
1

2: Application Layer 1

3: Application Protocols:
HTTP and DNS

Last Modified:
2/3/2003 8:13:18 PM

2: Application Layer 2

Network Applications Drive
Network Design
❒ Important to remember that network

applications are the reason we care about
building a network infrastructure

❒ Applications range from text based
command line ones popular in the 1980s
(like telnet, ftp, news, chat, etc) to
multimedia applications (Web browsers,
audio and video streaming, real-time video
conferencing, etc.)

2: Application Layer 3

What is the Internet used for?
Credit:
CAIDA (1999)

2: Application Layer 4

Top-down: Internet protocol
stack

Application

Transport

Network

Physical

users
network

HTTP, SMTP, FTP, TELNET, DNS, …

TCP, UDP.

IP

Point-to-point links,
LANs, radios, ...

2: Application Layer 5

Protocol stack

e-mail client

TCP server

IP server

ethernet
driver/card

user X

SMTP

TCP

IP

e-mail server

TCP server

IP server

ethernet
driver/card

user Y

IEEE 802.3 standard

electric signals

English

2: Application Layer 6

Applications and application-layer protocols

Application: communicating,
distributed processes

❍ running in network hosts in
“user space”

❍ exchange messages to
implement app

❍ e.g., email, file transfer, the
Web

Application-layer protocols
❍ one “piece” of an app (web

browser do more than speak
HTTP)

❍ define messages exchanged
by apps and actions taken

❍ user services provided by
lower layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2

2: Application Layer 7

Client-server paradigm

Typical network app has two
pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
❒ initiates contact with server

(“speaks first”)
❒ typically requests service from

server,
❒ for Web, client is implemented

in browser; for e-mail, in mail
reader

Server:
❒ Running first (always?)
❒ provides requested service to

client e.g., Web server sends
requested Web page, mail
server delivers e-mail

request

reply

2: Application Layer 8

HTTP

2: Application Layer 9

The Web: the http protocol

http: hypertext transfer
protocol

❒ Web’s application layer
protocol

❒ client/server model
❍ client: browser that

requests, receives,
“displays” Web objects

❍ server: Web server has
access to storage
containing a set of Web
documents; sends copies in
response to requests

❒ http1.0: RFC 1945
❒ http1.1: RFC 2616
❒ r (e.g. Java applet)

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http
 request

http response

http
 response

2: Application Layer 10

The http protocol: more

http: TCP transport
service:

❒ client initiates TCP
connection (creates socket)
to server, port 80

❒ server accepts TCP
connection from client

❒ http messages (application-
layer protocol messages)
exchanged between browser
(http client) and Web server
(http server)

❒ TCP connection closed

http is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒ past history (state) must
be maintained

❒ if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

2: Application Layer 11

Uniform Resource Locator
(URL)

protocol://authority:port/p/a/th/item_name?query

❍ protocol = http
❍ authority = server machine
❍ port = 80 by default
❍ /p/a/th/item_name = specifies a file to be

returned or possibly a program to be executed
to produce the file to be returned

❍ query = data to be interpreted by server

2: Application Layer 12

Note: Static vs Dynamic vs
Active Web Pages
❒ Static: Stored in a file and unchanging

❒ Dynamic: Formed by server on demand in
response to a request
❍ Output from a program (e.g. Common Gateway

Interface (CGI))
❍ Often use query data sent with URL

❒ Active: Executed at the client!
❍ Computer program (not just output) that can

interact with user (e.g. Java applet)

3

2: Application Layer 13

http example
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80
is default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.index),
sends message into socket

time

(contains text,
references to 10

jpeg images)

2: Application Layer 14

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. http server closes TCP
connection.

time

2: Application Layer 15

http message format: request

❒ Two types of http messages: request, response
❒ Http request message:

❍ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 16

http request message: general format

2: Application Layer 17

http message format: response

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

2: Application Layer 18

http response status codes

200 OK
❍ request succeeded, requested object later in this message

301 Moved Permanently
❍ requested object moved, new location specified later in

this message (Location:)
400 Bad Request

❍ request message not understood by server
404 Not Found

❍ requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

4

2: Application Layer 19

Conditional GET

❒ Goal: don’t send object if
client has up-to-date stored
(cached) version

❒ client: specify date of
cached copy in http request
If-modified-since:

<date>

❒ server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.0 200 OK

…
<data>

object
modified

2: Application Layer 20

Authentication (and statelessness)
Authentication goal: control

access to server documents
❒ stateless: client must present

authorization in each request
❒ authorization: typically name,

password
❍ authorization: header

line in request
❍ if no authorization

presented, server refuses
access, sends
WWW authenticate:
header line in response

❒ Authorization will go with
each request to server

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

Browser caches name & password so
that user does not have to repeatedly enter it.

