
Java Telephony API (JTAPI)
Programmer’s Reference
(JTAPI 1.2 Early Access)
Issue 1.0 October 1997

Copyright 1997 Lucent Technologies Inc.
All Rights Reserved
Printed in U.S.A.

Notice

Every effort was made to ensure that the information in this book was complete and accurate at the time of printing.
However, information is subject to change.

Your Responsibility for Your System’s Security

Toll fraud is the unauthorized use of your telecommunications system by an unauthorized party, for example, persons
other than your company’s employees, agents, subcontractors, or persons working on your company’s behalf. Note that
there may be a risk of toll fraud associated with your telecommunications system and, if toll fraud occurs, it can result in
substantial additional charges for your telecommunications services.

You and your system manager are responsible for the security of your system, such as programming and configuring
your equipment to prevent unauthorized use. The system manager is also responsible for reading all installation,
instruction, and system administration documents provided with this product in order to fully understand the features
that can introduce risk of toll fraud and the steps that can be taken to reduce that risk. Lucent Technologies does not
warrant that this product is immune from or will prevent unauthorized use of common-carrier telecommunication
services or facilities accessed through or connected to it. Lucent Technologies will not be responsible for any charges
that result from such unauthorized use.

Lucent Technologies Fraud Intervention

If you suspect that you are being victimized by toll fraud and you need technical support or assistance, call Technical
Service Center Toll Fraud Intervention Hotline at 1 800 643 2353.

Obtaining Products

To learn more about Lucent Technologies products and to order products, contact Lucent Direct, the direct-market
organization of Lucent Technologies Business Communications Systems. Access their web site at
www.lucentdirect.com. Or call the following numbers: customers 1 800 451 2100, account executives 1 800 778 1881
(fax) or 1 800 778 1880 (voice).

Trademarks

Adobe, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated, which may be registered in
certain jurisdictions.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

PassageWay and the Lucent Technologies logotype are registered trademarks of Lucent Technologies Incorporated.

The API User’s Guide contained herein is the property of Sun Microsystems, Inc.

Windows NT is a registered trademark of Microsoft Corp.

All products and company names are trademarks or registered trademarks of their respective holders.

Acknowledgment

This document was prepared by BCS Product Publications, Lucent Technologies, Middletown, NJ 07748-9972.

About This Document

Contents

JTAPI Programmer’s Reference Issue 1.0 October 1997 iii

What is JTAPI? v

Purpose and Scope v

Navigating Through the Document vi

Intended Audience vi

Related Documents vi

Packages
n Telephony
n Callcenter
n Callcontrol
n Capabilities
n Events
n Media
n Phone
n Privatedata

About This Document

JTAPI Programmer’s Reference Issue 1.0 October 1997 v

What is JTAPI?

The Java Telephony API (JTAPI) specifies the standard telephony application
programming interface for computer-telephone applications under Java. It is the
definition for a reusable set of call control objects that bring cross-platform and
cross-implementation portability to telephony applications. It is a simple,
extensible, object-oriented model that addresses a broad range of computer-
telephony tasks.

The Java Telephony API represents the combined efforts of design teams from
Sun, Lucent Technologies, Nortel, Novell, Intel, and IBM, all operating under the
direction of JavaSoft.

Purpose and Scope

This document consists of Sun Microsystem’s Java Telephony API specification
files that have been downloaded from Sun Microsystem’s Java Telephony API
web site. This document is an early access version of the JTAPI1.2 specification.

As of this writing, we have provided the latest available version. To obtain the
very latest version of the JTAPI specification files, go directly to the web site at:

http://java.sun.com/products/jtapi

Navigating through the Document

This document is presented in PDF format with hypertext links and thumbnails for
easy viewing and printing. Hypertext links are inserted so that you can easily
navigate through the document by moving the hand symbol and clicking on the
desired subject. You can also navigate through the document using the
thumbnails of Adobe Acrobat Reader. After opening the PDF file with Adobe
Reader, you can click on the second icon to see the list of items presented in
outline format. If you click on one of the items in the list, you will be brought to the
associated subject.

About This Document

vi October 1997 Issue 1.0 JTAPI Programmer’s Reference

Navigating through the Document

This document is presented in PDF format with hypertext links and thumbnails for
easy viewing and printing. Hypertext links are inserted so that you can easily
navigate through the document by moving the hand symbol and clicking on the
desired subject. You can also navigate through the document using the
thumbnails of Adobe Acrobat Reader. After opening the PDF file with Adobe
Reader, you can click on the second icon to see the list of items presented in
outline format. If you click on one of the items in the list, you will be brought to the
associated subject.

Intended Audience

This document is for application developers who are programming applications
that use JTAPI. This document assumes a familiarity with the Java programming
language.

Related Document

The following document relates to JTAPI:

PassageWay Telephony Services for Windows NT JTAPI Client Programmer’s Guide

This document describes features supported by the Lucent Technologies
generic implementation of JTAPI on PassageWay Telephony Services and the
Lucent Technologies PassageWay Telephony Services implementation of JTAPI
that provides Telephony Services extensions to JTAPI exceptions for those
application programmers who want to use TSAPI-specific error codes. These
implementations provide programming environments that may be used with any
switch for which there is a PassageWay Telephony Services driver.

It also describes the Lucent Technologies Telephony Services implementation of
JTAPI that applies to clients using the DEFINITY switch and the associated
PassageWay Telephony Services driver (the G3PD). This implementation
provides a programming environment that makes available DEFINITY-specific
features.

In addition, it describes the Lucent Technologies Telephony Services
implementation of JTAPI for private data. This implementation is targeted to
independent switch vendors who want to use the private data programming
mechanism to create private data packages, or application programmers who
want to use or interpret private data that is provided in its raw form.

API User’s Guide Class Hierarchy Index

Package Index

Other Packages

package javax.telephony

package javax.telephony

Interface Index

Address
AddressObserver
Call
CallObserver
Connection
JtapiPeer
Provider
ProviderObserver
Terminal
TerminalConnection
TerminalObserver

Class Index

JtapiPeerFactory

Exception Index

InvalidArgumentException
InvalidObjectException
InvalidPartyException
InvalidStateException
JtapiPeerUnavailableException
MethodNotSupportedException
PlatformException
PrivilegeViolationException
ProviderUnavailableException
ResourceUnavailableException

Interface javax.telephony.Address

public interface Address

Introduction

An Address object represents what we commonly think of as a "telephone number." In
implementations where the underlying network is not a telephone network, this address
may represent something else. For example, if the underlying network is IP, this address
might represent an IP address (e.g. 18.203.0.49). An Address object has a string name
which corresponds to this telephone address. The Address object does not attempt to
interpret this string in any way. This name is first assigned when the Address object is
created and does not change throughout the lifetime of the object. The method
Address.getName() returns the name of the Address object.

Address objects may be classified into two categories: local and remote. Local Address
objects are those addresses which are part of the Provider’s local domain. These Address
objects are created by the implementation of the Provider object when it is first
instantiated. All of the Provider’s local addresses are reported via the
Provider.getAddresses() method. Remote Address objects are those outside of the
Provider’s domain which the Provider learns about during its lifetime through various
happenings (e.g. an incoming call from a currently unknown address). Remote Addresses
are not reported via the Provider.getAddresses() method. Note that applications
never explicitly create new Address objects.

Address and Terminal Objects

Address and Terminal objects exist in a many−to−many relationship. An Address object
may have zero or more Terminals associated with it. Each Terminal associated with an
Address must reflect its association with the Address. Since the implementation creates
Address (and Terminal) objects, it is responsible for insuring the correctness of these
relationships. The Terminals associated with an Address is given by the
Address.getTerminals() method.

An association between an Address and Terminal indicates that the Terminal is
addressable via that Address. In many instances, a telephone set (represented by a
Terminal object) has only one telephone number (represented by an Address object)
associated with it. In more complex configurations, telephone sets may have several
telephone numbers associated with them. Likewise, a telephone number may appear on
more than one telephone set. For example, feature phones in PBX environments may
exhibit this configuration.

Address and Call Objects

Address objects represent the logical endpoints of a telephone call. A logical view of a
telephone call views the call as originating from one Address endpoint and terminates at
another Address endpoint.

Address objects are related to Call objects via the Connection object. The Connection
object has a state which describes the current relationship between the Call and the
Address. Each Address object may be part of more than one telephone call, and in each
case, is represented by a separate Connection object. The Address.getConnections()
method returns all Connection objects currently associated with the Call.

An Address is associated with a Call until the Connection moves into the
Connection.DISCONNECTED state. At that time, the Connection is no longer reported
via the Address.getConnections() method. Therefore, the
Address.getConnections() method will never report a Connection in the
Connection.DISCONNECTED state.

Existing Telephone Calls

The Java Telephony API specification states that the implementation is responsible for
reporting all existing telephone calls when a Provider is first created. This implies that
an Address object must report information regarding existing telephone calls to that
Address. In other words, Address objects must reports all Connection objects which
represent existing telephone calls.

Address Observers and Events

All changes in an Address object are reported via the AddressObserver interface.
Applications instantiate an object which implements this interface and begins this
delivery of events to this object using the Address.addObserver() method. All
Address−related events extend the AddrEv interface provided in the core package.
Applications receive events on an observer until the observer is removed via the
Address.removeObserver() method or until the Address is no longer observable. In
these instances, each AddressObserver receives a AddrObservationEndedEv as its final
event.

