
1

3: Transport Layer 3b-1

7: TCP

Last Modified:
2/25/2003 8:15:19 PM

3: Transport Layer 3b-2

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒ full duplex data:
❍ bi-directional data flow

in same connection
❍ MSS: maximum segment

size
❒ connection-oriented:

❍ handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

❒ flow and congestion
controlled:

❍ sender will not
overwhelm receiver or
network

❒ point-to-point:
❍ one sender, one receiver

❒ reliable, in-order byte
steam:

❍ no “message boundaries”
like with UDP datagrams

❒ pipelined:
❍ TCP congestion and flow

control set window size
❒ send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

3: Transport Layer 3b-3

Roadmap

❒ TCP header and segment format
❒ Connection establishment and termination
❒ Normal Data flow

3: Transport Layer 3b-4

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

3: Transport Layer 3b-5

TCP Headers: like UDP?

❒ Source and destination port numbers
❒ Checksum
❒ Data length? Rely on length in IP header?

3: Transport Layer 3b-6

TCP Headers: Familiar?

❒ Sequence Number field (32 bit)
❍ Sequence Number field indicates number of first byte in

the packet
❒ Receiver Window Size (16 bit)

❍ Window like for GBN or selective repeat, but window size
not fixed – variable based on receiver feedback

❒ Acknowledgment Field (32 bit)
❍ The acknowledgement field contains the next sequence

number it is expecting thus implicitly acknowledging all
previous segments.

❍ Cumulative acks not individual acks or negative acks

2

3: Transport Layer 3b-7

TCP seq. #’s and ACKs
Seq. #’s:

❍ byte stream
“number” of first
byte in segment’s
data

ACKs:
❍ seq # of next byte

expected from other
side

❍ cumulative ACK
Q: how receiver handles

out-of-order segments
❍ A: TCP spec doesn’t

say, - up to
implementor

❍ Can buffer or not, in
either case still ACK
next in order byte
expected

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

3: Transport Layer 3b-8

TCP Header: Header Length

❒ Header Length (4 bits)
❍ needed because options field make header

variable length
❍ Expressed in number of 32 bit words = 4 bytes
❍ 4 bits field => 4 bytes*24 = 60 bytes; 20 bytes

of required header gives 40 bytes possible of
options

❍ Recall UDP header was 8 bytes

3: Transport Layer 3b-9

Implications of Field Length

❒ 32 bits for sequence number (and
acknowledgement) ; 16 bits for advertised
window size

❒ Implication for maximum window size?
Window size <= ½ SequenceNumberSpace
❍ Requirement easily satisfied because receiver

advertised window field is 16 bits
• 232 >> 2* 216

• Even if increase possible advertised window to 231

that would still be ok

3: Transport Layer 3b-10

Implications of Field Length
(cont)
❒ Advertised Window is 16 bit field =>

maximum window is 64 KB
❍ Is this enough to fill the pipeline? Not always
❍ Pipeline = delay*BW product
❍ 100 ms roundtrip and 100 Mbps => 1.19 MB

❒ Sequence Number is 32 bit field => 4 GB
❍ Wrap –around?
❍ Maximum Segment Lifetime of 120 seconds
❍ Will this ever wrap too soon? Yes it might

• 4 GB/120 sec = 273 Mbps
• Gigabit Ethernet? STS-12 at 622 Mbps?

3: Transport Layer 3b-11

TCP Header: Common Options

❒ Options used to extend and test TCP
❒ Each option is:

❍ 1 byte of option kind
❍ 1 byte of option length (except for kind = 0 for end of

options and kind =1 for no operation)
❒ Examples

❍ window scale factor: if don’t want to be limited to 216

bytes in receiver advertised window
❍ timestamp option: if 32 bit sequence number space will

wrap in MSL; add 32 bit timestamp to distinguish
between two segments with the same sequence number

❍ Maximum Segment Size can be set in SYN packets

3: Transport Layer 3b-12

TCP Header: Flags (6 bits)

❒ Connection establishment/termination
❍ SYN – establish; sequence number field

contains valid initial sequence number
❍ FIN - terminate

❒ RESET - abort connection because one side
received something unexpected

❒ PUSH - sender invoked push to send
❒ URG – indicated urgent pointer field is

valid; special data - record boundary
❒ ACK - indicates Acknowledgement field is

valid

3

3: Transport Layer 3b-13

TCP Header: ACK flag

❒ ACK flag – if on then acknowledgement
field valid

❒ Once connection established no reason to
turn off
❍ Acknowledgment field is always in header so

acknowledgements are free to send along with
data

3: Transport Layer 3b-14

TCP Header: URG

❒ If URG flag on, then URG pointer contains
a positive offset to be added to the
sequence number field to indicate the last
byte of urgent data

❒ No way to tell where urgent data starts –
left to application

❒ TCP layer informs receiving process that
there is urgent data

3: Transport Layer 3b-15

Out-of-band data

❒ URG is not really out-of-band data;
Receiver must continue to read byte
stream till reach end of urgent data

❒ If multiple urgent segments received, first
urgent mark is lost; just one urgent pointer

❒ How to get out-of-band data if need it?
❍ Separate TCP connection?

3: Transport Layer 3b-16

URG

❒ How helpful is this?
❒ Telnet and Rlogin use URG when user types

the interrupt key; FTP uses when user
aborts a file transfer

❒ Is this worth a whole header field and a
flag?