2: Application Layer 21

Cookies (and statelessness ?)

❒ server sends “cookie” to
client in response mst
Set-cookie:

❒ client presents cookie in
later requests
cookie:

❒ server matches
presented-cookie with
server-stored info

❍ authentication
❍ remembering user

preferences, previous
choices

❒ Get client to remember
“state” so server can be
stateless!

client server
usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action

2: Application Layer 22

HTTP 1.1 : Persistent connections

Non-persistent
❒ HTTP/1.0
❒ server parses request,

responds, and closes
TCP connection

❒ Each object transfer
suffers from TCP
connection setup
overhead

❒ 2 RTTs to fetch each
object

Persistent
❒ default for HTTP/1.1
❒ on same TCP

connection: server,
parses request,
responds, parses new
request,..

❒ Client sends requests
for all referenced
objects as soon as it
receives base HTML.

❒ Fewer RTTs

But most 1.0 browsers use
parallel TCP connections. Do
1.1 browsers do this? ☺

2: Application Layer 23

Other Features in HTTP 1.1

❒ Hostname Identification
❍ Allows one physical web server to serve content for

multiple logical servers
❒ Content Negotiation

❍ Allows client to request a specific version of a resource
❒ Chunked Transfers

❍ For dynamic content, server needn’t specify all
characteristics like size ahead of time

❒ Byte Ranges
❍ Clients can ask for small pieces of documents

❒ Support for Proxies and Caches

2: Application Layer 24

Web Caches (proxy server)

❒ user sets browser:
Web accesses via web
cache

❒ client sends all http
requests to web cache

❍ if object at web
cache, web cache
immediately returns
object in http
response

❍ else requests object
from origin server,
then returns http
response to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http
 request

http response

http
 response

http
 request

http
 response

http requesthttp response

origin
server

origin
server

5

2: Application Layer 25

Why Web Caching?
Assume: cache is “close” to

client (e.g., in same network)
❒ smaller response time: cache

“closer” to client
❍ decrease traffic to distant

servers
❍ link out of institutional/local

ISP network often bottleneck
❒ Other reasons? Anonymity?

Translation for low feature
clients (ex. PDAs)

origin
servers

public
Internet

institutional
network 100 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 26

Why not web caching?

❒ It adds time to a requests that miss in the
cache

❒ Servers don’t see accurate number of hits
to their content
❍ To collect information on who is requesting

what, extract fees, etc.

2: Application Layer 27

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.google.com 80

2. Type in a GET http request:
GET / HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

2: Application Layer 28

HTTP 1.0 vs 1.1

1. HTTP 1.0 telnet www.google.com 80
GET / HTTP/1.0

<send data >
Connection closed by foreign host.

2. HTTP 1.1 telnet www.google.com 80
GET / HTTP/1.1

<send data>
GET / HTTP/1.1

<send data>
GET / HTTP/1.0

<send data >
Connection closed by foreign host.

2: Application Layer 29

Experiment yourself

1. Try some headers telnet www.google.com 80
GET / HTTP/1.1

Host: www.google.com

2. Try a real query (look at syntax of URL when you use
google)

3. Try a chunked transfer
4. ….

2: Application Layer 30

For the record: HTTP vs HTML

❒ HTML format is highly specified but is just
considered the data or body of an HTTP
message

❒ HTML is not part of the HTTP protocol
❒ Example of layering: each layer speaks to a

peer layer in an agreed upon language or
protocol

❒ In this case, both are processed by the
web browser. The web browser is both an
HTTP client and an HTML parser.