Currently in the core package, the only Address−related event is
AddrObservationEndedEv.

Call Observers

At times, applications may want to monitor a particular Address for all Calls which come
to that Address. For example, a customer service agent application is only interested in
telephone calls associated with a particular agent address. To achieve this sort of
Address−based Call monitoring applications may add CallObservers to an Address via

the Address.addCallObserver() method.

When a CallObserver is added to an Address, this observer instance is immediately
added to all Calls at this Address and is added to all Calls which come to this Address in
the future. These observers remain on the telephone call as long as the Address is
associated with the telephone call.

The specification of Address.addCallObserver() contains more precise semantics.

See Also:
AddressObserver, CallObserver

Method Index

o addCallObserver(CallObserver)
Adds an observer to a Call object when this Address object first becomes part of
that Call.

o addObserver(AddressObserver)
Adds an observer to the Address.

o getAddressCapabilities(Terminal)
Gets the AddressCapabilities object with respect to a Terminal If null is passed as
a Terminal parameter, the general/provider−wide Address capabilities are
returned. Deprecated.

o getCallObservers()
Returns a list of all CallObservers associated with this Address object.

o getCapabilities()
Returns the dynamic capabilities for this instance of the Address object.

o getConnections()
Returns an array of Connection objects currently associated with this Address
object.

o getName()
Returns the name of the Address.

o getObservers()
Returns a list of all AddressObservers associated with this Address object.

o getProvider()
Returns the Provider associated with this Address.

o getTerminals()
Returns an array of Terminals associated with this Address object.

o removeCallObserver(CallObserver)
Removes the given CallObserver from the Address.

o removeObserver(AddressObserver)
Removes the given observer from the Address.

Methods

o getName

 public abstract String getName()

Returns the name of the Address. Each Address possesses a unique name. This
name is a way of referencing an endpoint in a telephone call.

Returns:
The name of this Address.

o getProvider

 public abstract Provider getProvider()

Returns the Provider associated with this Address. This Provider object is valid
throughout the lifetime of the Address and does not change once the Address is
created.

Returns:
The Provider associated with this Address.

o getTerminals

 public abstract Terminal [] getTerminals()

Returns an array of Terminals associated with this Address object. If no Terminals
are associated with this Address, this method returns null. This list does not
change throughout the lifetime of the Address object.

Returns:
An array of Terminal objects associated with this Address.

o getConnections

 public abstract Connection [] getConnections()

Returns an array of Connection objects currently associated with this Address
object. When a Connection moves into the Connection.DISCONNECTED state, the
Address object loses the reference to the Connection and the Connection no longer
returned by this method. Therefore, all Connections returned by this method will
never be in the Connection.DISCONNECTED state. If the Address has no
Connections associated with it, this method returns null.

Post−conditions:
1. Let Connection c[] = this.getConnections()
2. c == null or c.length >= 1

3. For all i, c[i].getState() != Connection.DISCONNECTED

Returns:
An array of Connection objects associated with this Address.

o addObserver

 public abstract void addObserver(AddressObserver observer) throws ResourceUnavailableException

Adds an observer to the Address. The AddressObserver reports all Address−
related state changes as events. The Address object will report events to this
AddressObserver object for the lifetime of the Address object or until the observer
is removed with the Address.removeObserver() method or until the Address is
no longer observable. In these instances, a AddrObservationEndedEv is delivered
to the observer as its final event. The observer will receive no events after
AddrObservationEndedEv unless the observer is explicitly re−added via the
Address.addObserver() method. Also, once an observer receives an
AddrObservationEndedEv, it will no longer be reported via the
Address.getObservers().

If an application attempts to add an instance of an observer
already present on this Address, this attempt will silently
fail, i.e. multiple instances of an observer are not added and
no exception will be thrown.

Currently, only the AddrObservationEndedEv event is defined by
the core package and delivered to the AddressObserver.

Post−conditions:
1. observer is an element of this.getObservers()

Parameters:
observer − The observer being added.

Throws: ResourceUnavailableException
The resource limit for the number of observers has been
exceeded.

o getObservers

 public abstract AddressObserver [] getObservers()

Returns a list of all AddressObservers associated with this Address object. If there
are no observers associated with this Address object, this method returns null.

Post−conditions:
1. Let AddressObserver[] obs = this.getObservers()
2. obs == null or obs.length >= 1

Returns:
An array of AddressObserver objects associated with this Address.

o removeObserver

 public abstract void removeObserver(AddressObserver observer)

Removes the given observer from the Address. If successful, the observer will no
longer receive events generated by this Address object. As its final event, the
AddressObserver receives is an AddrObservationEndedEv event.

If an observer is not part of the Address, then this method fails silently, i.e. no
observer is removed an no exception is thrown.

Post−conditions:
1. An AddrObservationEndedEv event is reported to the observer as its final

event.
2. observer is not an element of this.getObservers()

Parameters:
observer − The observer which is being removed.

o addCallObserver

 public abstract void addCallObserver(CallObserver observer) throws ResourceUnavailableException

Adds an observer to a Call object when this Address object first becomes part of
that Call. This method permits applications to select an Address object in which
they are interested and automatically have the implementation attach an observer
to all present and future Calls which come to this Address.

JTAPI v1.0 Semantics

In version 1.0 of the Java Telephony API specification, the application monitored
the Address object for the AddrCallAtAddrEv event. This event indicated that a
Call has come to this Address. Then, applications would manually add an observer
to the Call. With this architecture, potentially dangerous race conditions existed
while an application was adding an observer to the Call. As a result, this
mechanism has been replaced in version 1.1.

JTAPI v1.1 Semantics

In version 1.1 of the specification, the AddrCallAtAddrEv event does not exist and
this method replaces the functionality described above. Instead of monitoring for a
AddrCallAtAddrEv event, this application simply uses the
Address.addCallObserver() method, and observer will be added to new
telephone calls at this Address automatically.

If an application attempts to add an instance of a call observer already present on
this Address, these repeated attempts will silently fail, i.e. multiple instances of a
call observer are not added and no exception will be thrown.

When a call observer is added to an Address with this method, the following
behavior is exhibited by the implementation.

1. It is immediately associated with any existing calls at the Address and a
snapshot of those calls are reported to the call observer. For each of these
calls, the observer is reported via Call.getObservers() .

2. It is associated with all future calls which comes to this Address. For each
new calls, the observer is reported via Call.getObservers().

Note that the definition of the term ".. when a call is at an Address" means that
the Call contains one Connection which has this Address as its Address.

Call Observer Lifetime

For all call observers which are present on Calls because of this method, the
following behavior is exhibited with respect to the lifetime of the call.

1. The call observer receives events until the Call is no longer at this Address.
In this case, the call observer will be re−applied to the Call if the Call
returns to this Address at some point in the future.

2. The call observer is removed with Call.removeObserver() . Note that this
only affects the instance of the call observer for that particular call. If the
Call subsequently leaves and returns to the Address, the observer will be
re−applied.

3. The Call can no longer be monitored by the implementation.
4. The Call moves into the Call.INVALID state.

When the CallObserver leaves the Call because of one of the reasons above, it
receives a CallObservationEndedEv as its final event.

Call Observer on Multiple Addresses and Terminals

It is possible for an application to add CallObservers at more than one Address
and Terminal (using Address.addCallObserver() and
Terminal.addCallObserver() , respectively). The rules outlined above still
apply, with the following additions:

1. A CallObserver is not added to a Call more than once, even if it has been
added to more than one Address/Terminal which are present on the Call.

2. The CallObserver leaves the call only if all of the Addresses and Terminals
on which the Call Observer was added leave the Call. If one of those
Addresses/Terminals becomes part of the Call again, the call observer is
re−applied to the Call.

Post−Conditions:
1. observer is an element of this.getCallObservers()
2. observer is an element of Call.getObservers() for each Call associated with

the Connections from this.getConnections().
3. An array of snapshot events are reported to the observer for existing calls

associated with this Address.

Parameters:
observer − The observer being added.

Throws:ResourceUnavailableException
The resource limit for the numbers of observers has been exceeded.

See Also:
Call

o getCallObservers

 public abstract CallObserver [] getCallObservers()

Returns a list of all CallObservers associated with this Address object. That is, it
returns a list of CallObserver object which have been added via the
Address.addCallObserver() method. If there are no CallObservers associated
with this Address object, this method returns null.

Post−conditions:
1. Let CallObserver[] obs = this.getCallObservers()
2. obs == null or obs.length >= 1

Returns:
An array of CallObserver objects associated with this Address.

o removeCallObserver

 public abstract void removeCallObserver(CallObserver observer)

Removes the given CallObserver from the Address. In other words, it removes a
CallObserver which was added via the Address.addCallObserver() method. If
successful, the observer will no longer be added to new Calls which are presented
to this Address, however it does not affect CallObservers which have already been
added at a Call.

Also, if the CallObserver is not part of the Address, then this method fails silently,
i.e. no observer is removed an no exception is thrown.

Post−conditions:
1. observer is not an element of this.getCallObservers()

Parameters:
observer − The CallObserver which is being removed.

o getCapabilities

 public abstract AddressCapabilities getCapabilities()

Returns the dynamic capabilities for this instance of the Address object. Dynamic
capabilities tell the application which actions are possible at the time this method
is invoked based upon the implementations knowledge of its ability to successfully
perform the action. This determination may be based upon argument passed to
this method, the current state of the call model, or some implementation−specific
knowledge. These indications do not guarantee that a particular method will
succeed when invoked, however.