❒ Doesn’t help that implementations vary in
how they interpret the urgent pointer
(point to last byte in urgent data or byte
just past the last byte of urgent data)

3: Transport Layer 3b-17

TCP Header: PSH

❒ Intention: use to indicate not to leave the
data in a TCP buffer waiting for more data
before it is sent
❍ In practice, programming interface rarely

allows application to specify
❍ Instead TCP will set if this segment used all the

data in its send buffer
❒ Receiver is supposed to interpret as

deliver to application immediately; most
TCP/IP implementations don’t delay
delivery in the first place though

3: Transport Layer 3b-18

TCP Header: Data boundaries?

❒ In general with UDP, application write of X
bytes data results in a UDP datagram with
X bytes of data – not so with TCP

❒ In TCP, the stream of bytes coming from
an application is broken at arbitrary points
by TCP into the “best” size chunks to send

❒ Sender may write 10 bytes then 15 then 30
but this is not in general visible to the
receiver

4

3: Transport Layer 3b-19

Record Boundaries

❒ Could try to use URG and PSH to indicate
record boundaries
❍ socket interface does not notify app that push

bit or urgent bit is on though!
❒ If need record boundaries, applications

must always insert their own by indicating
it in the data (ie. Data is record len +
record format)

3: Transport Layer 3b-20

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

❒ initialize TCP variables:
❍ seq. #s
❍ buffers, flow control

info (e.g. RcvWindow)
❒ client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

❒ server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client end system

sends TCP SYN control
segment to server

❍ specifies initial seq #

Step 2: server end system
receives SYN, replies with
SYNACK control segment

❍ ACKs received SYN
❍ allocates buffers
❍ specifies server->

receiver initial seq. #

Step 3: client acknowledges
servers initial seq. #

3: Transport Layer 3b-21

Three-Way Handshake
Active participant

(client)
Passive participant

(server)
SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Note: SYNs take up a sequence number even though
no data bytes

3: Transport Layer 3b-22

Connection Establishment

❒ Both data channels opened at once
❒ Three-way handshake used to agree on a

set of parameters for this communication
channel
❍ Initial sequence number for both sides
❍ Receiver advertised window size for both sides
❍ Optionally, Maximum Segment Size (MSS) for

each side; if not specified MSS of 536 bytes is
assumed to fit into 576 byte datagram

3: Transport Layer 3b-23

Initial Sequence Numbers

❒ Chosen at random in the sequence number
space?

❒ Well not really randomly; intention of RFC
is for initial sequence numbers to change
over time
❍ 32 bit counter incrementing every 4

microseconds
❒ Vary initial sequence number to avoid

packets that are delayed in network from
being delivered later and interpreted as a
part of a newly established connection

3: Transport Layer 3b-24

Special Case: Timeout of SYN

❒ Client will send three SYN messages
❍ Increasing amount of time between them (ex.

5.8 seconds after first, 24 seconds after
second)

❒ If no responding SYNACK received, client
will stop trying to open the connection

5

3: Transport Layer 3b-25

Special Case: Simultaneous
active SYNs
❒ Possible (but improbable ?) for two ends to

generate SYNs for the same connection at
the same time

❒ SYNs cross in the network
❒ Both reply with SYNACK and connection is

established

3: Transport Layer 3b-26

Connection Termination

❒ Each side of the bi-directional connection
may be closed independently
❍ 4 messages: FIN message and ACK of that FIN

in each direction
❒ Each side closes the data channel it can

send on
❒ One side can be closed and data can

continue to flow in the other direction, but
not usually

❒ FINs consume sequence numbers like SYNs

3: Transport Layer 3b-27

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

3: Transport Layer 3b-28

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

❍ Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
ed

 w
ai

t

closed

3: Transport Layer 3b-29

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED: data transfer!

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

/ACK

/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

SYN/

SYN+ACK/

Typical Client
Transitions

Typical Server
Transitions

3: Transport Layer 3b-30

TCP Connection Management

TCP client
lifecycle

TCP server
lifecycle

6

3: Transport Layer 3b-31

Time Wait State

❒ On client, Wait 2 times Maximum Segment
Lifetime (2 MSL)

❍ Provides protection against delayed segments from an
earlier incarnation of a connection being interpreted as
for a new connection

❒ Maximum time segment can exist in the network
before being discarded

❍ Time-To-Live field in IP is expressed in terms of hops
not time

❍ TCP estimates it as 2 minutes
❒ During this time, combination of client IP and port,

server IP and port cannot be reused
❍ Some implementations say local port cannot be reused at

all while it is involved in time wait state even to establish
a connection to different dest IP/port combo

3: Transport Layer 3b-32

Netstat

❒ netstat –a –n
❍ Shows open connections in various states
❍ Example:

Active Connections

Proto LocalAddr ForeignAddr State
TCP 0.0.0.0:23 0.0.0.0:0 LISTENING
TCP 192.168.0.100:139 207.200.89.225:80 CLOSE_WAIT
TCP 192.168.0.100:1275 128.32.44.96:22 ESTABLISHED
UDP 127.0.0.1:1070 *:*

