
1

4: Network Layer 4a-1

9:
Intro to Routing Algorithms

Last Modified:
3/24/2003 2:08:40 PM

4: Network Layer 4a-2

Routing

❒ IP Routing – each router is supposed to
send each IP datagram one step closer to
its destination

❒ How do they do that?
❍ Static Routing

• Hierarchical Routing – in ideal world would that be
enough? Well its not an ideal world

❍ Dynamic Routing
• Routers communicate amongst themselves to

determine good routes (ICMP redirect is a simple
example of this)

• Before we cover specific routing protocols we will
cover principles of dynamic routing protocols

4: Network Layer 4a-3

Routing Algorithm classification:
Static or Dynamic?

Choice 1: Static or dynamic?

Static:
❒ routes change slowly over time
❒ Configured by system administrator
❒ Appropriate in some circumstances, but obvious

drawbacks (routes added/removed? sharing load?)
❒ Not much more to say?

Dynamic:
❒ routes change more quickly

❍ periodic update
❍ in response to link cost changes

4: Network Layer 4a-4

Routing Algorithm classification:
Global or decentralized?
Choice 2, if dynamic: global or decentralized

information?

Global:
❒ all routers have complete topology, link cost info
❒ “link state” algorithms

Decentralized:
❒ router knows physically-connected neighbors, link

costs to neighbors
❒ iterative process of computation, exchange of info

with neighbors (gossip)
❒ “distance vector” algorithms

4: Network Layer 4a-5

Roadmap

❒ Details of Link State
❒ Details of Distance Vector
❒ Comparison

4: Network Layer 4a-6

Routing

Graph abstraction for
routing algorithms:

❒ graph nodes are
routers

❒ graph edges are
physical links

❍ link cost: delay, $ cost,
or congestion level

Goal: determine “good” path
(sequence of routers) thru

network from source to dest.

Routing protocol

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

❒ “good” path:
❍ typically means minimum

cost path
❍ other definitions

possible

2

4: Network Layer 4a-7

Global Dynamic Routing

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

See the big picture; Find the best Route

What algorithm do you use?

4: Network Layer 4a-8

A Link-State Routing Algorithm

Dijkstra’s algorithm
❒ Know complete network topology with link costs for

each link is known to all nodes
❍ accomplished via “link state broadcast”
❍ In theory, all nodes have same info

❒ Based on info from all other nodes, each node
individually computes least cost paths from one
node (‘source”) to all other nodes
❍ gives routing table for that node

❒ iterative: after k iterations, know least cost path to
k dest.’s

4: Network Layer 4a-9

Link State Algorithm:
Some Notation
Notation:
❒ c(i,j): link cost from node i to j. cost

infinite if not direct neighbors
❒ D(v): current value of cost of path from

source to dest. V
❒ n(v): next hop from this source to v along

the least cost path
❒ N: set of nodes whose least cost path

definitively known
4: Network Layer 4a-10

Dijsktra’s Algorithm
1 Initialization – know c(I,j) to start:
2 N = {A}
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v)
6 else D(v) = infty
7
8 Loop
9 find w not in N such that D(w) is a minimum (optional?)
10 add w to N
11 update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N

4: Network Layer 4a-11

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

start N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),n(B)
2,B
2,B
2,B

D(C),n(C)
5,C
4,D
3,D
3,D

D(D),n(D)
1,A

D(E),n(E)
infinity

2,D

D(F),n(F)
infinity
infinity

4,D
4,D
4,D

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

4: Network Layer 4a-12

Dijkstra’s Algorithm gives routing
table

A

A

B

C

D

E

F

n(A) = A

n(B) = B

n (C)= D

n(D) = D

n(E) = D

n(F) = D

Outgoing Link

de
st

in
at

i o
n

3

4: Network Layer 4a-13

Complexity of Link State
Algorithm complexity: n nodes
❒ each iteration

❍ Find next w not in N such that D(w) is a minimum
❍ Then for that w, check its best path to other

destinations
❍ => n*(n+1)/2 comparisons: O(n2)

❒ more efficient implementations possible using a
heap: O(nlogn)

4: Network Layer 4a-14

Oscillations
❒ Assume:

❍ Link cost = amount of carried traffic
❍ Link cost is not symmetric
❍ B and D sending 1 unit of traffic; C send e units of traffic

❒ Initially start with slightly unbalanced routes
❒ Everyone goes with least loaded, making them most loaded

for next time, so everyone switches
❒ Herding effect!

