
1

3: Transport Layer 3a-1

6: Transport Layer Overview

Last Modified:
2/17/2003 2:18:41 PM

3: Transport Layer 3a-2

Transport Layer
Overview:
❒ transport layer services
❒ multiplexing/demultiplexing
❒ connectionless transport: UDP
❒ principles of reliable data transfer
❒ connection-oriented transport: TCP

❍ reliable transfer
❍ flow control
❍ connection management
❍ congestion control

❒ Instantiation and implementation in the Internet

3: Transport Layer 3a-3

Transport services and protocols

❒ provide logical communication
between app’ processes
running on different hosts

❒ transport protocols run in
end systems

❒ transport vs network layer
services:

❒ network layer: data transfer
between end systems

❒ transport layer: data
transfer between processes

❍ relies on, enhances, network
layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3: Transport Layer 3a-4

application
transport
network

M P2
application
transport
network

Process-to-Process Message
Delivery
Goal : Deliver application data to correct process (and more

particularly to the right socket)

Segment - unit of data exchanged between transport layer
entities; transport protocol data unit (TPDU)

receiver

Ht
Hn segment

segment M
application
transport
network

P1
M

M M
P3 P4

segment
header

application-layer
data

3: Transport Layer 3a-5

Transport protocol example

❒ 2 households each with 12 children all cousins.
❍ cousins all write letters to each other every week
❍ In each house, one child volunteers to collect all the

outgoing letters and distribute all the incoming letters
❒ Analogy to the Internet

❍ Hosts = houses
❍ Processes = cousins
❍ Application messages = letters in envelopes
❍ Network layer protocol = postal service
❍ Transport layer protocol = volunteers

• If note any missing letters and rerequest them etc. then
like TCP

• If just hand out whatever comes in then like UDP

3: Transport Layer 3a-6

UDP: User Datagram Protocol [RFC 768]

❒ “no frills,” “bare bones”
Internet transport
protocol

❒ “best effort” service, UDP
segments may be:

❍ lost
❍ delivered out of order

to app
❒ connectionless:

❍ no handshaking between
UDP sender, receiver

❍ each UDP segment
handled independently
of others

Why is there a UDP?
❒ no connection

establishment (which can
add delay)

❒ TCP is based on a full
duplex connection so can’t
use to send to multiple
receivers at once (I.e.
broadcast or multicast)

❒ simple: no connection state
at sender, receiver

❒ small segment header
❒ no congestion control: UDP

can blast away as fast as
desired

2

3: Transport Layer 3a-7

UDP: more
❒ often used for streaming

multimedia apps
❍ loss tolerant
❍ rate sensitive
❍ Conducive to multicast

❒ other UDP uses (why?):
❍ DNS: small, retransmit if

necessary
❍ SNMP

❒ reliable transfer over UDP:
add reliability at application
layer

❍ application-specific error
recover!

source port # dest port #

32 bits

Application
data

(message; Ex. DNS
Request format)

UDP segment format

length checksum

Length, in
bytes of UDP

segment,
including

header

3: Transport Layer 3a-8

Multiplexing/demultiplexing

Demultiplexing based on IP
addresses and port number
for both the sender and
receiver

❍ Can distinguish traffic
coming to same port but
part of separate
conversations (like
multiple client connections
to a web server)

gathering data from multiple
application processes on the

same host and sending out
the same network interface

source port # dest port #
32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Multiplexing:
Stream of incoming data into
one machine separated into
smaller streams destined for
individual processes

Demultiplexing:

3: Transport Layer 3a-9

Multiplexing/demultiplexing example
Two Web browsers on host A

each open 1 socket

Web
server B

One Web browser on
host C opens 2 sockets

Source IP: C
Dest IP: B

source port: y
dest. port: 80

Source IP: C
Dest IP: B

source port: x
dest. port: 80

Source IP: A
Dest IP: B

source port: x
dest. port: 80

<C,x> to<B,80><A,x> to<B,80> <C,y> to<B,80>

Source IP: A
Dest IP: B

source port: t
dest. port: 80

<A,t> to<B,80>

3: Transport Layer 3a-10

Port Implementation

❒ Message queue
❍ Append incoming message to the end
❍ Much like a mailbox file
❍ Choose which message queue based on <src ip+ port, dest

ip +port>
❒ If queue full, ,message can be discarded

❍ why is that ok? Best effort delivery
❍ The network doesn’t guarantee not to drop, so the OS

needn’t guarantee that either
❒ When application, reads from socket, operating

system removes some bytes from the head of the
queue

❒ If queue empty, application blocks waiting

3: Transport Layer 3a-11

Demultiplexing
❒ Packets arrive on

network
interface, copied
up into system
memory

❒ Placed in
message queue
by transport
protocol, dest IP
and port number,
src IP and port
number

❒ Copied to user
level when app
reads socket

Drop?