6

2: Application Layer 31

DNS

2: Application Layer 32

Names and IP addresses

People: many identifiers:
❍ SSN, name, Passport #

Internet hosts, routers: many identifiers too
❍ IP address (32 bit) - used for addressing datagrams
❍ “name”, e.g., www.google.org - used by humans

Q: map between IP addresses and name ?
DNS does

..but before we talk about DNS lets talk more about
names and addresses!

2: Application Layer 33

Names and addresses:
why both?

❒ Name: www.google.com
❒ IP address: 216.239.57.101

❍ (Also Ethernet or other link-layer addresses.)

❒ IP addresses are fixed-size numbers.
❍ 32 bits. 216.239.57.101 =

11011000.11101111.111001.1100101

❒ Names are memorizable, flexible:
❍ Variable-length
❍ Many names for a single IP address.
❍ Change address doesn’t imply change name.
❍ iPv6 addresses are 128 bit – even harder to memorize!

2: Application Layer 34

Mapping Not 1 to 1

❒ One name may map to more than one IP
address
❍ IP addresses are per network interface
❍ Multihomed machines have more than one

network interface - each with its own IP
address

❍ Example: routers must be like this
❒ One IP address may map to more than one

name
❍ One server machine may be the web server

(www.foo,com), mail server (mail.foo.com)etc.

2: Application Layer 35

How to get names and
numbers?
❒ Acquistion of Names and numbers are both

regulated
❍ Why?

2: Application Layer 36

How to get a machine name?

❒ First, get a domain name then you are free
to assign sub names in that domain
❍ How to get a domain name coming up

❒ Before you ask for a domain name though
❍ Should understand domain name structure…
❍ Should also know that you are responsible for

providing authoritative DNS server (actually a
primary and one or more secondary DNS
servers) for that domain and registration
information through “whois”

7

2: Application Layer 37

Domain name structure

ccTLDs

root (unnamed)

com milgovedu grorgnet fr ukus

ustreas second level (sub-)domainsgoogle

gTLDs

gTLDs= Generic Top Level Domains
ccTLDs = Country Code Top Level Domains

2: Application Layer 38

Top-level Domains (TLDs)

❒ Generic Top Level Domains (gTLDs)
❍ .com - commercial organizations
❍ .org - not-for-profit organizations
❍ .edu - educational organizations
❍ .mil - military organizations
❍ .gov - governmental organizations
❍ .net - network service providers
❍ New: .biz, .info, .name, …

❒ Country code Top Level Domains (ccTLDs)
❍ One for each country

2: Application Layer 39

How to get a domain name?

❒ In 1998, non-profit corporation, Internet
Corporation for Assigned Names and Numbers
(ICANN), was formed to assume responsibility
from the US Government

❒ ICANN authorizes other companies to register
domains in com, org and net and new gTLDs
❍ Network Solutions is one of the largest and in

transitional period between US Govt and ICANN had
sole authority to register domains in com, org and net

2: Application Layer 40

Want to be a registrar?

❒ http://www.icann.org/registrars/accredita
tion.htm

❒ Application + $2500 application fee
❒ Sign agreement
❒ Demonstrate $70,000 in working capital
❒ Yearly fee - $4000 for first TLD + $500

for each additional

2: Application Layer 41

How to get an IP Address?

❒ Answer 1: Normally, answer is get an IP
address from your upstream provider
❍ This is essential to maintain efficient routing!

❒ Answer 2: If you need lots of IP addresses
then you can acquire your own block of
them.
❍ Get them from a regional Internet registry

2: Application Layer 42

Internet Registries

If you want a block of IP addresses, go to an
Internet Registry
RIPE NCC (Riseaux IP Europiens Network Coordination

Centre) for Europe, Middle-East, Africa
APNIC (Asia Pacific Network Information Centre)for Asia

and Pacific
ARIN (American Registry for Internet Numbers) for North

America, the Caribbean, sub-equatorial Africa
LACNIC – Latin American and Caribbean Registry (new

10/2002)
Note: Once again regional distribution is important for

efficient routing!
Can also get Autonomous System Numbers (ASNs

from these registries

8

2: Application Layer 43

Obtaining a Block of IP
addresses
❒ Price (ARIN,Jan 2003)

❍ http://www.arin.net/registration/fee_schedule.html
❍ $2500/year for /20 ; $20000/year for a /14
❍ /20 = 20 of the 32 bits in IP address are specified, 12

bits free, ~212= 4096 possible hosts
❍ See why a /14 would be more expensive than a /20?