A
D

C
B

1 1+e

e0

e
1 1

0 0

A
D

C
B

2+e 0

00
1+e 1

A
D

C
B

0 2+e

1+e1
0 0

A
D

C
B

2+e 0

e0
1+e 1

Initially start with
almost equal routes

… B and C go
clockwise to A

… B, C and D go
counterclockwise

… B,C,D go
clockwise

4: Network Layer 4a-15

Preventing Oscillations

❒ Avoid link costs based on experienced load
❍ But want to be able to route around heavily

loaded links…
❒ Avoid “herding” effect

❍ Avoid all routers recomputing at the same time
❍ Not enough to start them computing at a

different time because will synchronize over
time as send updates

❍ Deliberately introduce randomization into time
between when receive an update and when
compute a new route

4: Network Layer 4a-16

Distance Vector Routing Algorithm

distributed:
❒ each node communicates only with directly-

attached neighbors
iterative:
❒ continues until no nodes exchange info.
❒ self-terminating: no “signal” to stop
asynchronous:
❒ nodes need not exchange info/iterate in lock

step!

4: Network Layer 4a-17

Distance Vector Routing Algorithm

Distance Table data structure
❒ each node has its own row for

each possible destination
❒ column for each directly-

attached neighbor to node
❒ example: in node X, for dest. Y

via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min {D (Y,w)}Z
w

=

=

D ()

Y

Z

Dx(Y,Z)

X cost to destination via

de
st

in
at

i o
n

Column only for each neighbor

Rows for each possible dest !

4: Network Layer 4a-18

Example: Distance Table for E

A

E D

CB
7

8
1

2

1

2
D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E cost to destination via

de
st

in
at

i o
n

D (C,D)
E

c(E,D) + min {D (C,w)}D
w=

= 2+2 = 4

D (A,D)
E

c(E,D) + min {D (A,w)}D
w=

= 2+3 = 5 Loop back through E!

D (A,B)
E

c(E,B) + min {D (A,w)}B
w=

= 8+6 = 14 Loop back through E!

Column only for each neighbor

Rows for each possible dest !

D (row, col)
E

4

4: Network Layer 4a-19

Distance table gives routing table

D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E cost to destination via

de
st

in
at

i o
n

A

B

C

D

A,1

D,5

D,4

D,4

Outgoing link
to use, cost

de
st

in
at

i o
n

Distance table Routing table

= least cost

4: Network Layer 4a-20

Distance Vector Routing: overview

Iterative, asynchronous:
each local iteration caused
by:

❒ local link cost change
❒ message from neighbor: its

least cost path change
from neighbor

Distributed:
❒ each node notifies

neighbors only when its
least cost path to any
destination changes

❍ neighbors then notify
their neighbors if
necessary

wait for (change in local link
cost of msg from neighbor)

recompute distance table

if least cost path to any dest
has changed, notify
neighbors

Each node:

4: Network Layer 4a-21

Distance Vector Algorithm:

1 Initialization (don’t start knowing link costs for all links in graph):
2 for all adjacent nodes v:
3 D (*,v) = infty /* the * operator means "for all rows" */
4 D (v,v) = c(X,v)
5 for all destinations, y
6 send min D (y,w) to each neighbor /* w over all X's neighbors */

X
X

X
w

At all nodes, X:

Then in steady state…

4: Network Layer 4a-22

Distance Vector Algorithm (cont.):
8 loop
9 wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
12 if (c(X,V) changes by d)
13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
15 for all destinations y: D (y,V) = D (y,V) + d
16
17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its min DV(Y,w) */
20 /* call this received new value is "newval" */
21 for the single destination y: D (Y,V) = c(X,V) + newval
22
23 if we have a new min D (Y,w)for any destination Y
24 send new value of min D (Y,w) to all neighbors
25
26 forever

w

XX

X
X

X

w
w

4: Network Layer 4a-23

Distance Vector Algorithm: example

X Z
12

7

Y

D (Z,Y)
X c(X,Y) + min {D (Z,w)}w=

= 2+1 = 3

Y

To start just know directly connected links…tell neighbors

D (Y,Z)X c(X,Z) + min {D (Y,w)}w=
= 7+1 = 8

Z

X hears news from Y and Z

4: Network Layer 4a-24

Distance Vector Algorithm: example

X Z
12

7

Y

In steady state, when have good news tell neighbor

5

4: Network Layer 4a-25

Distance Vector: link cost changes

Link cost changes:
❒ node detects local link cost change
❒ updates distance table (line 15)
❒ if cost change in least cost path,

notify neighbors (lines 23,24)
X Z

14

50

Y
1

algorithm
terminates“good

news
travels
fast”

Anyone see
a problem?

4: Network Layer 4a-26

Distance Vector: link cost changes

Link cost changes:
❒ good news travels fast
❒ bad news travels slow -

“count to infinity” problem!
X Z

14

50

Y
60

algorithm
continues

on!

4: Network Layer 4a-27

Distance Vector: poisoned reverse
If Z routes through Y to get to X :
❒ Originally, Z tells Y its (Z’s) distance to

X is infinite (so Y won’t route to X via
Z)

❒ In end, Y tells Z infinity
❒ will this completely solve count to

infinity problem?

X Z
14

50

Y
60

algorithm
terminates

4: Network Layer 4a-28

Bigger Loops and Poison Reverse

A

E D

CB
7

8
1

2

1

2
D (A,D)

E
c(E,D) + min {D (A,w)}

D
w=

= 2+3 = 5

D (A,B)
E

c(E,B) + min {D (A,w)}B
w=

= 8+6 = 14

Loop back through E! Poison reverse will fix this
D tells E infinity because D’s route to A through E

Loop back through E! Poison reverse will not fix this
B’s route to A is through E but B doesn’t know that

so does not tell E infinity
B’s route is through C so no poison reverse

E will try to send through B

A

E D

CB
50

8
50

2

1

2

4: Network Layer 4a-29

Count to Infinity Example with
Bigger Loop

B will learn bad news
C will have told B infinity because its route to A is

through B, so B won’t reroute through C
E however will have told B about a good route to A

through D (cost 6)
B will choose that route instead and advertise it as
the new best to C (cost 6+8 = 14); it will be worse
than the old one it advertised to C (old cost = 1)
C will propagate this updated “best” route to D

(cost 15)
D will propagate this new “best” route to E (cost

17)
E will update the “best” route to B (cost 19)

Last time it advertised cost 6 to B
It will loop around adding 13 each time (cost of

loop)
Will continue until cost E advertises to B is bigger

than 500

A

E D

CB
500

8

2

1

2

A

E D

CB
1

8

2

1

2

4: Network Layer 4a-30

Comparison of LS and DV algorithms

Message complexity
❒ LS: nodes send info on

directly connections to all
other nodes

❍ More, smaller messages
❒ DV: nodes send info on best

paths to all destinations to
neighbors

❍ Fewer, larger messages

Speed of Convergence
❒ LS: O(n2) algorithm

❍ may have oscillations
❒ DV: convergence time varies

❍ may be routing loops
❍ count-to-infinity problem

Robustness: what happens
if router malfunctions?

LS:
❍ node can advertise

incorrect link cost
❍ each node computes only

its own table
DV:

❍ DV node can advertise
incorrect path cost

❍ each node’s table used by
others

• error propagate thru
network