The dynamic Address capabilities require no additional arguments.

Returns:
The dynamic Address capabilities.

o getAddressCapabilities

 public abstract AddressCapabilities getAddressCapabilities(Terminal terminal) throws InvalidArgument

Note: getAddressCapabilities() is deprecated.Since JTAPI v1.2. This method
has been replaced by the Address.getCapabilities() method.

Gets the AddressCapabilities object with respect to a Terminal If null is passed as
a Terminal parameter, the general/provider−wide Address capabilities are
returned.

Note: This method has been replaced in JTAPI v1.2. The
Address.getCapabilities() method returns the dynamic Address capabilities.
This method now should simply invoke the Address.getCapabilities()
method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

Interface javax.telephony.AddressObserver

public interface AddressObserver

Introduction

The AddressObserver interface reports all changes which happen to the Address
object. These changes are reported as events to the
AddressObserver.addressChangedEvent() method. Applications must instantiate
an object which implements this interface and then use the Address.addObserver())
method to register the object to receive all future events associated with the Address
object.

The AddressObserver.addressChangedEvent() method receives an array of events
which all must extend the AddrEv interface. Since several changes may happen to a
single JTAPI object at once, a list of events is needed to convey those changes which
happen at the same time. Applications iterate through the array of events provided.

Address Observation Ending

At various times, the underlying implementation may not be able to observe the
Address. In these instances, the AddressObserver is sent an AddrObservationEndedEv
event. This indicates that the application will not receive further events associated with
the Address object. The observer is no longer reported via the
Address.getObservers() method.

See Also:
AddrEv, AddrObservationEndedEv

Method Index

o addressChangedEvent(AddrEv[])
Reports all events associated with the Address object.

Methods

o addressChangedEvent

 public abstract void addressChangedEvent(AddrEv eventList[])

Reports all events associated with the Address object. This method passes an array
of AddrEv objects as its arguments which correspond to the list of events
representing the changes to the Address object.

Parameters:
eventList − The list of Address events.

Interface javax.telephony.Call

public interface Call

Introduction

A Call object models a telephone call. A Call can have zero or more Connections. A
two−party call has two Connections, and a conference call has three or more
Connections. Each Connection models the relationship between a Call and an Address,
where an Address identifies a particular party or set of parties on a Call.

Creating Call Objects

Applications create instances of a Call object with the Provider.createCall()
method, which returns a Call object that has zero Connections and is in the Call.IDLE
state . The Call maintains a reference to its Provider for the life of that Call object. This
Provider object instance does not change throughout the lifetime of the Call object. The
Provider associated with a Call is obtained via the Call.getProvider() method.

Call States

A Call has a state which is obtained via the Call.getState() method. This state
describes the current progress of a telephone call, where is it in its life cycle, and how
many Connections exist on the Call. The Call state may be one of three values:
Call.IDLE , Call.ACTIVE , or Call.INVALID . The following is a description of each
state: Call.IDLE This is the initial state for all Calls. In this state, the Call has zero
Connections, that is Call.getConnections() must return null. Call.ACTIVE A Call
with some current ongoing activity is in this state. Calls with one or more associated
Connections must be in this state. If a Call is in this state, the
Call.getConnections() method must return an array of size at least one.
Call.INVALID This is the final state for all Calls. Call objects which lose all of their
Connections objects (via a transition of the Connection object into the
Connection.DISCONNECTED state) moves into this state. Calls in this state have zero
Connections and these Call objects may not be used for any future action. In this state,
the Call.getConnections() must return null.

Call State Transitions

The possible Call state transitions are given in the diagram below:

[IMAGE]

Calls and Connections

A Call maintain a list of the Connections on that Call. Applications obtain an array of
Connections associated with the Call via the Call.getConnections() method. A Call
retains a reference to a Connection only if it is not in the Connection.DISCONNECTED
state. Therefore, if a Call has a reference to a Connection, then that Connection must not
be in the Connection.DISCONNECTED state. When a Connection moves into the
Connection.DISCONNECTED state (e.g. when a party hangs up), the Call loses its
reference to that Connection which is no longer reported via the
Call.getConnections() method.

The Call.connect() method

The primary method on this interface is the Call.connect() method. Applications use
this method to place a telephone call from an originating endpoint to a destination
address string. The result of this method on the call model is to create an originating
and destination Connection and move the Call into the Call.ACTIVE . As the new
telephone call progresses during its lifetime, the state of various objects associated with
the Call may change and new objects may be created and associated with the Call. See
the specification of the Call.connect() method below for more details.

Observers and Events

The CallObserver interface reports all events pertaining to the Call object. Events
delivered to this interface must extend the CallEv interface. Applications add observers
to a Call object via the Call.addObserver() method.

Connection−related and TerminalConnection−related events are also reported via the
CallObserver interface. These events include the creation of these objects and their
state changes. Events which are reported via the CallObserver interface pertaining to
Connections and TerminalConnections extend the ConnEv interface and the
TermConnEv interface, respectively.

An event is delivered to the application whenever the state of the Call changes. The
event interfaces corresponding to Call state changes are: CallActiveEv and
CallInvalidEv .

At times the Call may be unobservable by the implementation. In this case, a
CallObservationEndedEv is delivered to the CallObserver interface. This is the final
event receives by the observer and is no longer reported via the Call.getObservers()
method.

Applications may observe a Call by adding an observer via the Address or Terminal
objects using the Address.addCallObserver() and Terminal.addCallObserver()
methods. These methods provide the ability for an application to receive Call−related
events when a Call contains a particular Address or Terminal. See the specifications for
Address and Terminal for more details.

See Also:
CallObserver, Connection, Address, Terminal, TerminalConnection, CallEv

Variable Index

o ACTIVE
The Call.ACTIVE state indicates the Call has one or more Connections, none of
which are in the Connection.DISCONNECTED state.

o IDLE
The Call.IDLE state indicates the Call has zero Connections.

o INVALID
The Call.INVALID state indicates the Call has lost all of its connections, ie.

Method Index

o addObserver(CallObserver)
Adds an observer to the Call.

o connect(Terminal, Address, String)
Places a telephone call from an originating endpoint to a destination address
string.

o getCallCapabilities(Terminal, Address)
Gets the CallCapabilities object with respect to a Terminal and an Address.
Deprecated.

o getCapabilities(Terminal, Address)
Returns the dynamic capabilities for the instance of the Call object.

o getConnections()
Returns an array of Connections associated with this call.

o getObservers()
Returns an array of all CallObservers on this Call.

o getProvider()
Returns the Provider associated with the Call.

o getState()
Returns the current state of the telephone call.

o removeObserver(CallObserver)
Removes the given observer from the Call.

Variables

o IDLE

 public static final int IDLE

The Call.IDLE state indicates the Call has zero Connections. It is the initial state
of all Call objects.

o ACTIVE

 public static final int ACTIVE

The Call.ACTIVE state indicates the Call has one or more Connections, none of
which are in the Connection.DISCONNECTED state.

o INVALID

 public static final int INVALID

The Call.INVALID state indicates the Call has lost all of its connections, ie. all of
its associated Connection objects have moved into the
Connection.DISCONNECTED state and are no longer associated with the Call. A
Call in this state cannot be used for future actions.

Methods

o getConnections

 public abstract Connection [] getConnections()

Returns an array of Connections associated with this call. Note that none of the
Connections returned will be in the Connection.DISCONNECTED state. Also, if
the Call is in the Call.IDLE state or the Call.INVALID state, this method
returns null. Otherwise, it returns one or more Connection objects.

Post−conditions:
1. Let Connection[] conn = Call.getConnections()
2. if this.getState() == Call.IDLE then conn = null
3. if this.getState() == Call.INVALID then conn = null
4. if this.getState() == Call.ACTIVE then conn.length >= 1
5. For all i, conn[i].getState() != Connection.DISCONNECTED

Returns:
An array of the Connections associated with the call.

o getProvider

 public abstract Provider getProvider()

Returns the Provider associated with the Call. This Provider reference remains
valid throughout the lifetime of the Call object, despite the state of the Call object.
This Provider reference does not change once the Call object has been created.

Returns:
The Provider associated with the call.

o getState

 public abstract int getState()

Returns the current state of the telephone call. The state will be either Call.IDLE
, Call.ACTIVE , or Call.INVALID .

Returns:
The current state of the call.

o connect

 public abstract Connection [] connect(Terminal origterm,
 Address origaddr,
 String dialedDigits) throws ResourceUnavailableException , Privi

Places a telephone call from an originating endpoint to a destination address
string.

The Call must be in the Call.IDLE state (and therefore have no existing
associated Connections and the Provider must be in the Provider.IN_SERVICE
state. The successful effect of this method is to place the telephone call and create
and return two Connections associated with this Call.

Method Arguments

This method has three arguments. The first argument is the originating Terminal
for the telephone call. The second argument is the originating Address for the
telephone Call. This Terminal/Address pair must reference one another. That is,
the originating Address must appear on the Terminal (via
Address.getTerminals()

o addObserver

 public abstract void addObserver(CallObserver observer) throws ResourceUnavailableException

Adds an observer to the Call. The CallObserver reports all Call−related events.
This includes changes in the state of the Call and all Connection−related and
TerminalConnection−related events. The observer added with this method will
report events on the call for as long as the implementation can observer the Call.
In the case that the implementation can no longer observe the Call, the
applications receives a CallObservationEndedEv. The observer receives no more
events after it receives the CallObservationEndedEv and is no longer reported via
the Call.getObservers() method.