3: Transport Layer 3b-33

RST

❒ RST flag
❒ Abortive release of a connection rather

than the orderly release with FINs
❒ Client web browsers often end their

connections that way - not good form but
faster

3: Transport Layer 3b-34

Data Transfer in the
ESTABLISHED state

3: Transport Layer 3b-35

Data Transfer (Simplified One-
Way)

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

3: Transport Layer 3b-36

TCP connection: One Direction

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

7

3: Transport Layer 3b-37

Segment Transmission

❒ Maximum segment size reached
❍ If accumulate MSS worth of data, send
❍ MSS usually set to MTU of the directly

connected network (minus TCP/IP headers)
❒ Sender explicitly requests

❍ If sender requests a push, send
❒ Periodic timer

❍ If data held for too long, sent

3: Transport Layer 3b-38

TCP Sender: Simplified State
Machine

simplified sender, assuming

wait
for

event

wait
for

event

event: data received
from application above

event: timer timeout for
segment with seq # y

event: ACK received,
with ACK # y

when room in window
create, send segment

retransmit segment

ACK processing (cancel timers,
extend window,

Send more segments)

•one way data transfer
•no flow, congestion control
•Also assuming synchronous
sends at the application
layer (not buffer and send
later)

3: Transport Layer 3b-39

TCP
Sender:
Simplified
Pseudo-
code

00 sendbase = initial_sequence number
01 nextseqnum = initial_sequence number
02
03 loop (forever) {
04 switch(event)
05 event: data received from application above
06 create TCP segment with sequence number nextseqnum
07 start timer for segment nextseqnum
08 pass segment to IP
09 nextseqnum = nextseqnum + length(data)
10 event: timer timeout for segment with sequence number y
11 retransmit segment with sequence number y
12 compue new timeout interval for segment y
13 restart timer for sequence number y
14 event: ACK received, with ACK field value of y
15 if (y > sendbase) { /* cumulative ACK of all data up to y */
16 cancel all timers for segments with sequence numbers < y
17 sendbase = y
18 }
19 else { /* a duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y
21 if (number of duplicate ACKS received for y == 3) {
22 /* TCP fast retransmit */
23 resend segment with sequence number y
24 restart timer for segment y
25 }
26 } /* end of loop forever */

Simplified
TCP
sender

3: Transport Layer 3b-40

TCP Receiver: ACK generation
[RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte (sender can use
as hint of selective repeat)

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-41

TCP Details: Roadmap

❒ Data Flow
❍ Interactive
❍ Bulk Data

❒ Timeout/Retransmission
❒ Slow Start/ Congestion Avoidance

3: Transport Layer 3b-42

Interactive data: Small
packets
❒ Example: Telnet/Rlogin

❍ Send each interactive key stroke in a separate TCP
packet

❍ server side echos that same character back to be
displayed on the local screen

❒ How big are these TCP packets containing a single
byte of data?

❍ 1 byte data
❍ 20 bytes (at least) for TCP header
❍ 20 bytes for IP header
❍ < 3% data!

❒ Do we want to fill the pipeline with small packets
like this?

8

3: Transport Layer 3b-43

Piggybacking ACKs
❒ Telnet/Rlogin:

each interactive
key stroke in a
separate TCP
packet

❒ Server side echos
that same
character back to
be displayed on
the local screen

❒ ACK of data is
piggy backed on
echo of data

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

3: Transport Layer 3b-44

Delayed ACKs
❒ Problem: Would like

to send more data at
once or at least
piggyback the acks

❒ Solution: Delay the
ACK for some time
hoping for some data
to go in the other
direction or for more
incoming data for a
cumulative ack

❒ Can we do better
than this?

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

Ack not sent immediately;
Delayed hoping to piggy back

With data or other ACK

simple telnet scenario

3: Transport Layer 3b-45

Nagle Algorithm

❒ If a TCP connection has outstanding data for
which an acknowledgement has not yet been
received, do not send small segments

❍ Instead wait for an acknowledgement to be received then
send all data collected to that point

❍ If collect MSS, go ahead and send without waiting for
ACK

❒ Adjusts to network conditions
❍ If ACKs coming back rapidly (like on a LAN), data will be

sent rapidly
❍ If ACKs coming back slowly (like on a WAN), will collect

more data together in that time to send together

3: Transport Layer 3b-46

Nagle Algorithm
Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=45, data = ‘AT’

Seq=43, ACK=80, data = “AT”

User types ‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

User types ‘A’
(wait for ACK)

User types ‘T’
(Wait for ACK) Seq=79, ACK=43, data = ‘C’

Able to send AT
together

In one TCP segment
rather than

Each having one

3: Transport Layer 3b-47

Experiment: Interactive Data

❒ Use Ethereal to trace a telnet or rlogin
session

3: Transport Layer 3b-48

Bulk Data Transfer

Don’t have any problem collecting full size
TCP segments
Receiver may have trouble keeping up with
sender

Use advertised window to throttle the sender
Some problems with small window sizes
though….

9

3: Transport Layer 3b-49

Bulk Data Transfer

Receiver will send
ACKs of data
received but with
reduced window
sizes
When window opens
up (I.e. app reads
data from kernel
buffers), send a
“window update”
message

Host A

time

Host B

Seq=1, 1024 bytes data

ACK=3073, win 0

Seq=1025, 1024 bytes data

Seq=2049, 1024bytes data

ACK=1,

win 3072

ACK=3073, win 3072

3: Transport Layer 3b-50

Lost Window Update?