❒ Can’t just pay and not use them
❍ IP address space is a scarce resource
❍ You must prove you have fully utilized a small block

before can ask for a larger one!

2: Application Layer 44

Checkpoint

❒ Now you know both how to get a machine
name and how to get an IP address

❒ Now back to DNS – how to map from one to
the other!

2: Application Layer 45

Mapping from name to IP Address?

How could we provide this service?
❒ In the beginning, file containing mapping for all hosts copied

to each new host
❍ Size of file?
❍ Propagation of changes?

❒ Centralized DNS server?
❍ single point of failure
❍ traffic volume
❍ distant centralized database
❍ maintenance

doesn’t scale!

❒ no server has all name-to-IP address mappings

2: Application Layer 46

DNS: Domain Name System

Domain Name System:
❒ distributed database implemented in hierarchy of

many name servers
❒ application-layer protocol host, routers, name

servers to communicate to resolve names
(address/name translation)
❍ note: core Internet function implemented as

application-layer protocol
❍ complexity at network’s “edge”

2: Application Layer 47

Name Server Zone Structure

root

Structure based on
administrative issues.lucent

com miledugov grorgnet fr ukus

ustreas

www

irs Zone: subtree with common
administration authority.

2: Application Layer 48

Mapping Name Servers to
“Zones”

root

cornelllucent

com ...edugov

ustreas

customs

www

irs
IRS NS

Ustreas NSLucent NS

Root NS

9

2: Application Layer 49

Kinds of Name Servers

Name server: process running on a host that processes
DNS requests

❍ local name servers:
• each ISP, company has local (default) name server
• host DNS query first goes to local name server

❍ authoritative name server:
• can perform name/address translation for a specific domain or

zone
❍ root name server:

• Knows the authoritative server for each domain
❍ intermediate name server:

• Authoritative servers for a large domain may hand off queries
to lower level name servers that are responsible for a portion
of the domain

2: Application Layer 50

Local Name Servers

❒ Each host knows the IP address of a local
NS.

❒ Each local NS knows the IP addresses of
all root NSs.

2: Application Layer 51

Authoritative Name Servers

❒ Authoritative name servers for a given
domain do not “cache” the translation
instead they are the official source for
translating all machine names in that
domain

❒ For each domain, there must be an
authoritative name server
❍ In fact, must be at least two- a primary and

secondary

2: Application Layer 52

Root Name Servers

❒ How do local name servers find the
authoritative NS for a given domain?

❒ Local name servers contact root name
servers for the address of the
authoritative name server for a domain

2: Application Layer 53

Root name servers
❒ ~10 root name servers in

the Internet
❍ A. ROOT-SERVERS.NET
❍ B.ROOT-SERVERS.NET
❍ …

❒ Most in US, 1 in Japan, 2
in Europe

❍ http://netmon.grnet.gr/sta
thost/rootns/

❍ ftp://rs,internic.net/domai
n/named.cache

❒ RFC 2870: Root Name
Server Operational
Requirements

2: Application Layer 54

Putting it together

host surf.eurecom.fr
wants IP address of
gaia.cs.umass.edu

1. Contacts its local DNS
server, dns.eurecom.fr

2. dns.eurecom.fr contacts
root name server, if
necessary

3. root name server contacts
authoritative name server,
dns.umass.edu, if
necessary requesting host

surf.eurecom.fr
gaia.cs.umass.edu

root name server

authorititive name server
dns.umass.edu

local name server
dns.eurecom.fr

1

2
3

4
5

6

What is wrong with this picture?

10

2: Application Layer 55

DNS: iterated queries
recursive query:
❒ Contacted server

completes translation
itself

❒ Puts burden on
contacted server

iterated query:
❒ contacted server

replies with name of
server to contact

❒ “I don’t know this
name, but ask this
server”

❒ Takes burden off
contacted servers

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

recursive
query

Root servers disable recursive queries! 2: Application Layer 56

Intermediate Name Servers

❒ What about big domains? Couldn’t the
authoritative name servers for a big domain get
overloaded like the root? Or maybe it is
inconvenient administratively for two sub domains
to share the same DNS server?