Observer Lifetime

The CallObserver will receive events until one of the following occurs,
whereupon the observer receives a CallObservationEndedEv and the observer is
no longer reported via the Call.getObservers() method.

1. The observer is removed by the application with Call.removeObserver() .
2. The implementation can no longer monitor the call.
3. The Call has completed and moved into the Call.INVALID state.

Event Snapshots

By default, when an observer is added to a telephone call, the first batch of events
may be a "snapshot". That is, if the observer was added after state changes in the
Call, the first batch of events will inform the application of the current state of the
Call. Note that these snapshot events do NOT provide a history of all events on the
Call. Rather they provide the minimum necessary information to bring the
application up−to−date with the current state of the Call. The meta code for all of
these events will be Ev.META_SNAPSHOT.

CallObservers from Addresses and Terminals

There may be additional call observers on the call which were not added by this
method. These observers may have become part of the call via the
Address.addCallObserver() and Terminal.addCallObserver() methods.
See the specifications for these methods for more information.

Multiple Invocations

If an application attempts to add an instance of an observer already present on
this Call, there are two possible outcomes:

1. If the observer was added by the application using this method, then a
repeated invocation will silently fail, i.e. multiple instances of an observer
are not added and no exception will be thrown.

2. If the observer is part of the call because an application invoked
Address.addCallObserver() or Terminal.addCallObserver() , either
of these methods modifies the behavior of that observer as if it were added
via this method instead. That is, the observer is no longer removed when the
call leaves the Address or Terminal. The observer now receives events until
one of the conditions in "Observer Lifetime" is met.

Post−Conditions:
1. observer is an element of this.getObservers()
2. A snapshot of events is delivered to the observer, if appropriate.

Parameters:
observer − The observer being added.

Throws:ResourceUnavailableException
The resource limit for the numbers of observers has been exceeded.

o getObservers

 public abstract CallObserver [] getObservers()

Returns an array of all CallObservers on this Call. If no observers are on this
Call object, then this method returns null. This method returns all observers on
this call no matter how they were added to the Call. Call observers may be added
to this call in one of three ways:

1. The application added the observer via Call.addObserver() .
2. The application added the observer via Address.addCallObserver() and

the call came to that Address.
3. The application added the observer via Terminal.addCallObserver()

and the call came to that Terminal.

An instance of a CallObserver object will only appear once in this list.

Post−Conditions:
1. Let CallObserver[] obs = this.getObservers()
2. obs == null or obs.length >= 1

Returns:
An array of CallObserver objects associated with this Call.

o removeObserver

 public abstract void removeObserver(CallObserver observer)

Removes the given observer from the Call. If successful, the observer will receive a
CallObservationEndedEv as the last event it receives and will no longer be
reported via the Call.getObservers() method.

This method has different effects depending upon how the observer was added to
the Call, as follows:

1. If the observer was added via Call.addObserver() , this method removes
the observer until it is re−applied by the application.

2. If the observer was added via Address.addCallObserver() or
Terminal.addCallObserver() , this method removes the observer for this
call only. It does not affect whether this observer will be added to future calls
which come to that Address. See Address.addCallObserver() and
Terminal.addCallObserver() for more details.

If an observer is not part of the Call, then this method fails silently, i.e. no

observer is removed and no exception is thrown.

Post−Conditions:
1. observer is not an element of this.getObservers()
2. CallObservationEndedEv is delivered to the application

Parameters:
observer − The observer which is being removed.

o getCapabilities

 public abstract CallCapabilities getCapabilities(Terminal terminal,
 Address address) throws InvalidArgumentException

Returns the dynamic capabilities for the instance of the Call object. Dynamic
capabilities tell the application which actions are possible at the time this method
is invoked based upon the implementations knowledge of its ability to successfully
perform the action. This determination may be based upon argument passed to
this method, the current state of the call model, or some implementation−specific
knowledge. These indications do not guarantee that a particular method can be
successfully invoked, however.

The dynamic call capabilities are based upon a Terminal/Address pair as well as
the instance of the Call object. These parameters are used to determine whether
certain call actions are possible at the present. For example, the
CallCapabilities.canConnect() method will indicate whether a telephone
call can be placed using the Terminal/Address pair as the originating endpoint.

Parameters:
terminal − Dynamic capabilities are with respect to this Terminal.
address − Dynamic capabilities are with respect to this Address.

Returns:
The dynamic Call capabilities.

Throws:InvalidArgumentException
Indicates the Terminal and/or Address argument provided was not valid.

o getCallCapabilities

 public abstract CallCapabilities getCallCapabilities(Terminal term,
 Address addr) throws InvalidArgumentException ,

Note: getCallCapabilities() is deprecated.Since JTAPI v1.2. This method has
been replaced by the Call.getCapabilities() method.

Gets the CallCapabilities object with respect to a Terminal and an Address. If null
is passed as a Terminal parameter, the general/provider−wide Call capabilities are
returned.

Note: This method has been replaced in JTAPI v1.2. The
Call.getCapabilities() method returns the dynamic Call capabilities. This
method now should simply invoke the Call.getCapabilities() method with
the given Terminal and Address arguments.

Parameters:
term − Dynamic Call capabilities in JTAPI v1.2 are with respect to this
Terminal.
addr − Dynamic Call capabilities in JTAPI v1.2 are with respect to this
Address.

Throws:InvalidArgumentException
Indicates the Terminal and/or Address argument provided was not valid.

Throws:PlatformException
A platform−specific exception occurred.

Interface javax.telephony.CallObserver

public interface CallObserver

Introduction

The CallObserver interface reports all changes which happen to the Call object and all
of the Connection and TerminalConnection objects which are part of the Call. These
changes are reported as events to the CallObserver.callChangedEvent() method.
Applications must instantiate an object which implements this interface and then add
the observer to the call using one of several mechanisms described below to receive all
future events associated with the Call and its Connections and TerminalConnections.

The CallObserver.callChangedEvent() method receives an array of events which
all must extend the CallEv interface. Since several changes may happen to a single
JTAPI object at once, a list of events is needed to convey those changes which happen at
the same time. Applications iterate through the array of events provided.

Adding an Observer to a Call

Applications may add an observer to a Call via one of several mechanisms. They may
directly add an observer via the Call.addObserver() method. Applications may also
add observers to Calls indirectly via the Address.addCallObserver() and
Terminal.addCallObserver() methods. These methods add the given observer to the
Call when the Call comes to the Address or Terminal. See the specifications for Call,
Address, and Terminal for more information.

Call State Changes

In the core package, an event is delivered whenever the Call changes state. The event
interfaces which correspond to these state changes for the core package are:
CallActiveEv and CallInvalidEv .

Connection Events

All events pertaining to the Connection object are reported on this interface. Connection
events extend the ConnEv event, which in turn, extends the CallEv event. In the core
package, an event is delivered to this interface whenever the Connection changes state.

TerminalConnection Events

All events pertaining to the TerminalConnection object are reported on this interface.
TerminalConnection events extend the TermConnEv interface, which in turn, extends
the CallEv interface. In the core package, an event is delivered to this interface
whenever the TerminalConnection changes state.

Call Observation Ending

At various times, the underlying implementation may not be able to observe the Call. In
these instances, the CallObserver is sent an CallObservationEndedEv event. This
indicates that the application will not receive further events associated with the Call
object. This observer is no longer reported via the Call.getObservers() method.

See Also:
CallEv, ConnEv, TermConnEv, CallObservationEndedEv, CallActiveEv,
CallInvalidEv, ConnAlertingEv, ConnConnectedEv, ConnCreatedEv,
ConnDisconnectedEv, ConnFailedEv, ConnInProgressEv, ConnUnknownEv,
TermConnActiveEv, TermConnCreatedEv, TermConnDroppedEv,
TermConnPassiveEv, TermConnRingingEv, TermConnUnknownEv

Method Index

o callChangedEvent(CallEv[])
Reports all events associated with the Call object.

Methods

o callChangedEvent

 public abstract void callChangedEvent(CallEv eventList[])

Reports all events associated with the Call object. This method passes an array of
CallEv objects as its arguments which correspond to the list of events representing
the changes to the Call object as well as changes to all of the Connection and
TerminalConnection objects associated with this Call.

Parameters:
eventList − The list of Call events.

Interface javax.telephony.Connection

public interface Connection

Introduction

A Connection represents a link (i.e. an association) between a Call object and an Address
object. The purpose of a Connection object is to describe the relationship between a Call
object and an Address object. A Connection object exists if the Address is a part of the
telephone call. Each Connection has a state which describes the particular stage of the
relationship between the Call and Address. These states and their meanings are
described below. Applications use the Connection.getCall() and
Connection.getAddress() methods to obtain the Call and Address associated with
this Connection, respectively.

From one perspective, an application may view a Call only in terms of the
Address/Connection objects which are part of the Call. This is termed a logical view of
the Call because it ignores the details provided by the Terminal and
TerminalConnection objects which are also associated with a Call. In many instances,
simple applications (such as an outcall program) may only need to concern itself with the
logical view. In this logical view, a telephone call is views as two or more endpoint
addresses in communication. The Connection object describes the state of each of these
endpoint addresses with respect to the Call.