❒ What if the last window update message is
lost?
❍ Receiver waiting for data
❍ Sender not allowed to send anything

❒ Solutions?
❍ Set timer on receiver after sending window

update; If don’t here from sender retransmit
❍ Sender periodically sends 1 byte of data even if

window is 0
❒ Which do you think was chosen? Internet

Principle of putting complexity on sender?

3: Transport Layer 3b-51

TCP Persist Timer

❒ Sender set persist timer
when window size goes to
0

❒ When timer expires,
sends a “window probe”
message (TCP packets
with 1 byte of data)

❒ If receiver still has
window 0, it will send an
ack but the ack will not
cover the “illegal” 1 byte
just sent

Host A Host B

Seq=100, 100 bytes data

ACK=200, win 0

Seq=200, 1bytes data

ACK=200, win 0

Persist Timer

3: Transport Layer 3b-52

Silly Window Syndrome

❒ Occurs when small amounts of data are exchanged
over a connection instead of large amounts

❍ Sender only knows they can send X bytes of data
❍ Receiver can really take 2X but hasn’t had a chance to

announce it; gets X bytes so can only advertise X again
❒ Solutions?

❍ Receiver doesn’t advertise small windows; Instead waits
till larger window opens up

❍ Sender holds off sending data till larger amount
accumulated

❍ Which? In this case both

3: Transport Layer 3b-53

Preventing Silly Window

❒ Receiver will not advertise a larger window
until the window can be increased by one
full-sized segment or by half of the
receiver’s buffer space whichever is
smaller

❒ Sender waits to transmit until either a full
sized segment (MSS) can be sent or at
least half of the largest window ever
advertised by the receiver can be sent or
it can send everything in the buffer

3: Transport Layer 3b-54

Bulk Data: Fully Utilizing the
Link
❒ How do we fully utilize the link? (Hint: we

saw this before)
❒ Need window large enough to fill the

pipeline
❒ Window >= bandwidth * round trip time
❒ Note: If use window scaling option not

limited to 64K

10

3: Transport Layer 3b-55

Fully utilizing the link?

❒ Receiver’s advertised window
❒ Header overhead
❒ Ack traffic in other direction
❒ ..

3: Transport Layer 3b-56

Experiment: Bulk Data

❒ Use Ethereal to trace an ftp session
❒ Use ttcp to generate a TCP stream on a

quiet local network – how close to peak
network capacity?

3: Transport Layer 3b-57

Interactive vs Bulk

❒ Interactive tries to accumulate as much data
together as possible without compromising
acceptable interactive experience

❍ Delayed Acks
❍ Nagle Algorithm

❒ Bulk has no problem with accumulating data
together, but can have problem with overwhelming
the receiver

❍ Receiver Advertised Window
❍ Persist Timer

❒ Bulk also tries to fully utilize the link (interactive
has no chance of doing that)

3: Transport Layer 3b-58

Roadmap

❒ Data Flow
❍ Interactive
❍ Bulk Data

❒ Timeout and Retransmission
❒ Slow Start and Congestion Avoidance

3: Transport Layer 3b-59

Timeout and Retransmission

❒ Receiver must acknowledge receipt of all
packets

❒ Sender sets a timer if acknowledgement
has not arrived before timer expires then
sender will retransmit packet

❒ Adaptive retransmission: timer value
computed as a function of average round
trip times and variance

3: Transport Layer 3b-60

TCP: retransmission scenarios (1)
Host A

Seq=92, 8 bytes data

loss

ti
m

eo
ut

time lost data scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

11

3: Transport Layer 3b-61

TCP: retransmission scenarios (2)
Host A

Seq=100, 20 bytes data

ACK=100

Se
q=

92
 t

im
eo

ut

time
premature timeout,

cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

10
0

ti
m

eo
ut

ACK=120

Host A

Seq=100, 20 bytes data

ACK=100

time

Host B

Seq=100, 20 bytes data

ACK=100

Seq=92, 8 bytes data

Se
q=

10
0

ti
m

eo
ut Seq=120, 20 bytes data

lossX

Duplicate ACK, fast retransmit (really need
3 dup acks before fast retransmit)

3: Transport Layer 3b-62

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

❒ Based on RTT
❍ but longer than RTT to

avoid premature time out
because RTT will vary

❒ Tensions
❍ too short: premature

timeout = unnecessary
retransmissions

❍ too long: slow reaction to
segment loss

Q: how to estimate RTT?
❒ SampleRTT: note time when packet

sent; when receive ACK, RTT =
currentTime – sentTime

❍ Not 1:1 correspondence between
segments sent and ACKs

❍ ignore retransmissions,
cumulatively ACKed segments
(Not part of original spec; Karn
and Partridge 1987)

❒ SampleRTT will vary, want estimated
RTT “smoother”

❍ use several recent
measurements, not just current
SampleRTT

3: Transport Layer 3b-63

TCP Round Trip Time Estimate

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

❒ Exponential weighted moving average
❒ Influence of given sample decreases exponentially fast
❒ Typical value of x: 0.1 (90% weight to accumulated

average; 10% to new measurement)
❒ Larger x means adapts more quickly to new conditions

Would this be good?
❍ Yes if real shift in base RTT; No if leads to jumpy

reactions to transient conditions
❍ Which is more likely?