Process A
2 ports

Process B
1 port

User level

Kernel level

Incoming messages

3: Transport Layer 3a-12

Demultiplexing (cont)

❒ Receiving process may specify combinations
of <srcaddr, srcport, destaddr, destport>
it will receive or ANY

❒ Demultiplexing by port numbers and IP
address: other choices?
❍ Ip address and process id? high overhead of

coordination and couldn’t have multiple streams
per process

❍ Additional level of addressing by port number
provides level of indirection and finer
granularity addressing

3

3: Transport Layer 3a-13

UDP Headers
❒ Entire UDP header is 8

bytes
❒ Source and destination

ports for demultiplexing
❒ Port field is 16 bits; so 216

or 64K possible ports -not
enough for whole Internet,
why ok? Just for the single
host!

❒ Length is 16 bits
❒ Checksum is 16 bits

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

3: Transport Layer 3a-14

UDP header field: checksum

Sender:
❒ treat segment contents

as sequence of 16-bit
integers (add 0 pad to get
even 16 bit chunks if
necessary)

❒ checksum: addition (1’s
complement sum) of
segment contents

❒ sender puts checksum
value into UDP checksum
field

❒ Checksum optional but
should always be used

Receiver:
❒ compute checksum of received

segment
❒ check if computed checksum

equals checksum field value:
❍ NO - error detected
❍ YES - no error detected. But

maybe errors nonethless?
More later ….

❍ Errors could be anywhere –
in data, in headers, even in
checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

3: Transport Layer 3a-15

UDP checksum

❒ Checksum over UDP header and the
“pseudo header” – not just the data

❒ 12 byte Pseudo header precedes UDP
header
❍ duplicates source and destination IP addresses

and the 8 bit protocol ID from IP header
❍ also duplicates 16 bit UDP length from UDP

header
❒ Why?Double-check message correctly

delivered between endpoints.
❍ Ex.Detect if IP address modified in transit

3: Transport Layer 3a-16

UDP checksum

❒ Actually optional
❍ If sender does not compute set checksum field

to 0
❍ If calculated checksum is 0? Store it as all one

bits (65535) which is equivalent in ones-
complement arthimetic

❒ If checksum is non-zero and receiver
computes a different value, silently drop
packet; no error msg generated

❒ Note: We will talk about more about error
detection and correction at the link layer….

3: Transport Layer 3a-17

UDP Header: length

❒ Length of data and header (min value 8
bytes = 0 bytes data)

❒ 16 bit length field => max length of 65535
bytes

❒ Can you really send that much?
❍ May be limited by kernel send buffer (often <=

8192 bytes)
❍ May be limited by kernel’s IP implementation

(possibly <= 512 bytes) ; Hosts required to
receive 576 bytes of UDP data so senders may
limit themselves to that as well

3: Transport Layer 3a-18

Experimenting with UDP

❒ Programs like sock, ttcp or pcattcp allow you to
generate streams of TCP or UDP data according to
your specifications (total amount of data to send,
size of each segment sent, etc.)

❒ Normally, procedure is as follows
❍ Start tracer like Ethereal

• Consider a filter like (ip.addr eq senderIPaddress)
❍ Start server process (ex. pcattcp –r –u)
❍ Start client process sending traffic (ex. pcattcp –t –u <ip

address of server)
• Note: loopback or own IP address may not appear in

Ethereal
❍ Experiment with different size sends –l bytes (default is

8192) or number of buffers to send –n sends (default is
2048)

• On Ethernet 1473 causes fragmentation, 1472 does not

4

3: Transport Layer 3a-19

UDP Performance Experiments

❒ Vary buffer size , keep total data size the same
❒ Should see higher overall throughput when sending

in larger units Why? Many overheads are fixed
❍ Packet headers
❍ Kernel processing
❍ Grabbing channel at physical layer

❒ Also interesting to repeat experiment across
different network conditions (on same hub, in
same AS, across ASes)

❍ Throughout?
❍ Data loss

3: Transport Layer 3a-20

TCP vs UDP on a LAN

❒ Compare overall throughput for TCP vs UDP
❒ Expect much lower throughput for TCP –

Why?
❍ Connection establishment
❍ Slowstart
❍ Header overhead

❒ On a LAN, TCP shouldn’t see many
retransmissions

3: Transport Layer 3a-21

TCP vs UDP on a WAN

❒ Should see retransmissions and thus more
slow start/congestion avoidance overhead