Calls and Addresses

Connection objects are immutable in terms of its Call and Address references. In other
words, the Call and Address object references do not change throughout the lifetime of
the Connection object instance. The same Connection object may not be used in another
telephone call. The existence of a Connection implies that its Address is associated with
its Call in the manner described by the Connection’s state.

Although a Connection’s Address and Call references remain valid throughout the
lifetime of the Connection object, the same is not true for the Call and Address object’s
references to this Connection. Particularly, when a Connection moves into the
Connection.DISCONNECTED state, it is no longer listed by the
Call.getConnections() and Address.getConnections() methods. Typically,
when a Connection moves into the Connection.DISCONNECTED state, the application
loses its references to it to facilitate its garbage collection.

TerminalConnections

Connections objects are containers for zero or more TerminalConnection objects.
Connection objects represent the relationship between the Call and the Address,
whereas TerminalConnection objects represent the relationship between the Call and
the Terminal. The relationship between the Call and the Address may be viewed as a
logical view of the Call. The relationship between a Connection and a Terminal
represents the physical view of the Call, i.e. at which Terminal the telephone calls
terminates. The TerminalConnection object specification provides further information.

Connection States

Below is a description of each Connection state in real−world terms. These real−world
descriptions have no bearing on the specifications of methods, they only serve to provide
a more intuitive understanding of what is going on. Several methods in this specification
state pre−conditions based upon the state of the Connection.

Connection.IDLE This state is the initial state for all new Connections. Connections
which are in the Connection.IDLE state are not actively part of a telephone call, yet
their references to the Call and Address objects are valid. Connections typically do not
stay in the Connection.IDLE state for long, quickly transitioning to other states.
Connection.DISCONNECTED This state implies it is no longer part of the telephone call,
although its references to Call and Address still remain valid. A Connection in this state
is interpreted as once previously belonging to this telephone call.
Connection.INPROGRESS This state implies that the Connection, which represents the
destination end of a telephone call, is in the process of contacting the destination side.
Under certain circumstances, the Connection may not progress beyond this state.
Extension packages elaborate further on this state in various situations.
Connection.ALERTING This state implies that the Address is being notified of an
incoming call. Connection.CONNECTED This state implies that a Connection and its
Address is actively part of a telephone call. In common terms, two people talking to one
another are represented by two Connections in the Connection.CONNECTED state.
Connection.UNKNOWN This state implies that the implementation is unable to
determine the current state of the Connection. Typically, method are invalid on
Connections which are in this state. Connections may move in and out of the
Connection.UNKNOWN state at any time. Connection.FAILED This state indicates
that a Connection to that end of the call has failed for some reason. One reason why a
Connection would be in the Connection.FAILED state is because the party was busy.

Connection State Transitions

With these loose, real−world meanings in the back of one’s mind, the Connection class
defines a finite−state diagram which describes the allowable Connection state
transitions. This finite−state diagram must be guaranteed by the implementation. Each
method which causes a change in a Connection state must be consistent with this state
diagram. This finite state diagram is below:

Note there is a general left−to−right progression of the state transitions. A Connection
object may transition into and out of the Connection.UNKNOWN state at any time
(hence, the asterisk qualifier next to its bidirectional transition arrow).

[IMAGE]

The Connection.disconnect() Method

The primary method supported on the core package’s Connection interface is the
Connection.disconnect() method. This method drops an entire Connection from a
telephone call. The result of this method is to move the Connection object into the
Connection.DISCONNECTED state. See the specification of the
Connection.disconnect() method on this page for more detailed information.

Observers and Events

All events pertaining to the Connection object are reported via the CallObserver
interface on the Call object associated with this Connection. In the core package, events
are reported to a CallObserver when a new Connection is created and whenever a
Connection changes state. Observers are added to Call objects via the
Call.addObserver() method and more indirectly via the
Address.addCallObserver() and Terminal.addCallObserver() methods. See the
specifications for the Call, Address, and Terminal interfaces for more information.

The following Connection−related events are defined in the core package. Each of these
events extend the ConnEv interface (which, in turn, extends the CallEv interface).

ConnCreatedEv Indicates a new Connection has been created on a Call.
ConnInProgressEv Indicates the Connection has moved into the
Connection.INPROGRESS state. ConnAlertingEv Indicates the Connection has moved
into the Connection.ALERTING state. ConnConnectedEv Indicates the Connection has
moved into the Connection.CONNECTED state. ConnDisconnectedEv Indicates the
Connection has moved into the Connection.DISCONNECTED state. ConnFailedEv
Indicates the Connection has moved into the Connection.FAILED state.
ConnUnknownEv Indicates the Connection has moved into the Connection.UNKNOWN
state.

See Also:
CallObserver, ConnEv, ConnCreatedEv, ConnInProgressEv, ConnAlertingEv,
ConnConnectedEv, ConnDisconnectedEv, ConnFailedEv, ConnUnknownEv

Variable Index

o ALERTING

The Connection.ALERTING state implies that the Address is being notified of an
incoming call.

o CONNECTED
The Connection.CONNECTED state implies that a Connection and its Address is
actively part of a telephone call.

o DISCONNECTED
The Connection.DISCONNECTED state implies it is no longer part of the
telephone call, although its references to Call and Address still remain valid.

o FAILED
The Connection.FAILED state indicates that a Connection to that end of the call
has failed for some reason.

o IDLE
The Connection.IDLE state is the initial state for all new Connections.

o INPROGRESS
The Connection.INPROGRESS state implies that the Connection, which
represents the destination end of a telephone call, is in the process of contacting
the destination side.

o UNKNOWN
The Connection.UNKNOWN state implies that the implementation is unable to
determine the current state of the Connection.

Method Index

o disconnect()
Drops a Connection from an active telephone call.

o getAddress()
Returns the Address object associated with this Connection.

o getCall()
Returns the Call object associated with this Connection.

o getCapabilities()
Returns the dynamic capabilities for the instance of the Connection object.

o getConnectionCapabilities(Terminal, Address)
Gets the ConnectionCapabilities object with respect to a Terminal and an Address.
Deprecated.

o getState()
Returns the current state of the Connection.

o getTerminalConnections()
Returns an array of TerminalConnection objects associated with this Connection.

Variables

o IDLE

 public static final int IDLE

The Connection.IDLE state is the initial state for all new Connections.
Connections which are in the Connection.IDLE state are not actively part of a

telephone call, yet their references to the Call and Address objects are valid.
Connections typically do not stay in the Connection.IDLE state for long, quickly
transitioning to other states.

o INPROGRESS

 public static final int INPROGRESS

The Connection.INPROGRESS state implies that the Connection, which
represents the destination end of a telephone call, is in the process of contacting
the destination side. Under certain circumstances, the Connection may not
progress beyond this state. Extension packages elaborate further on this state in
various situations.

o ALERTING

 public static final int ALERTING

The Connection.ALERTING state implies that the Address is being notified of an
incoming call.

o CONNECTED

 public static final int CONNECTED

The Connection.CONNECTED state implies that a Connection and its Address is
actively part of a telephone call. In common terms, two people talking to one
another are represented by two Connections in the Connection.CONNECTED
state.

o DISCONNECTED

 public static final int DISCONNECTED

The Connection.DISCONNECTED state implies it is no longer part of the
telephone call, although its references to Call and Address still remain valid. A
Connection in the Connection.DISCONNECTED state is interpreted as once
previously belonging to this telephone call.

o FAILED

 public static final int FAILED

The Connection.FAILED state indicates that a Connection to that end of the call
has failed for some reason. One reason why a Connection would be in the
Connection.FAILED state is because the party was busy.

o UNKNOWN

 public static final int UNKNOWN

The Connection.UNKNOWN state implies that the implementation is unable to
determine the current state of the Connection. Typically, method are invalid on
Connections which are in the Connection.UNKNOWN state. Connections may move
in and out of this state at any time.

Methods

o getState

 public abstract int getState()

Returns the current state of the Connection. The return value will be one of states
defined above.

Returns:
The current state of the Connection.

o getCall

 public abstract Call getCall()

Returns the Call object associated with this Connection. This Call reference
remains valid throughout the lifetime of the Connection object, despite the state of
the Connection object. This Call reference does not change once the Connection
object has been created.

Returns:
The call object associated with this Connection.

o getAddress

 public abstract Address getAddress()

Returns the Address object associated with this Connection. This Address object
reference remains valid throughout the lifetime of the Connection object despite
the state of the Connection object. This Address reference does not change once the
Connection object has been created.

Returns:
The Address associated with this Connection.

o getTerminalConnections

 public abstract TerminalConnection [] getTerminalConnections()

Returns an array of TerminalConnection objects associated with this Connection.

TerminalConnection objects represent the relationship between a Connection and
a specific Terminal endpoint. There may be zero TerminalConnections associated
with this Connection. In that case, this method returns null. Connection objects
lose their reference to a TerminalConnection once the TerminalConnection moves
into the TerminalConnection.DROPPED state.