3: Transport Layer 3b-64

Original TCP Timeout
Calculation
We’ve estimated RTT, now how do we set

the timeout?
❒ EstimtedRTT plus “safety margin”
❒ large variation in EstimatedRTT -> larger safety margin
Timeout = EstimatedRTT * DelayVarianceFactor

Recommended DelayVarianceFactor = 2

Problems?
❒ Observe problems in the presence of wide variations in RTT

[Jacobson1988]
❒ Hypothesis: Better if base Timeout on both mean and

variance of RTT measurements

3: Transport Layer 3b-65

Jacobson/Karels Timeout
Calculation
Base on Mean and Variance
❒ Mean deviation good approximation of standard deviation

but easier to compute (no square root ☺)

Timeout = EstimatedRTT + 4*Deviation

Deviation = Deviation +
h*(Error – Deviation)

Error = |SampleRTT-EstimatedRTT|

❒ Recommended: x =0.125 (higher than for original); Timeout
responds more rapidly to changes in RTT

❒ Recommended: h = 0.25

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

3: Transport Layer 3b-66

Experiment

❒ Experiment with a spreadsheet to see how
the calculated timeout times changes with
changes in the measured round trip time

❒ Experiment with Original vs
Jacobson/Karels

❒ Can also experiment with alternate
methods of estimating the round trip time

❒ See RTTall.xls for an example

12

3: Transport Layer 3b-67

RTT 1 to 5
❒ RTT steady at 1 – transitions to steady at 5
❒ Original has timeouts; Jacobson Karel doesn’t
❒ Jacobson/Karel approaches the RTT exactly
❒ Original approaches 2*RTT

0

2

4

6

8

10

12

14

1 6 11 16 21 26 31 36 41 46 51 56

Original Timeout

Jacobson Karel
Timeout
RTT

3: Transport Layer 3b-68

RTT 4 to 1
❒ RTT steady at 4 – transitions to steady at 1
❒ Even though transition down; Jacobson Karel

timeout spikes up
❒ Jacobson/Karel approaches the RTT exactly
❒ Original approaches 2*RTT

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56

Original Timeout

Jacobson Karel
Timeout

RTT

3: Transport Layer 3b-69

RTT Periodic Spike Up
❒ RTT 1 except every N is 4 (here N = 4)
❒ Jacobson/Karel stays well away from timeouts
❒ Original skims much closer to timeouts

0
1
2
3
4
5
6
7
8
9

1 7 13 19 25 31 37 43 49 55

Original Timeout

Jacobson Karel Timeout

RTT

3: Transport Layer 3b-70

RTT Periodic Spike Down
❒ RTT 4 except every N is 1 (here N = 4)
❒ Both Original and Jacobson/Karel stay well

away from timeouts

0
1
2
3
4
5
6
7
8
9

10

1 7 13 19 25 31 37 43 49 55

Original Timeout

Jacobson Karel
Timeout
RTT

3: Transport Layer 3b-71

Flow Control vs Congestion
Control
❒ Flow Control

❍ Prevent senders from overrunning the capacity
of the receivers to process incoming data

❒ Congestion Control
❍ Prevent multiple senders from injecting too

much data into the network as a whole (causing
links or switches to become overloaded)

0

2

4

6

8

10

12

14

1 6 11 16 21 26 31 36 41 46 51 56

Original Timeout

Jacobson Karel
Timeout
RTT

3: Transport Layer 3b-72

Principles of Congestion Control

Congestion:
❒ informally: “too many sources sending too much

data too fast for network to handle”
❒ different from flow control!
❒ a top-10 problem!

13

3: Transport Layer 3b-73

Congestion Prevention?

❒ In a connection-oriented network:
❍ Prevent congestion by requiring resources to be

reserved in advance
❒ In a connectionless network:

❍ No prevention for congestion, just detect
congestion and react appropriately (congestion
control)

3: Transport Layer 3b-74

Detecting congestion?

❒ Network could inform sender of congestion
❍ Explicit notification: Routers can alter packet

headers to notify end hosts
❒ Senders notice congestion for themselves?

❍ Lost packets:If there are more packets than
resources (ex. Buffer space) along some path,
then no choice but to drop some

❍ Delayed packets: Router queues get full and
packets wait longer for service

3: Transport Layer 3b-75

Causes/costs of congestion:
Increased Delays

❒ two senders, two
receivers

❒ one router,
infinite buffers

❒ no retransmission

❒ large delays
when congested

❒ maximum
achievable
throughput

3: Transport Layer 3b-76

Causes/costs of congestion:
Retransmission

❒ one router, finite buffers
❒ sender retransmission of lost packet

“costs” of congestion:
❒ more work (retrans) for given “goodput”
❒ unneeded retransmissions: link carries multiple copies of pkt

3: Transport Layer 3b-77

Causes/costs of congestion:
Upstream capacity wasted
❒ four senders
❒ multihop paths
❒ timeout/retransmit

λ
in

Q: what happens as
and increase (I.e.
send more and more
into a congested
network ?

λ
in

3: Transport Layer 3b-78

Causes/costs of congestion:
Upstream capacity wasted

Another “cost” of congestion:
❒ when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

A: “goodput” goes to 0

14

3: Transport Layer 3b-79

How important is this?