❒ Quantify the effect

3: Transport Layer 3a-22

Roadmap

❒ UDP is a very thin layer over IP
❍ multiplexing /demultiplexing
❍ error detection

❒ TCP does these things also and then adds
some other significant features

❒ TCP is quite a bit more complicated and
subtle

❒ We are not going to jump right into TCP
❒ Start gently thinking about principles of

reliable message transfer in general

3: Transport Layer 3a-23

The Problem

❒ Problem: send big message (broken into
pieces) over unreliable channel such that it
arrives on other side in its entirety and in
the right order

❒ No out of band communication! All
communication sent along with the pieces
of the message

❒ Receiver allowed to send information back
but only over the same unreliable channel!

3: Transport Layer 3a-24

Intuition: Faxing a document
With Flaky Machine
❒ Can’t talk to person on the other side any other way
❒ Number the pages – so sender can put back together
❒ Let receiver send you a fax back saying what pages they

have and what they still need (include your fax number on
the document!)

❒ What if the receiver sends their responses with a flaky fax
machine too?

❒ What if it is a really big document? No point in overwhelming
the receiver. Receiver might like to be able to tell you send
first 10 pages then 10 more…

❒ How does receiver know when they have it all? Special last
page? Cover sheet that said how many to expect?

5

3: Transport Layer 3a-25

Principles of Reliable data transfer
❒ Solving this problem is one on top-10 list of most

important networking topics!
❍ important in application, transport, link layers

❒ Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol– what
is worst underlying channel can do?
❍ Drop packets/pages?
❍ Corrupt packet/pages (even special ones like the

cover sheet or the receiver’s answer?)
❍ Reorder packets/pages?

3: Transport Layer 3a-26

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

3: Transport Layer 3a-27

Reliable data transfer: getting started
We’ll:
❒ incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
❒ consider only unidirectional data transfer

❍ but control info will flow on both directions!
❒ use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

3: Transport Layer 3a-28

Rdt1.0: reliable transfer over a reliable channel

❒ underlying channel perfectly reliable (so this should
be easy ☺)

❍ no bit errors
❍ no loss of packets

❒ separate FSMs for sender, receiver:
❍ sender sends data into underlying channel
❍ receiver read data from underlying channel

3: Transport Layer 3a-29

Rdt2.0: channel with bit errors
❒ underlying channel may flip bits in packet (can’t drop or

reorder packets)
❍ recall: UDP checksum to detect bit errors

❒ Once can have problems, the receiver must give the sender
feedback (either that or the sender would just have to keep
sending copy after copy forever to be sure)

❒ After receiving a packet, the receiver could say one of two
things:

❍ acknowledgements (ACKs): receiver explicitly tells sender that
pkt received OK

❍ negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

❍ sender retransmits pkt on receipt of NAK
❍ human scenarios using ACKs, NAKs?

3: Transport Layer 3a-30

Rdt2.0: channel with bit errors

❒ new mechanisms in rdt2.0 (beyond rdt1.0):
❍ receiver feedback: control msgs (ACK,NAK) rcvr->sender

(let receiver fax you back info?)
❍ Possible retransmission – detection of duplicates (number

fax pages?)
❍ error detection (checksums? Cover sheet summary?)

6

3: Transport Layer 3a-31

rdt2.0: FSM specification

sender FSM receiver FSM

3: Transport Layer 3a-32

rdt2.0: in action (no errors)

sender FSM receiver FSM

3: Transport Layer 3a-33

rdt2.0: in action (error scenario)

sender FSM receiver FSM

3: Transport Layer 3a-34

rdt2.0 has a fatal flaw!

What happens if ACK/NAK corrupted?
❒ sender doesn’t know what happened at receiver!
❒ FSM implied could tell if it was and ACK or a NACK
❒ What if is a FLACK?

What to do?
❒ Assume it was an ACK and transmit next? What if it was a NACK?

Missing data
❒ Assume it was a NACK and retransmit; What if it was an ACK?