Post−conditions:
1. Let TerminalConnection tc[] = this.getTerminalConnections()
2. tc == null or tc.length >= 1
3. For all i, tc[i].getState() != TerminalConnection.DROPPED

Returns:
An array of TerminalConnection objects associated with this Connection,
null if there are no TerminalConnections.

o disconnect

 public abstract void disconnect() throws PrivilegeViolationException , ResourceUnavailableException ,

Drops a Connection from an active telephone call. The Connection’s Address is no
longer associated with the telephone call. This method does not necessarily drop
the entire telephone call, only the particular Connection on the telephone call. This
method provides the ability to disconnect a specific party from a telephone call,
which is especially useful in telephone calls consisting of three or more parties.
Invoking this method may result in the entire telephone call being dropped, which
is a permitted outcome of this method. In that case, the appropriate events are
delivered to the application, indicating that more than just a single Connection has
been dropped from the telephone call.

Allowable Connection States

The Connection object must be in one of several states in order for this method to
be successfully invoked. These allowable states are: Connection.CONNECTED ,
Connection.ALERTING , Connection.INPROGRESS , or Connection.FAILED . If
the Connection is not in one of these allowable states when this method is invoked,
this method throws InvalidStateException. Having the Connection in one of the
allowable states does not guarantee a successful invocation of this method.

Method Return Conditions

This method returns successfully only after the Connection has been disconnected
from the telephone call and has transitioned into the Connection.DISCONNECTED
. This method may return unsuccessfully by throwing one of the exceptions listed
below. Note that this method waits (i.e. the invocating thread blocks) until either
the Connection is actually disconnected from the telephone call or an error is
detected and an exception thrown. Also, all of the TerminalConnections associated
with this Connection are moved into the TerminalConnection.DROPPED state.

As a result, they are no longer reported via the Connection by the
Connection.getTerminalConnections() method.

As a result of this method returning successfully, one or more events are delivered
to the application. These events are listed below:

1. A ConnDisconnectedEv event for this Connection.
2. A TermConnDroppedEv event for all TerminalConnections associated with

this Connection.

Dropping Additional Connections

Additional Connections may be dropped indirectly as a result of this method. For
example, dropping the destination Connection of a two−party Call may result in
the entire telephone call being dropped. It is up to the implementation to
determine which Connections are dropped as a result of this method.
Implementations should not, however, drop additional Connections if it does not
reflect the natural response of the underlying telephone hardware.

Dropping additional Connections implies that their TerminalConnections are
dropped as well. Also, if all of the Connections on a telephone call are dropped as a
result of this method, the Call will move into the Call.INVALID state. The
following lists additional events which may be delivered to the application.

1. ConnDisconnectedEv/TermConnDroppedEv are delivered for all other
Connections and TerminalConnections dropped indirectly as a result of this
method.

2. CallInvalidEv if all of the Connections are dropped indirectly as a result of
this method.

Pre−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Connection.CONNECTED or Connection.ALERTING or

Connection.INPROGRESS or Connection.FAILED
3. Let TerminalConnection tc[] = this.getTerminalConnections (see post−

conditions)
Post−conditions:

1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Connection.DISCONNECTED
3. For all i, tc[i].getState() == TerminalConnection.DROPPED
4. this.getTerminalConnections() == null.
5. this is not an element of (this.getCall()).getConnections()
6. ConnDisconnectedEv is delivered for this Connection.
7. TermConnDroppedEv is delivered for all TerminalConnections associated

with this Connection.
8. ConnDisconnectedEv/TermConnDroppedEv are delivered for all other

Connections and TerminalConnections dropped indirectly as a result of this
method.

9. CallInvalidEv if all of the Connections are dropped indirectly as a result of
this method.

Throws:PrivilegeViolationException
The application does not have the authority or permissions to disconnected
the Connection. For example, the Address associated with this Connection
may not be controllable in the Provider’s domain.

Throws:ResourceUnavailableException
An internal resource required to drop a connection is not available.

Throws:MethodNotSupportedException
This method is not supported by the implementation.

Throws:InvalidStateException
Some object required for the successful invocation of this method is not in
the proper state as given by this method’s pre−conditions. For example, the
Provider may not be in the Provider.IN_SERVICE state or the Connection
may not be in one of the allowable states.

See Also:
ConnDisconnectedEv, TermConnDroppedEv, CallInvalidEv

o getCapabilities

 public abstract ConnectionCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Connection object.
Dynamic capabilities tell the application which actions are possible at the time
this method is invoked based upon the implementations knowledge of its ability to
successfully perform the action. This determination may be based upon argument
passed to this method, the current state of the call model, or some
implementation−specific knowledge. These indications do not guarantee that a
particular method can be successfully invoked, however.

The dynamic Connection capabilities require no additional arguments.

Returns:
The dynamic Connection capabilities.

o getConnectionCapabilities

 public abstract ConnectionCapabilities getConnectionCapabilities(Terminal terminal,
 Address address) throws InvalidArgu

Note: getConnectionCapabilities() is deprecated.Since JTAPI v1.2. This
method has been replaced by the Connection.getCapabilities() method.

Gets the ConnectionCapabilities object with respect to a Terminal and an Address.
If null is passed as a Terminal parameter, the general/ provider−wide Connection
capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The
Connection.getCapabilities() method returns the dynamic Connection
capabilities. This method now should simply invoke the
Connection.getCapabilities() method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later.
address − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

Interface javax.telephony.JtapiPeer

public interface JtapiPeer

Introduction

The JtapiPeer interface represents a vendor’s particular implementation of the Java
Telephony API. Each JTAPI implementation vendor must implement this interface. The
JtapiPeer object returned by the JtapiPeerFactory.getJtapiPeer() method
determines which Providers are made available to the application.

Obtaining a Provider

Applications use the JtapiPeer.getProvider() method on this interface to obtain
new Provider objects. Each implementation may support one or more different "services"
(e.g. for different types of underlying network substrate). A list of available services can
be obtained via the JtapiPeer.getServices() method.

Applications may also supply optional arguments to the Provider through the
JtapiPeer.getProvider() method. These arguments are appended to the
providerString argument passed to the JtapiPeer.getProvider() method. The
providerString argument has the following format:

< service name > ; arg1 = val1; arg2 = val2; ...

Where < service name > is not optional, and each optional argument pair which follows
is separated by a semi−colon. The keys for these arguments is implementation specific,
except for two standard−defined keys:

1. login: provides the login user name to the Provider.
2. passwd: provides a password to the Provider.

See Also:
JtapiPeerFactory

Method Index

o getName()
Returns the name of this JtapiPeer object instance.

o getProvider(String)
Returns an instance of a Provider object given a string argument which contains
the desired service name.

o getServices()
Returns the services that this implementation supports.

Methods

o getName

 public abstract String getName()

Returns the name of this JtapiPeer object instance. This name is the same name
used as an argument to JtapiPeerFactory.getJtapiPeer() method.

Returns:
The name of this JtapiPeer object instance.

o getServices

 public abstract String[] getServices()

Returns the services that this implementation supports. This method returns null
if no services as supported.

Returns:
The services that this implementation supports.

o getProvider

 public abstract Provider getProvider(String providerString) throws ProviderUnavailableException

Returns an instance of a Provider object given a string argument which contains
the desired service name. Optional arguments may also be provided in this string,
with the following format:

< service name > ; arg1 = val1; arg2 = val2; ...

Where < service name > is not optional, and each optional argument pair which
follows is separated by a semi−colon. The keys for these arguments is
implementation specific, except for two standard−defined keys:

1. login: provides the login user name to the Provider.
2. passwd: provides a password to the Provider.

If the argument is null, this method returns some default Provider as determined
by the JtapiPeer object. The returned Provider is in the
Provider.OUT_OF_SERVICE state.

Post−conditions:
1. this.getProvider().getState() == Provider.OUT_OF_SERVICE

Parameters:
providerString − The name of the desired service plus an
optional arguments.

Returns:
An instance of the Provider object.

Throws: ProviderUnavailableException
Indicates a Provider corresponding to the given string is
unavailable.

Class javax.telephony.JtapiPeerFactory

java.lang.Object
 |
 +−−−−javax.telephony.JtapiPeerFactory

public class JtapiPeerFactory
extends Object

Introduction

The JtapiPeerFactory class is a class by which applications obtain a Provider object.
Applications use this class to first obtain a class which implements the JtapiPeer
interface. The JtapiPeer interface represents a particular vendor’s implementation of
JTAPI. The term ’peer’ is Java nomenclature for "a particular platform−specific
implementation of a Java interface or API". This term has the same meaning for the
Java Telephony API. Applications are not permitted to create an instance of the
JtapiPeerFactory class. Through an installation procedure provided by each
implementator, a JtapiPeer class is made available to an application environment.
When applications have a JtapiPeer object for a particular platform−dependent
implementation, they may obtain a Provider object via that interface. The details of that
interface are discussed in the specification for the JtapiPeer interface.

Obtaining a JtapiPeer Object

Applications use the JtapiPeerFactory.getJtapiPeer() method to obtain a
JtapiPeer object. The argument to this method is a classname which represents an object
which implements the JtapiPeer interface. This object and the classname under which
it can be found must be supplied by the vendor of the implementation. Note that this
object is not a Provider, however, this interface is used to obtain Provider objects from
that particular implementation.

The Java Telephony API places conventions on vendors on the classname they use for
their JtapiPeer object. This class name must begin with the domain name assigned to
the vendor in reverse order. Because the space of domain names is managed, this
scheme ensures that collisions between two different vendor’s implementations will not
happen. For example, an implementation from Sun Microsystem’s will have "com.sun" as
the prefix to its JtapiPeer class. After the reversed domain name, vendors are free to
choose any class hierarchy they desire.