❒ No congestion control = Congestion Collapse
❒ As number of packets entering network

increases, number of packets arriving at
destination increases but only up to a point

❒ Packet dropped in network => all the
resources it used along the way are wasted
=> no forward progress

❒ Internet 1987

3: Transport Layer 3b-80

TCP Details: Roadmap

❒ TCP Flow Control
❒ Slow Start/ Congestion Avoidance
❒ TCP Fairness
❒ TCP Performance
❒ Transport Layer Wrap-up

3: Transport Layer 3b-81

TCP Flow Control
receiver: explicitly

informs sender of
(dynamically changing)
amount of free buffer
space

❍ RcvWindow field in
TCP segment

sender: keeps the amount
of transmitted,
unACKed data less than
most recently received
RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

3: Transport Layer 3b-82

TCP Congestion Control

❒ No explicit feedback from network layer
(IP)

❒ Congestion inferred from end-system
observed loss, delay

❒ Limit window size by both receiver
advertised window *and* a “congestion
window”
❍ ActualWindow < = minimum (ReceiverAdvertised

Window, Congestion Window)

3: Transport Layer 3b-83

TCP Congestion Control: Two
Phases
❒ Don’t just send the entire receiver’s

advertised window worth of data right
away

❒ Start with a congestion window of 1 or 2
packets and a threshold typically the
receiver’s advertised window

❒ Slow Start (Multiplicative Increase): For
each ack received, double window up until a
threshold

❒ Congestion Avoidance (Additive Increase):
Fore each RTT, increase window by 1;

3: Transport Layer 3b-84

Slow Start vs Congestion
Avoidance
❒ Two important variable

❍ Congwin = current congestion window
❍ Threshhold = boundary between multiplicative increase

and additive increase
❒ Below threshhold we are in slow start; Above

threshhold we are congestion avoidance
❒ In slow start, congwin goes up multiplicatively in a

RTT; In congestion avoidance congwin goes up
additively in a RTT

❒ Both congwin and threshhold will vary over the
lifetime of a TCP Connection!

15

3: Transport Layer 3b-85

Original: With Just Flow
Control

Source Destination

…

3: Transport Layer 3b-86

“Slow” Start:
Multiplicative Increase

Source Destination

…

Multiplicative Increase Up to the Threshold

“Slower” than full receiver’s advertised
window

Faster than additive increase

3: Transport Layer 3b-87

TCP Congestion Avoidance:
Additive Increase Source Destination

…

Additive Increase Past the Threshhold

For each RTT, add 1 MSS segment
to the congestion window

Typically done as small increments
based on each ack rather than a single

increase by MSS after acks for complete
window

3: Transport Layer 3b-88

TCP congestion control:

❒ Even additive increase can’t go on for ever, right?
❒ “probing” for usable bandwidth and eventually will hit

the limit
❍ ideally: transmit as fast as possible (Congwin as large as

possible) without loss but in reality keep stepping off cliff
and then adjusting

❒ Loss is inevitable
❍ increase Congwin until loss (congestion)
❍ loss: decrease Congwin, then begin probing (increasing) again

❒ Question is how to “detect” loss and how to react to it?

3: Transport Layer 3b-89

Timeout

❒ The most obvious way to detect losses is with the
timeout of retransmission timer

❒ For large values of congwin and large RTTs this
will have a big penalty

❒ Consider window of 10 MSS segments
❍ Sender transmits 1-10; First is lost
❍ In best case, retransmission timer won’t expire until >

~2*RTT; then retransmission traverses network and ACK
travels back (another RTT)

❍ So lose more than two full windows (2*RTT worth of data
transmissions)

❒ Also TCP imposes an even larger penalty in
adjustments to congwin (1) and threshhold (cut in
half)

3: Transport Layer 3b-90

TCP Congestion Avoidance:
Multiplicative Decrease too

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
every w segments ACKed:

Congwin++
}

threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

16

3: Transport Layer 3b-91

Connection Timeline

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

❒ blue line = value of congestion window in KB
❒ Short hash marks = segment transmission
❒ Long hash lines = time when a packet eventually

retransmitted was first transmitted
❒ Dot at top of graph = timeout
❒ 0-0.4 Slow start; 2.0 timeout, start back at 1;
❒ 5.5-5.6 slow start; 5.6 – 6.8 congestion avoidance

3: Transport Layer 3b-92

Fast Retransmit
❒ Signs of loss besides timeout?
❒ Interpret 3 duplicate acks (ie 4 acks for

the same thing) as an early warning of loss
❍ other causes? Reordering or duplication in

network
❒ Retransmit packet immediately without

waiting for retransmission timer to expire
❒ If getting ACKS can still rely on them to

clock the connection

3: Transport Layer 3b-93

Fast Retransmit

❒ Recall window of 10 MSS segments
❍ Sender transmits 1-10; First is lost
❍ In best case, retransmission timer won’t expire until >

~2*RTT; then retransmission traverses network and ACK
travels back (another RTT)

❍ So lose more than two full windows (2*RTT worth of data
transmissions) without fast retransmit

❍ With retransmit, will get dup ack triggered by receipt of
2,3,4,5 then will retransmit 1 so only loose ½ RTT

❒ In addition, TCP imposes a lighter penalty in terms
of adjustments to congwin and threshhold

❍ Fast Recovery..