Duplicate data
Handling duplicates:
❒ To detect duplicate, sender adds sequence number to each pkt
❒ sender retransmits current pkt if ACK/NAK garbled
❒ If receiver has pkt with that number already it will discards (I.e.

not deliver up duplicate pkt)

3: Transport Layer 3a-35

rdt2.1: sender, handles garbled ACK/NAKs

New:
compute_chksum

corrupt()

3: Transport Layer 3a-36

rdt2.1: receiver, handles garbled ACK/NAKs

If not corrupt, always
send ACK, but only

Deliver_data first time

7

3: Transport Layer 3a-37

rdt2.1: discussion
Sender:
❒ seq # added to pkt
❒ two seq. #’s (0,1) will

suffice. Why?
❒ must check if received

ACK/NAK corrupted
❒ twice as many states

❍ state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
❒ must check if received

packet is duplicate
❍ state indicates whether 0 or 1

is expected pkt seq #
❍ Note: This protocol can also

handle if the channel can
duplicate packets

❒ note: when can sender and
receiver safely exit?
receiver can not know if its
last ACK/NAK received OK
at sender

❍ Missing connection termination
procedure

3: Transport Layer 3a-38

rdt2.2: a NAK-free protocol
❒ Less intuitive but getting us

closer to TCP
❒ same functionality as

rdt2.1, using NAKs only
❒ instead of NAK, receiver

sends ACK for last pkt
received OK (or for other
number on the first
receive)

❍ receiver must explicitly
include seq # of pkt being
ACKed

❒ duplicate (or unexpected)
ACK at sender results in
same action as NAK:
retransmit current pkt

❒ TCP really ACKS the next
thing it wants

sender
FSM

!

3: Transport Layer 3a-39

rdt3.0: channels with errors (and
duplicates) and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

❍ How to deal with loss?
Retransmission plus seq
to detect duplicates

❍ but not enough
Q: how to detect loss?

Approach: sender waits
“reasonable” amount of
time for ACK

❒ retransmits if no ACK
received in this time

❒ if pkt (or ACK) just delayed
(not lost):

❍ retransmission will be
duplicate, but use of seq.
#’s already handles this

❍ receiver must specify seq
of pkt being ACKed

❒ requires countdown timer

3: Transport Layer 3a-40

rdt3.0 sender
Start_timer

Timeout events

3: Transport Layer 3a-41

rdt3.0 in action

3: Transport Layer 3a-42

rdt3.0 in action

8

3: Transport Layer 3a-43

Stop and Wait

❒ Rdt3.0 also called Stop and Wait
❍ Sender sends one packet, then waits for

receiver response
❒ What is wrong with stop and wait?

❍ Slow!! Must wait full round trip time between
each send\

❒ Obvious Fix?
❍ Instead send lots, then stop and wait
❍ Call this a pipelined protocol because many

packets in the pipeline at the same time

3: Transport Layer 3a-44

Pipelined protocols
Pipelining: sender allows multiple, “in-flight” yet-to-

be-acknowledged packets
❍ range of sequence numbers must be increased to be

able to distinguish them all
❍ Additional buffering at sender and/or receiver
❍ Once allow multiple “in-flight” consider that channel

may reorder the packets

3: Transport Layer 3a-45

How bad is Stop and Wait?
❒ Depends on network conditions
❒ example: 1 Gbps link, 15 ms end-to-end prop. delay, 1KB

packet:
Ttransmit = 1kb/pkt

10**9 b/sec = 1 microsec

Utilization = U = = 1 microsec
30.001 msec

Utilization of the
channel = 0.003%

❍ 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps
link

❍ network protocol limits use of physical resources!

❒ In general, smaller packets, longer RTT and higher
maximum bandwidth, all make the situation worse

3: Transport Layer 3a-46

Filling the pipeline

❒ How much in-flight data is needed to “fill
the pipeline”?

❒ Similar to question of how much water
needed to fill a pipe (area of crosssection *
length of pipe)

❒ For networks, it is bandwidth*delay

3: Transport Layer 3a-47

Pipelined protocols

❒ Two generic forms of pipelined protocols
❍ Go-Back-N
❍ Selective repeat

❒ Many possible variations on each

3: Transport Layer 3a-48

Go-Back-N

❒ Sender keeps track of beginning of a
window of up to N packets

❒ Each time get an ACK for the beginning of
the window can advance the window

❒ If get a timeout for the first packet in the
window, retransmit all packets in the
window

❒ Some of those retransmitted packets may
have been correctly received

9

3: Transport Layer 3a-49

Go-Back-N
Sender:
❒ k-bit seq # in pkt header
❒ “window” of up to N, consecutive unack’ed pkts allowed (want N

large enough to fill the pipeline, based on link characteristics)

❒ Cumulative ACK: ACK(n): ACKs all pkts up to, including seq # n
❍ may receive duplicate ACKs (see receiver)

❒ timer for each in-flight pkt
❒ timeout(n): retransmit pkt n and all higher seq # pkts in window