Default JtapiPeer

Additionally, the vendor providing the JtapiPeer class may supply a a
DefaultJtapiPeer.class class file. When placed in the classpath of applications, this
class (which must implement the JtapiPeer interface) becomes the default JtapiPeer
object returned by the JtapiPeerFactory.getJtapiPeer() method. By convention
the default class name must be DefaultJtapiPeer .

In basic environments, applications and users do not want the burden of finding out the
class name in order to use a particular implementation. Therefore, the
JtapiPeerFactory class supports a mechanism for applications to obtain the default
implementation for their system. If applications use a null argument to the
JtapiPeerFactory.getJtapiPeer() method, they will be returned the default
installed implementation on their system if it exists.

Note: It is the responsibility of implementation vendors to supply a version of a
DefaultJtapiPeer or some means to alias their peer implementation along with a
means to place that DefaultJtapiPeer class in the application classpath.

See Also:
JtapiPeer

Method Index

o getJtapiPeer(String)
Returns an instance of a JtapiPeer object given a fully qualified classname of the
class which implements the JtapiPeer object.

Methods

o getJtapiPeer

 public static synchronized JtapiPeer getJtapiPeer(String jtapiPeerName) throws JtapiPeerUnavailableE

Returns an instance of a JtapiPeer object given a fully qualified classname of the
class which implements the JtapiPeer object.

If no classname is provided (null), a default class named DefaultJtapiPeer is
chosen as the classname to load. If it does not exist or is not installed in the
CLASSPATH as the default, a JtapiPeerUnavailableException exception is
thrown.

Parameters:
jtapiPeerName − The classname of the JtapiPeer object class.

Returns:

An instance of the JtapiPeer object.
Throws:JtapiPeerUnavailableException

Indicates that the JtapiPeer specified by the classname is not available.

Interface javax.telephony.Provider

public interface Provider

Introduction

A Provider represents the telephony software−entity that interfaces with a telephony
subsystem. The telephony subsystem could be a PBX connected to a server machine, a
telephony/fax card in a desktop machine or a networking technology such as IP or ATM.

Provider States

The Provider may either be in one of the following states: Provider.IN_SERVICE ,
Provider.OUT_OF_SERVICE , or Provider.SHUTDOWN . The Provider state represents
whether any action on that Provider may be valid. The following tables describes each
state:

Provider.IN_SERVICE This state indicates that the Provider is currently alive and
available for use. Provider.OUT_OF_SERVICE This state indicates that a Provider is
temporarily not available for use. Many methods in the Java Telephony API are invalid
when the Provider is in this state. Providers may come back in service at any time,
however, the application can take no direct action to cause this change.
Provider.SHUTDOWN : This state indicates that a Provider is permanently no longer
available for use. Most methods in the Java Telephony API are invalid when the
Provider is in this state. Applications may use the Provider.shutdown() method on
this interface to cause a Provider to move into the Provider.SHUTDOWN state.

The following diagram shows the allowable state transitions for the Provider as defined
by the core package.

[IMAGE]

Obtaining a Provider

A Provider is created and returned by the JtapiPeer.getProvider() method which is
given a string to describe the desired Provider. This method sets up any needed
communication paths between the application and the Provider. The string given is one
of the services listed in the JtapiPeer.getServices() . JtapiPeers particular
implementation on a system and may be obtained via the JtapiPeerFactory class.

Observers and Events

Each time a state changes occurs on a Provider, the application is notified via an event.
This event is reported via the ProviderObserver interface. Applications instantiate
objects which implement this interface and use the Provider.addObserver() method
to begin the delivery of events. All Provider events reported via this interface extend the
ProvEv interface. Applications may then query the event object returned for the specific
state change. In the core package API, the following events are sent to the
ProviderObserver when the Provider changes state: ProvInServiceEv,
ProvOutOfServiceEv, and ProvShutdownEv. The ProvObservationEndedEv event is
delivered to all observers when the Provider becomes unobservable and is the final event
delivered to the observer.

Call Objects and Providers

The Provider maintains knowledge of the calls currently associated with it. Applications
may obtain an array of these Calls via the Provider.getCalls() method. A Provider
may have Calls associated with it which were created before it came into existence. It is
the responsibility of the implementation of the Provider to model and report all existing
telephone calls which were created prior to the Provider’s lifetime. The Provider
maintains references to all calls until they move into the Call.INVALID state.

Applications may create new Calls using the Provider.createCall() method. A new
Call is returned in the Call.IDLE state. Applications may then use this idle Call to
place new telephone calls. Once created, this new Call object is returned via the
Provider.getCalls() method.

The Provider’s domain

The term Provider’s domain refers to the collection of Address and Terminal objects
which are local to the Provider, and typically, can be controlled by the Provider. For
example, the domain of a Provider of a desktop system with an ISDN card are the
Address(es) and Terminal(s) which represent that ISDN endpoint. The domain of a
Provider for a PBX may be the Addresses and Terminals in that PBX. The Provider
implementation controls access to Addresses and Terminals by limiting the domain its
presents to the application.

Address and Terminal Objects

An Address object represents what we commonly think of as a "telephone number." In
more rare implementations where the underlying network is not a telephony network,
this address may represent something else, such as an IP address. Regardless, it
represents a logical endpoint of a telephone call. A Terminal represents a physical
hardware endpoint connected to the telephone network. An example of a Terminal is a
telephone set, but a Terminal does not have to take the form of this limited and
traditional example. Addresses and Terminals are in a many−to−many relationship. An

Address may contain multiple Terminals, and Terminals may contain multiple
Addresses. See the specifications for the Address and Terminal objects for more
information.

Unlike Call objects, applications may not create Terminal or Address objects. The
Provider begins with knowledge of certain Terminal and Address objects defined as its
local domain. This list is static once the Provider is created. The Addresses and
Terminals in the Provider’s domain are reported via the Provider.getAddresses()
and Provider.getTerminals() methods, respectively.

Other Addresses and Terminals may be created sometime during the operation of the
Provider when the Provider learns of new instances of these objects. These new object,
however, represent Addresses and Terminals outside the Provider’s domain. For
example, if the Provider’s domain is a PBX, the Provider will know about all Addresses
and Terminals in this PBX when the Provider first starts. Any Addresses and Terminals
it subsequently learns about are outside this PBX. These Address and Terminal objects
outside this PBX are not reported via the Provider.getTerminals() and
Provider.getAddresses() methods. Address and Terminal objects outside of the
Provider’s domain are referred to as remote.

Capabilities: Static and Dynamic

The Provider interface supports methods to return static capabilities for each of the Java
Telephony call model objects. Static capabilities provide applications with information
concerning the ability of the implementation for perform certain methods. These static
capabilities indicate whether a method is implemented for a particular type of object and
does not depend upon the particular instance of the object nor the current state of the
call model. Those methods for which the static capability returns false will throw a
MethodNotSupportedException when invoked. The static capability methods supported
on this interface are: Provider.getProviderCapabilities() ,
Provider.getCallCapabilities() , Provider.getAddressCapabilities() ,
Provider.getTerminalCapabilities() ,
Provider.getConnectionCapabilities() , and
Provider.getTerminalConnectionCapabilities() .

Dynamic capabilities tell the application which actions are possible at the time this
method is invoked based upon the implementations knowledge of its ability to
successfully perform the action. This determination may be based upon argument passed
to this method, the current state of the call model, or some implementation−specific
knowledge. These indications do not guarantee that a particular method can be
successfully invoked, however. This interface returns the dynamic capabilities for a
Provider object via the Provider.getCapabilities() method. Note that this method
is distinct from the static capability method Provider.getProviderCapabilities() .

Multiple Providers and Multiple Applications

It is not guaranteed or expected that objects (Call, Terminal, etc.) instantiated through

one Provider will be usable with another Provider. Therefore, an application that uses
two providers must keep all the objects relating to these providers separate. In the
future, there may be a mechanism whereby a Provider may share objects with another
Provider if they are speaking to the same telephony hardware, however, such
capabilities are not available in this release.

Also, multiple applications may request and communicate with the same Provider
implementation. Typically, since each application executes in its own object space, each
will have its own instance of the Provider object. These two different Provider objects
may, in fact, be proxies for a centralized Provider instance. Certain methods in JTAPI
are specified to affect only the invoking applications and have not affect on others. The
only example in the core package is the Provider.shutdown() method.

See Also:
JtapiPeer, JtapiPeerFactory, ProviderObserver

Variable Index

o IN_SERVICE
The Provider.IN_SERVICE state indicates that a Provider is currently available
for use.

o OUT_OF_SERVICE
The Provider.OUT_OF_SERVICE state indicates that a Provider is temporarily
not available for use.

o SHUTDOWN
The Provider.SHUTDOWN state indicates that a Provider is permanently no longer
available for use.