3: Transport Layer 3b-94

Fast Recovery
❒ After a fast retransmit,

❍ threshold = ½ (congestion window)
❍ But do not set Congestion window = 1
❍ Instead Congestion Window = threshold + 3* MSS
❍ If more dup acks arrive, congestion Window += MSS
❍ Transmit more segments if allowed by the new congestion

window
❒ Why +MSS for each duplication ack?

❍ Artificially inflate the congestion window for packets we
expect have left the network (triggered dup ack at
receiver)

❒ Finally, when ack arrives for new data,deflate
congestion window back to threshold

❍ congestionWindow = threshold
❍ Still better than back to 1 though!

3: Transport Layer 3b-95

TCP Congestion Control History

❒ Before 1988, only flow control!
❒ TCP Tahoe 1988

❍ TCP with Slow-Start, Congestion Avoidance and Fast
Retransmit

❒ TCP Reno 1990
❍ Add fast recovery (and delayed acknowledgements)

❒ TCP Vegas 1993
❒ TCP NewReno and SACK 1996
❒ TCP FACK
❒ …..

3: Transport Layer 3b-96

TCP Vegas

❒ Sender side only modifications to TCP including
❍ Higher precision RTT calculations
❍ Don’t wait for low precision timeout to occur if higher

precision difference between segment transmit time and
time dup ack received indicates timeout should have
already occurred

❍ If a non-dup ACK is received immediately after a
retransmission, check to see if any segment should have
already timed out and if so retransmit

❍ Avoid reducing congwin several times for same window
(reduce congwin only due to losses that occurred at new
lower rate!)

❒ Vegas in not a recommended version of TCP

17

3: Transport Layer 3b-97

TCK SACK

❒ Adds selective acknowledgements to TCP
❍ Like selective repeat

❒ How do you think they do it?
❍ TCP option that says SACK enabled on SYN => “I am a

SACK enabled sender, receiver feel free to send
selective ack info”

❍ Use TCP option space during ESTABLISHED state to
send hints about data received ahead of acknowledged
data

❒ Does not change meaning of normal
Acknowledgement field in TCP Header

❒ Receiver allowed to renege on SACK hints

3: Transport Layer 3b-98

Details

❒ TCP option 5 sends SACK
info

❒ Format:
❒ +--------+--------+
❒ | Kind=5 | Length |
❒ +--------+--------+--------+--------+
❒ | Left Edge of 1st Block |
❒ +--------+--------+--------+--------+
❒ | Right Edge of 1st Block |
❒ +--------+--------+--------+--------+
❒ | |
❒ / . . . /
❒ | |
❒ +--------+--------+--------+--------+
❒ | Left Edge of nth Block |
❒ +--------+--------+--------+--------+
❒ | Right Edge of nth Block |
❒ +--------+--------+--------+--------+

❒ In 40 bytes of
option can
specify a max of
4 blocks

❒ If used with
other options
space reduced

❒ Ex. With
Timestamp option
(10 bytes), max 3
blocks

3: Transport Layer 3b-99

TCP New Reno

❒ Proposed and evaluated in conjunction with SACK
❒ Modified version of Reno that avoids some of

Reno’s problems when multiple packets are
dropped in a single window of data

❒ Conclusion?
❍ SACK not required to solve Reno’s performance problems

when multiple packets dropped
❍ But without SACK, TCP constrained to retransmit at

most one dropped packet per RTT or to retransmit
packets that have already been successful received
(heart of the Go-Back N vs Selective Repeat discussion)

3: Transport Layer 3b-
100

Other

❒ TCP FACK (Forward Acknowledgments)
❒ TCP Rate-Halving

❍ Evolved from FACK
❒ TCP ECN (Explicit Congestion Notification)

3: Transport Layer 3b-
101

Game Theory Analysis of TCP

❒ Game theory = Balance cost and benefit of greedy
behavior

❍ Benefit of higher send rate = higher receive rate
❍ Cost of higher send rate = higher loss rate

❒ Balance point for Reno is relatively efficient
❒ SACK reduces the cost of a loss so changes the

balance in favor of more aggressive behavior
❒ Balance point for flow control only? Favors

aggressive behavior even more
❒ Note: TCP based on Additive Increase

Multiplicative Decrease (AIMD); Show AIAD
would be stable as well

3: Transport Layer 3b-
102

Status

❒ Reno is most widely deployed
❒ SACK/FACK/ECN being deployed slowly?

❍ NetBSD has SACK/FACK?ECN
❍ SACK Turned on by default in Windows 98 but

not later Windows
❒ Why?

❍ Performance Improvements not sufficiently
dramatic

❍ Less stable in face of greedy behaviour
(Sigcomm 2002)

18

3: Transport Layer 3b-
103

TCP latency modeling

Q: How long does it take to receive an object from a
Web server after sending a request?

