9:
 Intro to Routing Algorithms

Last Modified:
3/24/2003 2:08:40 PM

Routing

\square IP Routing - each router is supposed to send each IP datagram one step closer to its destination
\square How do they do that?

- Static Routing
- Hierarchical Routing - in ideal world would that be enough? Well its not an ideal world - Dynamic Routing
- Routers communicate amongst themselves to determine good routes (ICMP redirect is a simple example of this)
- Before we cover specific routing protocols we will cover principles of dynamic routing protocols

Routing Algorithm classification: Static or Dynamic?

Choice 1: Static or dynamic?

Static:
\square routes change slowly over time

- Configured by system administrator
- Appropriate in some circumstances, but obvious drawbacks (routes added/removed? sharing load?)
\square Not much more to say?

Dynamic:

- routes change more quickly
- periodic update
- in response to link cost changes

Roadmap

Details of Link State
\square Details of Distance Vector
Comparison

Routing Algorithm classification: Global or decentralized?

Choice 2, if dynamic: global or decentralized information?

Global:
\square all routers have complete topology, link cost info

- "link state" algorithms

Decentralized:
\square router knows physically-connected neighbors, link costs to neighbors
a iterative process of computation, exchange of info with neighbors (gossip)
\square "distance vector" algorithms

Roadmap
a Details of Link State
a Details of Distance Vector
a Comparison
4: Network Layer 4a-5

Routing

-Routing protocol
Goal: determine "good" path
(sequence of routers) thru network from source to dest.

Graph abstraction for routing algorithms:
\square graph nodes are routers
\square graph edges are physical links - link cost: delay, \$ cost, or congestion level

- "good" path:
- typically means minimum cost path
- other definitions possible

Global Dynamic Routing

See the big picture; Find the best Route

What algorithm do you use?

A Link-State Routing Algorithm

Dijkstra's algorithm

a Know complete network topology with link costs for each link is known to all nodes o accomplished via "link state broadcast" - In theory, all nodes have same info
\square Based on info from all other nodes, each node individually computes least cost paths from one node ('source") to all other nodes
o gives routing table for that node
a iterative: after k iterations, know least cost path to k dest.'s

Link State Algorithm: Some Notation

Notation:

$\square \mathrm{C}(\mathrm{i}, \mathrm{j})$: link cost from node i to j . cos \dagger infinite if not direct neighbors
$\square D(v)$: current value of cost of path from source to dest. V
$\square \mathrm{n}(\mathrm{v})$: next hop from this source to v along the least cost path
$\square \mathrm{N}$: set of nodes whose least cost path definitively known

Dijkstra's algorithm: example

Step	start N	$\mathrm{D}(\mathrm{B}), \mathrm{n}(\mathrm{B})$	$\mathrm{D}(\mathrm{C}), \mathrm{n}(\mathrm{C})$	$D(D), n(D)$	$\mathrm{D}(\mathrm{E}), \mathrm{n}(\mathrm{E})$	$D(F), n(F)$
$\rightarrow 0$	A	2,B	5, ${ }^{\text {c }}$	1,A	infinity	infinity
$\rightarrow 1$	AD	2,B	4,D		2,D	infinity
$\longrightarrow 2$	ADE	2,B	3,D			4,D
$\longrightarrow 3$	ADEB		3, D			4,D
$\longrightarrow 4$	ADEBC					4,D

Dijsktra's Algorithm

```
Initialization - know c(l,j) to start:
    N={A}
    for all nodes v
    if v adjacent to A
        then D(v)=c(A,v)
        else D(v) = infty
    Loop
    find w not in N such that D(w) is a minimum (optional?)
    add w to N
    update }\textrm{D}(\textrm{v})\mathrm{ for all v adjacent to w and not in N
        D(v)=min(D(v),D(w)+c(w,v))
        /*}\mathrm{ new cost to v is either old cost to v or known
        shortest path cost to w plus cost from w to v */
        until all nodes in N
```

Dijkstra's Algorithm gives routing table

Complexity of Link State

Algorithm complexity: n nodes
\square each iteration

- Find next w not in N such that $D(w)$ is a minimum
- Then for that w, check its best path to other destinations
- $=>n^{\star}(n+1) / 2$ comparisons: $O\left(n^{2}\right)$
\square more efficient implementations possible using a heap: $O(n \log n)$

Preventing Oscillations

\square Avoid link costs based on experienced load

- But want to be able to route around heavily loaded links...
\square Avoid "herding" effect
- Avoid all routers recomputing at the same time
- Not enough to start them computing at a different time because will synchronize over time as send updates
- Deliberately introduce randomization into time between when receive an update and when compute a new route

Distance Vector Routing Algorithm

Distance Table data structure
\square each node has its own row for each possible destination
\square column for each directlyattached neighbor to node
a example: in node X, for dest. Y via neighbor Z :

$$
\begin{aligned}
\mathrm{D}^{\mathrm{X}(\mathrm{Y}, \mathrm{Z})} & =\begin{array}{l}
\text { distance from } \mathrm{X} \text { to } \\
\mathrm{Y}, \text { via } \mathrm{Z} \text { as next hop }
\end{array} \\
& =\mathrm{c}(\mathrm{X}, \mathrm{Z})+\min _{\mathrm{w}}\left\{\mathrm{D}^{Z}(\mathrm{Y}, \mathrm{w})\right\}
\end{aligned}
$$

Column only for each neighbor D^{X} () $\mathrm{Z}^{\text {cost to destination via }}$

Rows for each possible dest!

