<u>1:</u> Introduction

Last Modified: 1/27/2003 1:25:26 PM

Why study computer networks?

- □ They are engineering marvels!
 - Scalability, layered protocols, lots of subtleties- worthy of study
- They are all around us!
 Understanding the nuts and bolts behind a technology you use every day is exciting
- They are changing the world!
 Profound societal changes taking place in our lifetime

How much do you know already?

- How much do you know about what happens when you use networking applications?
- What do you hope to learn in this class?

Goals of this class

- Understand both basic computer networking concepts and their instantiation in the current Internet
- Question why the current Internet is the way it is
 - Appreciate good
 - Understand limitations and consider solutions
- Gain practical skills (network analysis, network programming)

How do we begin to make sense of the Internet?

Often like the blind men and the elephant?

It was six men of Indostan To learning much inclined, Who went to see the Elephant (Though all of them were blind), That each by observation Might satisfy his mind

Network Trace Analysis?

Network Trace Analysis - what happens on our local network when use a network application?

The First approached the Elephant, And happening to fall Against his broad and sturdy side, At once began to bawl: "God bless me! but the Elephant Is very like a wall!"

	example.cap - Ethereal					
F 20 E	dit Captur	e Display Tools	Province	In second	Hep	
NO 1	Lame .	Source	Destination	Protocol	IND	
21 4	4.502251	192.168.1.100	216, 52, 11, 28	TCP	2997 > nttp [#ST] Sed+2	
55.	6.194972	192,169,1,100	24 97 226 172	DAT.	Standard meru PTE 28.3	
24.4	6,365867	24,92,226,173	192,168,1,100	DNS	Standard query response	
25.3	13.277562	192,168.1.100	24.92.226.173	DNS	Standard guery A www.or	
26 3	13.462094	24.92.226.173	192.168.1.100	DNS	standard query response	
27	13.464224	192.168.1.100	209.204.146.22	TOP	3020 > http [SyN] Sedel	
28	13, 205415	209,204,146,22	192.108.1.100	TCP	HTTP > 3020 [SYN, ACK]	
30	13.567233	192.168.1.100	209.204.146.22	HTTP	GET / HTTP/1.3	
31 3	13.672752	209.204.146.22	192,168,1,100	TCP	http > 3020 [ACH] Segu2	
32.3	13,688697	209.204.146.22	192.168.1.100	HTTP	HTTP/1.1 200 OK	
33 3	13.696207	209.204.146.22	192.168.1.100	HTTP	Continuation	
34.3	13.696286	192.168.1.100	209.204.346.22	TCP	1020 > http [ACK] Seq=2	
35 3	13.710336	192.168.1.100	209.204.346.22	TOP	3021 > http [SvN] Seq=2	
76.5	12 200306	100 101 144 15	101 149 1 100	UTTO	construction 1	
-			6112445			
DI Fr Am	Nº 27 (62	bytes on wire, 62 by	tes captured)			
minte	ernet prot	locol, Src Addr: 192.	168.1.100 (192.168.1.)	100), DST	Addr: 209.204.146.22 (201	
III Tran	ismission	Control Protocol, Sr	c Port: 3020 (3020), 1	Dat Port:	http (80), Seq: 236087412	
				1.00.000	1	
4. <u> </u>						
0000	00 20 78	of 9b ee 00 c0 af 6	0 64 FF 08 00 45 00	* X	0'dE.	
4 0000 0010	00 20 78 00 30 65	cf 9b ee 00 c0 4f 6 9f 40 00 80 06 00 0	0 64 FF 08 00 45 00 0 c0 a8 01 64 d1 cc	:o	o'dE.	
0000	00 20 78 00 30 55 92 16 05	cf 9b ee 00 c0 4f 6 9f 40 00 80 06 00 0 cc 00 50 8c 08 14 8 cc 00 50 8c 04 14 8	0 64 ff 08 00 45 00 0 c0 48 01 64 d1 cc f 00 00 00 00 70 02 4 01 01 04 07		o`d£. d p.	

<u>Periodic Cycles</u>

Cycles of a day

 People come to work in one part of the globe, go home in another

 Week

 Weekends vs weekdays

 Holidays

□ ...

Stability?

- Despite any growth trends or periodic cycle, we also never have the Internet as a whole
- Machines disconnecting/connecting
- Stability of routes?
- Viruses? Attacks?

Internet principles?

 Besides the details of protocols, topology and growth trends, are there fundamental "timeless" principles of the Internet? The Fifth, who chanced to touch the ear, Said: "E'en the blindest man Can tell what this resembles most; Deny the fact who can This marvel of an Elephant Is very like a fan!

-27

Packet Switching

- We've already seen this
- Packets indicate their destination
- No predetermined path for a packet to take
- Each intermediate note routes the packet closer to its destination

<u>Protocol</u>

- If two entities are going to communicate, they must agree on the expected order and meaning of messages they exchange.
 - Hi ...Hi...Got the time?....two oclock SUCCESSFUL PROTOCOL EXCHANGE
 - Hi...Don't bother meXX ABORTED PROTOCOL
 - Allo...Hello..Quelle heuere a'tilXX<blank stare> PROTOCOL MISMATCH

-26

<u>Protocol</u>

A protocol defines the format and the order of messages exchanged between communicating entities as well as the actions taken on the receipt or the transmission of a message.

-31

Layered Architectures

- Human beings are able to handle lots of complexity in their protocol processing.
 - Ambiguously defined protocols
 - Many protocols all at once
- How do computers manage complex protocol processing?
 - Specify well defined protocols to enact.
 - Decompose complicated jobs into layers that each have a well defined task

Internet future? If we could figure out what the Internet is, where is the Internet going? The Sixth no sooner had begun About the beast to grope, Than, seizing on the swinging tail That fell within his scope, "I see," quoth he, "the Elephant Is very like a rope!"

How is Internet "governed"?

- "We reject kings, presidents, and voting. We believe in rough consensus and running code"
- Internet Engineering Task Force (IETF)
- Working groups
- Internet Engineering Steering Group (IESG)
- Internet Assigned Numbers Authority (IANA)

Internet Standards Process

- Internet Draft anyone
- RFC at discretion of RFC Editor
- Internet Standard Maturity Levels
 - O Proposed IESG
 - Draft 2 independent, implementations
 - Standard

Other forces

- Proprietary technologies?
- Government funding and direction?

-39

Internet?

- Quick tour of the Internet
 - O Introduced more questions that it answered?
 - Rest of semester is a detailed top-down tour of the Internet

And so these men of Indostan Disputed loud and long, Each in his own opinion

Exceeding stiff and strong, Though each was partly in the right,

And all were in the wrong!

-44

-43

Online Resources ISOC ACM CAIDA Internet History W3C

Distributed Control

- Where ever possible decompose the problem
- Examples:
 - No one central name to IP address data base -Domain Name System
 - No one global routing table Hierarchical network of networks - handle routing within small autonomous systems
- Essential to Scalability

-49

Open System

- Basic Internet protocols are published as open standards
- □ Standards freely and readily available
- Ideal candidate for study