet
- AC: access control byte:
 - token bit: value 0 means token can be seized, value 1 means data follows FC
 - priority bits: priority of packet
 - reservation bits: station can write these bits to prevent stations with lower priority packet from seizing token after token becomes free

Token Passing: IEEE802.5 standard

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point to Point Data Link Control

- one sender, one receiver, one link: easier than broadcast link:
 - no Media Access Control
 - no need for explicit MAC addressing
 - e.g., dialup link, ISDN line
- popular point-to-point DLC protocols:
 - PPP (point-to-point protocol)
 - HDLC: High level data link control

PPP Design Requirements [RFC 1557]

- packet framing: encapsulation of network-layer datagram in data link frame
- carry network layer data of any network layer protocol (not just IP) at same time
- ability to demultiplex upwards
- bit transparency: must carry any bit pattern in the data field
- error detection (no correction)
- connection liveness: detect, signal link failure to network layer
- network layer address negotiation: endpoint can learn/configure each other's network address

PPP non-requirements

- no error correction/recovery
- no flow control
- out of order delivery OK
- no need to support multipoint links (e.g., polling)

Error recovery, flow control, data re-ordering all relegated to higher layers!
PPP Data Frame

- **Flag**: delimiter (framing)
- **Address**: does nothing (only one option)
- **Control**: does nothing; in the future possible multiple control fields
- **Protocol**: upper layer protocol to which frame delivered (e.g., PPP-LCP, IP, IPCP, etc)

```
flag 1 1 1 or 2 variable length 2 or 4 1
0111110 0111110 protocol info check 0111110
flag  address  control  flag
```

Byte Stuffing

- "data transparency" requirement: data field must be allowed to include flag pattern <0111110>
 - **Q**: is received <0111110> data or flag?

- **Sender**: adds ("stuffs") extra <0111110> byte after each <0111110> data byte
- **Receiver**:
 - two 0111110 bytes in a row: discard first byte, continue data reception
 - single 0111110: flag byte

PPP Data Control Protocol

Before exchanging network-layer data, data link peers must
- **configure PPP link** (max. frame length, authentication)
- **learn/configure network layer information**
 - for IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address

IP over Other Wide Area Network Technologies

- ATM
- Frame Relay
- X-25
ATM architecture

- Adaptation layer (AAL): only at edge of ATM network
 - data segmentation/reassembly
 - roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - Virtual circuits, routing, cell switching
- physical layer

ATM: network or link layer?

Vision: end-to-end transport: "ATM from desktop to desktop"
- ATM is a network technology

Reality: used to connect IP backbone routers
- "IP over ATM"
- ATM as switched link layer, connecting IP routers

ATM Layer: ATM cell

- 5-byte ATM cell header
- 48-byte payload
 - Why?: small payload -> short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)

<table>
<thead>
<tr>
<th>Cell header</th>
<th>ATM Cell Payload - 48 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCI</td>
<td>PT</td>
</tr>
</tbody>
</table>

ATM cell header

- **VCI**: virtual channel ID
 - will change from link to link thru net
- **PT**: Payload type (e.g., RM cell versus data cell)
- **CLP**: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- **HEC**: Header Error Checksum
 - cyclic redundancy check

Datagram Journey in IP-over-ATM Network

- at Source Host:
 - IP layer finds mapping between IP, ATM dest address (using ARP)
 - passes datagram to AAL5
 - AAL5 encapsulates data, segments to cells, passes to ATM layer
 - ATM network: moves cell along VC to destination (uses existing one or establishes another)

- at Destination Host:
 - AAL5 reassembles cells into original datagram
 - if CRC OK, datagram is passed to IP
X.25 and Frame Relay

Like ATM:
- wide area network technologies
- virtual circuit oriented
- origins in telephony world
- can be used to carry IP datagrams and can thus be viewed as Link Layers by IP protocol just like ATM