Distance Vector Routing Algorithm
 distributed:
 a each node communicates only with directlyattached neighbors
 iterative:
 - continues until no nodes exchange info.
 - self-terminating: no "signal" to stop
 asynchronous:
 \square nodes need not exchange info/iterate in lock step!

L Link cost = amount of carried traffic

- Link cost is not symmetric
- B and D sending 1 unit of traffic; C send e units of traffic
\square Initially start with slightly unbalanced routes
\square Everyone goes with least loaded, making them most loaded for next time, so everyone switches
口 Herding effect!

Distance Vector Routing Algorithm	
Distance Table data structure \square each node has its own row for	Column only for each neighbor $\mathrm{X}^{\text {cost to destination via }}$
each possible destination	
- column for each directlyattached neighbor to node	
- example: in node X, for dest. Y via neighbor Z :	
$\begin{aligned} D^{X}(Y, Z) & =\begin{array}{c} \text { distance from } X \text { to } \\ Y \text { via Z as next hop } \\ \\ \end{array}=c(X, Z)+\min _{W}\left\{D^{Z}(Y, W)\right\} \end{aligned}$	
	Rows for each possible dest !
	4: Network Layer 4a.17

Example: Distance Table for E

D (row, col)
$D^{E}(C, D)=c(E, D)+\min _{w}\left\{D^{D}(C, w)\right\}$
$D^{E}(A, D)=c(E, D)+\min _{w}\left\{D^{D}(A, w)\right\}$
Column only for each neighbor

$$
\begin{aligned}
& =2+3=5 \quad \text { Loop back through } E! \\
D^{E}(A, B) & =c(E, B)+\min _{w}\left\{D^{B}(A, w)\right\} \\
& =8+6=14 \quad \text { Loop back through } E!
\end{aligned}
$$

4: Network Layer 4a-18

Distance Vector Algorithm:

At all nodes, X :
1 Initialization (don't start knowing link costs for all links in graph):
2 for all adjacent nodes v :
$3 D_{(}^{X_{(}(*, v)}=$ infty \quad / \star the * operator means "for all rows" */
$D^{X}(v, v)=c(X, v)$
5 for all destinations, y
6 send $\min _{w} \mathrm{D}^{\mathrm{X}}(\mathrm{y}, \mathrm{w})$ to each neighbor /* w over all X 's neighbors */

Then in steady state...

Distance Vector Routing: overview

Iterative, asynchronous: each local iteration caused by:

- local link cost change

I message from neighbor: its least cost path change from neighbor
Distributed:
I each node notifies neighbors only when its least cost path to any destination changes
o neighbors then notify their neighbors if necessary

Each node:

Distance Vector Algorithm (cont.):

$\rightarrow 8$ loop

wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
12
2 if ($c(X, V)$ changes by d$)$
3
s via neighbor v by d */
/* note: d could be positive or negative */
for all destinations $y: D^{X}(y, V)=D^{X}(y, V)+d$
else if (update received from V wrt destination Y)
/* shortest path from V to some Y has changed */
$l^{*} V$ has sent a new value for its $\min _{w} D V(Y, w)$ */
/* call this received new value is "newval" */
for the single destination $y: D^{X}(Y, V)=c(X, V)+$ newval
if we have a new $\min _{w} D^{X}(Y, w)$ for any destination Y send new value of $\min _{w} D^{X}(Y, w)$ to all neighbors
forever
4: Network Layer 4a-22
\qquad

Distance Vector Algorithm: example To start just know directly connected links...tell neighbors

Distance Vector: link cost changes

Link cost changes:
\square node detects local link cost change
\square updates distance table (line 15)
\square if cost change in least cost path, notify neighbors (lines 23,24)

Distance Vector: poisoned reverse

If Z routes through Y to get to X :

- Originally, Z tells Y its (Z 's) distance to X is infinite (so Y won't route to X via Z)
- In end, Y tells Z infinity

\square will this completely solve count to

Count to Infinity Example with Bigger Loop

Distance Vector: link cost changes

Link cost changes:
ㅁ good news travels fast

- bad news travels slow -
"count to infinity" problem!

time

Bigger Loops and Poison Reverse

$$
\begin{aligned}
D^{E}(A, D) & =c(E, D)+\min _{w}\left\{D^{D}(A, w)\right\} \\
& =2+3=5
\end{aligned}
$$

Loop back through E! Poison reverse will fix this D tells E infinity because D's route to A through E

$$
\begin{aligned}
D^{E}(A, B) & =c(E, B)+\min _{w}\left\{D^{B}(A, w)\right\} \\
& =8+6=14
\end{aligned}
$$

Loop back through E! Poison reverse will not fix this B's route to A is through E but B doesn't know that so does not tell E infinity
B's route is through C so no poison reverse

E will try to send through B

Comparison of LS and DV algorithms

Message complexity

- LS: nodes send info on directly connections to all other nodes
- More, smaller messages
\square DV: nodes send info on best paths to all destinations to neighbors
- Fewer, larger messages

Speed of Convergence
\square LS: $O\left(n^{2}\right)$ algorithm - may have oscillations

- DV: convergence time varies - may be routing loops - count-to-infinity problem

Robustness: what happens if router malfunctions? LS:
node can advertise incorrect link cost

- each node computes only its own table
DV:
- DV node can advertise incorrect path cos \dagger
- each node's table used by others
error propagate thru network