❒ We don’t want the root to have to remember
different servers for sub domains.

❒ Give the root the name of an “intermediate name
server”

❍ They aren’t really the authority for each sub domain but
they can point you to the authority!

2: Application Layer 57

Intermediate Name Server

❒ Root name server
may not know the
real authoritative
name server

❒ may know
intermediate
name server: who
to contact to find
authoritative
name server

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

2: Application Layer 58

DNS – Point of Failure

❒ How often are failures a result of DNS
failure?
❍ Make notes of IP addresses of common

machines you use
❍ If can’t access, try instead accessing by IP

address
❍ If you can -> DNS failure somewhere

2: Application Layer 59

DNS UPDATE
❒ DNS designed for fairly slow/infrequent change

to these mappings
❍ Changes made via external edits to a zone's Master

File
❍ Faster more automatic update/notify mechanisms

under design by IETF
❍ Proposed Standard: RFC 2136

❒ Example: home machines that get a new IP
address all the time – can update the translation
of human readable name to that new IP address;
DHCP in general

❒ Once a non-authoritative name server learns a
mapping, it caches the mapping

❍ cache entries timeout (disappear) after some time
❍ What it change faster than cache entries time out?

2: Application Layer 60

DNS records: More than Name to
IP Address
DNS: distributed db storing resource records (RR)

RR format: (name, value, type,ttl)

❒ Type=A
❍ One we’ve been discussing
❍ Maps name to IP address
❍ name is hostname
❍ value is IP address

❒ Other common ones? NS, MX, CNAME, PTR
❒ Lots more: SOA, HINFO, MB, MR, MG, WKS, RB

11

2: Application Layer 61

DNS records: More than Name to
IP Address
❒ Type=NS

❍ name is domain (e.g.
foo.com)

❍ value is IP address of
authoritative name server
for this domain (why not
name?)

❒ Type=CNAME
❍ name is an alias name

for some “cannonical”
(the real) name

❍ value is cannonical
name

❒ Type=MX
❍ value is hostname of

mailserver associated with
name

❒ Type=PTR
❍ name is IP address (in

special format)
❍ value is name
❍ Reverse of type A

2: Application Layer 62

PTR Records

❒ Do reverse mapping from IP address to
name

❒ Why is that hard? Which name server is
responsible for that mapping? How do you
find them?

❒ Answer: special root domain, arpa, for
reverse lookups

2: Application Layer 63

Arpa top level domain

root

com miledugov grorgnet fr ukusarpa

In-addr

128

30 33 1

ietf

www

1.33.30.128.in-addr.arpa.

www.ietf.org.

Want to know machine name for 128.30.33.1?
Issue a PTR request for 1.33.30.128.in-addr.arpa

2: Application Layer 64

Why is it backwards?

❒ Notice that 1.33.30.128.in-addr.arpa is written
in order of increasing scope of authority
just like www.irs.gov

❒ From largest scope of authority, gov, up to
single machine www.irs.gov

❒ From largest scope of activity, arpa, up to
single machine 1.33.30.128.in-addr.arpa (or
128.30.33.1)

❒ nslookup –query=any 1.33.30.128.in-addr.arpa
??

2: Application Layer 65

In-addr.arpa domain

❒ When an organization acquires a domain
name, they receive authority over the
corresponding part of the domain name
space.

❒ When an organization acquires a block of
IP address space, they receive authority
over the corresponding part of the in-
addr.arpa space.

❒ Example: Acquire domain berkeley.edu and
acquire a class B IP Network ID 128.143

2: Application Layer 66

DNS protocol, messages
DNS protocol : query and repy messages, both with same

message format

msg header
❒ identification: 16 bit # for

query, repy to query uses
same #

❒ flags:
❍ query or reply
❍ recursion desired
❍ recursion available
❍ reply is authoritative
❍ reply was truncated

Sample query and response?

12

2: Application Layer 67

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 68

UDP or TCP

❒ DNS usually uses UDP
❒ Doesn’t DNS need error control? Why is UDP

usually ok?
❍ Each object small enough to go in one datagram – no need

for reorder
❍ Retransmission? Just instrument client to resend request

if doesn’t get a response
❒ When does DNS use TCP?