3: Transport Layer 3a-50

GBN: sender extended FSM

3: Transport Layer 3a-51

GBN: receiver extended FSM

receiver simple:
❒ ACK-only: always send ACK for correctly-received

pkt with highest in-order seq #
❍ may generate duplicate ACKs
❍ need only remember expectedseqnum

❒ out-of-order pkt:
❍ Can discard (don’t buffer) -> no receiver buffering

required!
❍ ACK pkt with highest in-order seq #

3: Transport Layer 3a-52

Loss of one
packets
(pkt2)
causes
retransmissi
on of 4
packets
(2-5)

GBN in
action

3: Transport Layer 3a-53

Selective Repeat

❒ GBN forces sender to retransmit all
packets in window even if some have been
correctly received

❒ To avoid that we need a finer granularity
of acknowledgement
❍ individual acknowledgements vs cumulative

acknowledgements

3: Transport Layer 3a-54

Selective repeat: sender, receiver windows

10

3: Transport Layer 3a-55

Selective repeat

data from above :
❒ if next available seq # in

window, send pkt
timeout(n):
❒ resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

❒ mark pkt n as received
❒ if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

❒ send ACK(n)
❒ out-of-order: buffer
❒ in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

❒ Duplicate
❒ ACK(n)
otherwise:
❒ ignore

receiver

3: Transport Layer 3a-56

Selective Repeat

❒ receiver individually acknowledges all correctly
received pkts

❍ Must buffer any packet acknowledged for eventual in-
order delivery to upper layer (even if cannot deliver
right now)

❍ Can still choose not to ACK an out of order packet if
insufficient buffer space

❒ sender only resends pkts for which ACK not
received

❍ sender timer for each unACKed pkt
❒ sender window

❍ N consecutive seq #’s
❍ again limits seq #s of sent, unACKed pkts

3: Transport Layer 3a-57

Selective repeat in action

Loss of one pkt causes
retransmission of just
that pkt 3: Transport Layer 3a-58

Selective Repeat vs GBN

❒ Selective Repeat requires individual
acknowledgements rather than chance for
cumulative acknowledgements

❒ GBN results in unnecessary retransmission
of data correctly received

❒ In Selective Repeat, sender can choose to
buffer out of order and avoid unnecessary
retransmission (but not required)

3: Transport Layer 3a-59

TCP?

❒ TCP is most like GBN
❍ But many TCP implementations will buffer correctly

received but out of order segments and senders use
duplicate acknowledgments to infer which segment
dropped .. This is sort of like Selective Repeat

❒ TCP uses cumulative acknowledgements but counts
bytes not packets and receiver ACKS what it
wants not last thing it received

❒ Window size is not fixed like N in GBN
❍ TCP allows receiver to set a maximum (dynamically)
❍ Effective window size also changed over time in response

to signs of congestion in the network

3: Transport Layer 3a-60

Pipelined protocols

Sequence Number
Dilemma

Example:
❒ seq #’s: 0, 1, 2, 3
❒ window size=3
❒ receiver sees no

difference in two
scenarios!

❒ incorrectly passes
duplicate data as new
in (a)

11

3: Transport Layer 3a-61

Sequence Numbers

❒ Q: what relationship
between seq # size
and window size?

❒ A: window size <= ½
sequence number
space

❍ True for Stop and Wait
(1 <= ½*2)

❍ need old and new
version of every
sequence #

❒ Still one problem, packets
could conceivably delayed
for arbitrarily long in the
network so could get an
old packet N even after
the sequence number
space has wrapped around

❒ Solution? Not really. In
practice, assume a
maximum time a packet
could live in the network

3: Transport Layer 3a-62

Roadmap

❒ Discussed general principles of reliable message
delivery over unreliable channel

❍ Lots of it is common sense (like with our flaky fax
machine)

❍ But there is a significant degree of subtlety in getting it
right!

❒ We are going to move on to talking specifically
about TCP

❍ Flow control? Congestion control?
❒ We have most of the tools we need now: sequence

numbers, cummulative acknowledgments,
retransmisson timers….

3: Transport Layer 3a-63

Outtakes

3: Transport Layer 3a-64

Transport-layer protocols

Internet transport services:
❒ reliable, in-order unicast

delivery (TCP)
❍ Connection oriented
❍ flow control
❍ congestion control

❒ unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP

❒ services not available:
❍ Interarrival time gurantee
❍ bandwidth guarantee
❍ If IP layer can’t provide no

way to simulate on top

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

3: Transport Layer 3a-65

Principles of Reliable data transfer
❒ top-10 list of important networking topics!
❒ important in application, transport, link layers

❒ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt) – what is
worst underlying channel can do?