X.25

- Builds VC between source and destination for each user connection
- Per-hop control along path
 - error control (with retransmissions) on each hop
 - per-hop flow control using credits
 - congestion arising at intermediate node propagates to previous node on path
 - back to source via back pressure

IP versus X.25

- X.25: reliable in-sequence end-end delivery from end-to-end
 - "intelligence in the network"
- IP: unreliable, out-of-sequence end-end delivery
 - "intelligence in the endpoints"
- 2000: IP wins
 - gigabit routers: limited processing possible

Frame Relay

- Designed in late '80s, widely deployed in the '90s
- Frame relay service:
 - no error control
 - end-to-end congestion control

Frame Relay (more)

- Designed to interconnect corporate customer LANs
 - typically permanent VCs: "pipe" carrying aggregate traffic between two routers
 - switched VCs: as in ATM
- Corporate customer leases FR service from public Frame Relay network (e.g., Sprint, ATT)

Frame Relay (more)

- Flag bits, 01111110, delimit frame
- Address = address and congestion control
 - 10 bit VC ID field
 - 3 congestion control bits
 - FECN: forward explicit congestion notification (frame experienced congestion on path)
 - BECN: congestion on reverse path
 - DE: discard eligibility
Frame Relay - VC Rate Control

- Committed Information Rate (CIR)
 - defined, "guaranteed" for each VC
 - negotiated at VC set up time
 - customer pays based on CIR

- DE bit: Discard Eligibility bit
 - Edge FR switch measures traffic rate for each VC; marks DE bit
 - DE = 0: high priority, rate compliant frame; deliver at "all costs"
 - DE = 1: low priority, eligible for discard when congestion

LAN Addresses vs IP Addresses

32-bit IP address (128 bit IPv6):
- network-layer address
- used to get datagram to destination network (recall IP network definition)

LAN (or MAC or physical) address:
- used to get datagram from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs), burned in the adapter ROM

LAN Address vs IP Addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address => portability
 - can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - depends on network to which one attaches

Question: How can we determine the MAC address of B given B’s IP address?
ARP: Address Resolution Protocol

- Each IP node (Host, Router) on LAN has ARP module, table
- ARP Table: IP/MAC address mappings for some LAN nodes
 - IP address; MAC address, TTL
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol

- A knows B's IP address, wants to learn physical address of B
- A broadcasts ARP query pkt, containing B's IP address
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) physical layer address
- A caches (saves) IP-to-physical address pairs until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed

Hands-on: arp

- `arp ipaddress`
 - Return the MAC address associated with the given IP address
- `arp -a`
 - List the contents of the local ARP cache
- `arp -s hostname macAddress`
 - Used by the system administrator to add a specific entry to the local ARP cache

ARP in ATM Nets

- ATM network needs destination ATM address
 - just like Ethernet needs destination Ethernet address
- IP/ATM address translation done by ATM ARP (Address Resolution Protocol)
 - ARP server in ATM network performs broadcast of ATM ARP translation request to all connected ATM devices
 - hosts can register their ATM addresses with server to avoid lookup

Routing to another LAN

walkthrough: routing from A to B via R

- In routing table at source Host, find router 111.111.111.110
- In ARP table at source, find MAC address E6-E9-00-17-BB-4B, etc

- A creates IP packet with source A, destination B
- A uses ARP to get R's physical layer address for 111.111.111.110
- A creates Ethernet frame with R's physical address as dest, Ethernet frame contains A-to-B IP datagram
- A's data link layer sends Ethernet frame
- R's data link layer receives Ethernet frame
- R removes IP datagram from Ethernet frame, sees its destination to B
- R uses ARP to get B's physical layer address
- R creates frame containing A-to-B IP datagram sends to B
Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing, ARP
- various link layer technologies
 - Ethernethubs, bridges, switches
 - IEEE 802.11 LANs
 - PPP
 - ATM, X.25, Frame Relay
- journey down the protocol stack now OVER!
 - Next steps: security, network management(?)