❍ Truncation bit; if reply too long, set truncate bit as
signal to request using TCP

❍ Also for zone transfers from primary to secondary
servers (RFC still says try UDP first)

❒ BIND can be configured to only respond to a TCP
request if a corresponding UDP request was made
first

2: Application Layer 69

Why not always TCP?

❒ TCP has higher overhead
❍ 2 Round Trips per query rather than 1
❍ Many apps that use UDP implement only the

subset of TCP functionality they really need
❒ Also UDP requires less state on server

❍ With TCP, each connection requires significant
state

❍ More prone to overload (denial of service
attacks?)

2: Application Layer 70

HTTP vs DNS

❒ Why is HTTP human readable and DNS
not?
❍ Saves space is the limited size of the

query/response packet
❍ HTTP used by an application focused on end

users; DNS used by an application focused on
network management?

❍ Better answer??

2: Application Layer 71

nslookup

❒ Use to query DNS servers (not telnet like with
http – why?)

❒ Interactive and Non-interactive modes
❒ Examples:

❍ nslookup www.yahoo.com
• Many IP addresses why?

❍ nslookup –query=mx gnu.org
❍ nslookup

• Enter interactive shell
• Type a host name; get its IP address info
• ls –d <domain.name> (rarely supported)
• set debug, set recurse, set norecurse,…
• exit

2: Application Layer 72

Summary

❒ We looked at two application level
protocols: HTTP and DNS

❒ HTTP runs on TCP
❒ DNS usually runs on UDP (sometimes on

TCP)

❒ HTTP is human readable; DNS not

13

2: Application Layer 73

Outtakes

2: Application Layer 74

Other

❒ DNS forwarding
❍ Way to say if don’t find it here look here

instead
❍ Examples

• I used to be authoritative for this – now I’m not look
here

• Also useful for reverse lookups when organizations
don’t have a full class A/B/C address – say where else
to look for possible reverse name lookup

• Internal DNS server behind firewall and has full
translations within domain; External has publicly
visible like web and mail servers; Internal is
firewalled off so forwards request for outside world
to external that queries the root servers etc

2: Application Layer 75

Other

❒ Need to use TCP for DNS through
firewalls?

❒ Common DDOS attack on DNS is to send
TCP requests to a large array of servers
around the world for some zone that they
are not authoritative for. In turn,all
those servers then go and make a large
number of TCP requests to that zone's
authoritative server at once.

2: Application Layer 76

DNS Notify

❒ Used by a master server to inform the
slave servers that they should ask for an
update. Zone Transfers are typically
limited to only allow the slave servers to
receive that zone. For that reason, using
the "ls" feature in nslookup almost never
works.

2: Application Layer 77

HTML overview

❒ Markup language give general layout
guidelines - not exact placement or format-
so browsers may display the same
document differently

❒ Free form (i.e. Spaces don’t matter)
❒ Embedded tags give guidelines
❒ Tags often appear in pairs

❍ beginning <TAGNAME>
❍ ending </TAGNAME>

2: Application Layer 78

How do clients and servers
communicate?

API: application
programming interface

❒ defines interface
between application
and transport layer

❒ socket: Internet API
❍ two processes

communicate by sending
data into socket,
reading data out of
socket

Q: how does a process
“identify” the other
process with which it
wants to communicate?

❍ IP address of host
running other process

❍ “port number” - allows
receiving host to
determine to which
local process the
message should be
delivered

… more on this later.

14

2: Application Layer 79

Sockets Specify Transport
Services
❒ Sockets define the interfaces between an

application and the transport layer
❒ Applications choose the type of transport

layer by choosing the type of socket
❍ UDP Sockets – called DatagramSocket in Java,

SOCK_DGRAM in C
❍ TCP Sockets – called Socket/ServerSocket in

Java, SOCK_STREAM in C
❒ Client and server agree on the type of

socket, the server port number and the
protocol

2: Application Layer 80

QUICK LOOK AHEAD: TCP vs UDP

TCP service:
❒ connection-oriented: setup

required between client,
server

❒ reliable transport between
sending and receiving process

❒ flow control: sender won’t
overwhelm receiver

❒ congestion control: throttle
sender when nework
overloaded

❒ does not providing: timing,
minimum bandwidth
guarantees

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