A: That is a natural question, but not very easy to
answer.
Even if you know BW and round trip time, depends on
loss profile (remember loss is fundamental),
receiver’s advertised window

❒ Model slow start and congestion avoidance separately and then
alternate between then based on loss profile

3: Transport Layer 3b-
104

TCP Latency Model: Fixed Window

Notation, assumptions:
❒ O: object size (bits)
❒ R: Assume one link between client and server of rate R
❒ W: number of segments in the fixed congestion window
❒ S: MSS (bits)
❒ no retransmissions (no loss, no corruption)

If assume no losses , two cases to consider:
❒ Slow Sender (Big Window): Still sending when ACK returns

❍ time to send window > time to get first ack
❍ W*S/R > RTT + S/R

❒ Fast Sender (Small Window):Wait for ACK to send more data
❍ time to send window < time to get first ack
❍ W*S/R < RTT + S/R

3: Transport Layer 3b-
105

TCP Latency Model: Fixed Window

Slow Sender (Big Window):
latency = 2RTT + O/R

Fast Sender (Small Window):
latency = 2RTT + O/R

+ (K-1)[S/R + RTT - WS/R]

Number of windows:
K := O/WS

(S/R + RTT) – (WS/R) = Time Till Ack Arrives –
Time to Transmit Window 3: Transport Layer 3b-

106

TCP Latency Modeling: Slow Start

❒ Now suppose window grows according to slow start (not slow
start + congestion avoidance).

❒ Latency of one object of size O is:

R
S

R
SRTTP

R
ORTTLatency P)12(2 −−

 +++=

where P is the number of times TCP stalls at server waiting
for Ack to arrive and open the window:

}1,{min −= KQP
- Q is the number of times the server would stall

if the object were of infinite size - maybe 0.

- K is the number of windows that cover the object.

-S/R is time to transmit one segment

- RTT+ S/R is time to get ACK of one segment

3: Transport Layer 3b-
107

TCP Latency Modeling: Slow Start (cont.)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:

O/S = 15 segments

K = 4 windows

Q = 2

P = min{K-1,Q} = 2

Server stalls P=2 times.

Stall 1

Stall 2

3: Transport Layer 3b-
108

TCP Latency Modeling: Slow Start (cont.)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

stallTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2latency

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

 windowth after the timestall 2 1 k
R
SRTT

R
S k =

 −+

+
−

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

 window kth the transmit totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

19

3: Transport Layer 3b-
109

TCP Performance Modeling

❒ Add in congestion avoidance
❍ At threshhold switch to additive increase

❒ Add in periodic loss
❍ Assume kept in congestion avoidance rather

than slow start
❒ Modeling short connections that are

dominated by start-up costs
❒ More general model

❍ Model of loss
❍ Model of queuing at intermediate links
❍ …

3: Transport Layer 3b-
110

TCP Performance Limits

❒ Can’t go faster than speed of slowest link
between sender and receiver

❒ Can’t go faster than
receiverAdvertisedWindow/RoundTripTime

❒ Can’t go faster than dataSize/(2*RTT)
because of connection establishment
overhead

❒ Can’t go faster than memory bandwidth
(lost of memory copies in the kernel)

3: Transport Layer 3b-
111

“Overclocking” TCP with a
Misbehaving Receiver
❒ Optimistic ACKing

❍ Send acks for data not yet received
❍ If never indicate loss, can ramp TCP send rate through

the roof over a long connection!
❍ Of course might really loose data that way

❒ DupAck spoofing
❍ Deliberately send dup acks to trigger window inflation

❒ ACK division
❍ Instead of trying to send as few ACKS as possible, send

as many as possible
❍ Exploits TCP implementation that updates congwin for

each ACK rather than explicitly by 1 segment each RTT
❍ Dup acks increase congwin ½ as slowly for the same

reason
3: Transport Layer 3b-

112

Experiment: Compare TCP and
UDP performance
❒ Use ttcp (or pcattcp) to compare effective

BW when transmitting the same size data
over TCP and UDP

❒ UDP not limited by overheads from
connection setup or flow control or
congestion control

❒ Use Ethereal to trace both

3: Transport Layer 3b-
113

TCP Fairness

Fairness goal: if N TCP sessions share same
bottleneck link, each should get 1/N of link
capacity

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

3: Transport Layer 3b-
114

Why is TCP fair?
Two competing sessions:
❒ Additive increase gives slope of 1, as throughout increases
❒ multiplicative decrease decreases throughput proportionally
❒

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
g h

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

20

3: Transport Layer 3b-
115

Bandwidth Sharing

❒ Multiple TCP streams sharing a link will
adjust to share the link fairly (assuming
losses get distributed evenly among them)

❒ Multiple TCP streams in the presence of a
UDP stream
❍ UDP will take over BW and TCP streams will all

drop to nothing
❒ “TCP Friendly”

❍ Respond to signs of congestion and back off
agressively like TCP

❍ “No no no after you”

3: Transport Layer 3b-
116

TCP vs UDP

❒ TCP has congestion control; UDP does not
❒ TCP has flow control; UDP does not
❒ TCP does retransmission; UDP does not
❒ TCP delivers in-order; UDP does not
❒ TCP has connection setup and close; UDP does not
❒ TCP obeys MSS; UDP reproduces app level send

(stream vs datagram)
❒ TCP has higher header overhead (20-60 vs 8

bytes)
❒ UDP can be used for multicast/broadcast

3: Transport Layer 3b-
117

% TCP vs % UDP
Apps like reliable delivery!

What would happen if UDP used more than TCP?

3: Transport Layer 3b-
118

Transport Layer Summary

❒ principles behind
transport layer services:

❍ multiplexing/demultiplexing
❍ reliable data transfer
❍ flow control
❍ congestion control

❒ instantiation and
implementation in the Internet

❍ UDP
❍ TCP

Next:
❒ leaving the network

“edge” (application
transport layer)

❒ into the network “core”