Method Index

o addObserver(ProviderObserver)
Adds an observer to the Provider.

o createCall()
Creates and returns a new instance of the Call object.

o getAddress(String)
Returns an Address object which corresponds to the telephone number string
provided.

o getAddressCapabilities()
Returns the static capabilities of the Address object.

o getAddressCapabilities(Terminal)
Gets the AddressCapabilities object with respect to a Terminal. Deprecated.

o getAddresses()
Returns an array of Addresses associated with the Provider and within the
Provider’s domain.

o getCallCapabilities()

Returns the static capabilities of the Call object.
o getCallCapabilities(Terminal, Address)

Gets the CallCapabilities object with respect to a Terminal and an Address.
Deprecated.

o getCalls()
Returns an array of Call objects currently associated with the Provider.

o getCapabilities()
Returns the dynamic capabilities for the instance of the Provider object.

o getConnectionCapabilities()
Returns the static capabilities of the Connection object.

o getConnectionCapabilities(Terminal, Address)
Gets the ConnectionCapabilities object with respect to a Terminal and an Address.
Deprecated.

o getName()
Returns the unique string name of the Provider.

o getObservers()
Returns a list of all ProviderObservers associated with this Provider object.

o getProviderCapabilities()
Returns the static capabilities of the Provider object.

o getProviderCapabilities(Terminal)
Returns the ProviderCapabilities object with respect to a Terminal. Deprecated.

o getState()
Returns the current state of the Provider, either Provider.IN_SERVICE ,
Provider.OUT_OF_SERVICE, or Provider.SHUTDOWN .

o getTerminal(String)
Returns an instance of the Terminal class which corresponds to the given name.

o getTerminalCapabilities()
Returns the static capabilities of the Terminal object.

o getTerminalCapabilities(Terminal)
Gets the TerminalCapabilities object with respect to a Terminal. Deprecated.

o getTerminalConnectionCapabilities()
Returns the static capabilities of the TerminalConnection object.

o getTerminalConnectionCapabilities(Terminal)
Gets the TerminalConnectionCapabilities of a Terminal. Deprecated.

o getTerminals()
Returns an array of Terminals associated with the Provider and within the
Provider’s domain.

o removeObserver(ProviderObserver)
Removes the given observer from the Provider.

o shutdown()
Instructs the Provider to shut itself down and perform all necessary cleanup.

Variables

o IN_SERVICE

 public static final int IN_SERVICE

The Provider.IN_SERVICE state indicates that a Provider is currently available
for use.

o OUT_OF_SERVICE

 public static final int OUT_OF_SERVICE

The Provider.OUT_OF_SERVICE state indicates that a Provider is temporarily
not available for use. Many methods in the Java Telephony API are invalid when
the Provider is in this state. Providers may come back in service at any time,
however, the application can take no direct action to cause this change.

o SHUTDOWN

 public static final int SHUTDOWN

The Provider.SHUTDOWN state indicates that a Provider is permanently no longer
available for use. Most methods in the Java Telephony API are invalid when the
Provider is in this state.

Methods

o getState

 public abstract int getState()

Returns the current state of the Provider, either Provider.IN_SERVICE ,
Provider.OUT_OF_SERVICE, or Provider.SHUTDOWN .

Returns:
The current state of the provider.

o getName

 public abstract String getName()

Returns the unique string name of the Provider. Each different Provider must
have a unique string associated with it. This is the same string which the
application passed to the JtapiPeer.getProvider() method to create this
Provider instance.

Returns:
The name of the Provider.

See Also:
JtapiPeer

o getCalls

 public abstract Call [] getCalls() throws ResourceUnavailableException

Returns an array of Call objects currently associated with the Provider. When a
Call moves into the Call.INVALID state, the Provider loses its reference to this
Call. Therefore, all Calls returned by this method must either be in the
Call.IDLE or Call.ACTIVE state. This method returns null if the Provider has
zero calls associated with it.

Post−conditions:
1. Let Calls calls[] = Provider.getCalls()
2. calls == null or calls.length >= 1
3. For all i, calls[i].getState() == Call.IDLE or Call.ACTIVE

Returns:
An array of Call objects currently associated with this Provider.

Throws:ResourceUnavailableException
Indicates the number of calls present in the Provider is too great to return as
a static array.

o getAddress

 public abstract Address getAddress(String number) throws InvalidArgumentException

Returns an Address object which corresponds to the telephone number string
provided. If the provided name does not correspond to an Address known by the
Provider and within the Provider’s domain, InvalidArgumentException is thrown.
In other words, the Address must appear in the list generated by
Provider.getAddresses() .

Pre−conditions:
1. Let Address address = this.getAddress(number);
2. address is an element of this.getAddresses();

Post−conditions:
1. Let Address address = this.getAddress(number);
2. address is an element of this.getAddresses();

Parameters:
number − The telephone address string.

Returns:
The Address object corresponding to the given telephone number.

Throws:InvalidArgumentException
The name of the Address does not correspond to the name of any Address
object known to the Provider or within the Provider’s domain.

o getAddresses

 public abstract Address [] getAddresses() throws ResourceUnavailableException

Returns an array of Addresses associated with the Provider and within the
Provider’s domain. This list is static (i.e. is does not change) after the Provider is
first created. If no Address objects are associated with this Provider, then this
method returns null.

Post−conditions:
1. Let Address[] addresses = this.getAddresses()
2. addresses == null or addresses.length >= 1

Returns:
An array of Addresses known by this provider.

Throws:ResourceUnavailableException
Indicates the number of addresses present in the Provider is too great to
return as a static array.

o getTerminals

 public abstract Terminal [] getTerminals() throws ResourceUnavailableException

Returns an array of Terminals associated with the Provider and within the
Provider’s domain. Each Terminal possesses a unique name, which is assigned to
it by the JTAPI implementation. If there are no Terminals associated with this
Provider, then this method returns null.

Post−conditions:
1. Let Terminal[] terminals = this.getTerminals()
2. terminals == null or terminals.length >= 1

Returns:
An array of Terminals in the Provider’s local domain.

Throws:ResourceUnavailableException
Indicates the number of terminals present in the Provider is too great to
return as a static array.

o getTerminal

 public abstract Terminal getTerminal(String name) throws InvalidArgumentException

Returns an instance of the Terminal class which corresponds to the given name.
Each Terminal has a unique name associated with it, which is assigned to it by the
JTAPI implementation. If no Terminal is available for the given name within the
Provider’s domain, this method throws the InvalidArgumentException. This
Terminal must be in the array generated by Provider.getTerminals().

Pre−conditions:
1. Let Terminal terminal = this.getTerminal(name);
2. terminals is an element of this.getTerminals();

Post−conditions:

1. Let Terminal terminal = this.getTerminal(name);
2. terminal is an element of this.getTerminals();

Parameters:
name − The name of desired Terminal object.

Returns:
The Terminal object associated with the given name.

Throws:InvalidArgumentException
The name provided does not correspond to a name of any Terminal known to
the Provider or within the Provider’s domain.

o shutdown

 public abstract void shutdown()

Instructs the Provider to shut itself down and perform all necessary cleanup.
Applications invoke this method when they no longer intend to use the Provider,
most often right before they exit. This method is intended to allow the Provider to
perform any necessary cleanup which would not be taken care of when the Java
objects are garbage collected. This method causes the Provider to move into the
Provider.SHUTDOWN state, in which it will stay indefinitely.

If the Provider is already in the Provider.SHUTDOWN state, this method does
nothing. The invocation of this method should not affect other applications which
are using the same implementation of the Provider object.

Post−conditions:
1. this.getState() == Provider.SHUTDOWN

o createCall

 public abstract Call createCall() throws ResourceUnavailableException , InvalidStateException , Privil

Creates and returns a new instance of the Call object. This new call object is in the
Call.IDLE state and has no Connections. An exception is generated if a new
call cannot be created for various reasons. This Provider must be in the
Provider.IN_SERVICE state, otherwise an InvalidStateException is thrown.

Pre−conditions:
1. this.getState() == Provider.IN_SERVICE

Post−conditions:
1. this.getState() == Provider.IN_SERVICE
2. Let Call call = this.createCall();
3. call.getState() == Call.IDLE.
4. call.getConnections() == null
5. call is an element of this.getCalls()

Returns:

The new Call object.
Throws:ResourceUnavailableException

An internal resource necessary to create a new Call object is unavailable.
Throws:InvalidStateException

The Provider is not in the Provider.IN_SERVICE state.
Throws:PrivilegeViolationException

The application does not have the proper authority to create a new telephone
call object.

Throws:MethodNotSupportedException
The implementation does not support creating new Call objects.

o addObserver

 public abstract void addObserver(ProviderObserver observer) throws ResourceUnavailableException

Adds an observer to the Provider. Provider−related events are reported via the
ProviderObserver interface. The Provider object will report events to this
interface for the lifetime of the Provider object or until the observer is removed
with the Provider.removeObserver() method or until the Provider is no longer
observable.

If the Provider becomes unobservable, a ProvObservationEndedEv is delivered to
the application as is final event. No further events are delivered to the observer
unless it is explicitly re−added by the application. When an observer receives a
ProvObservationEndedEv it is no longer reported via the
Provider.getObservers() method.

This method is valid anytime and has no pre−conditions. Application must have
the ability to add observers to Providers so they can monitor the changes in state
in the Provider.

If an application attempts to add an instance of an observer already present on
this Provider, then repeated attempts to add the instance of the observer will
silently fail, i.e. multiple instances of an observer are not added and no exception
will be thrown.

Post−conditions:
1. observer is an element of this.getObservers()

Parameters:
observer − The observer being added.

Throws:ResourceUnavailableException
The resource limit for the numbers of observers has been exceeded.

o getObservers

 public abstract ProviderObserver [] getObservers()

Returns a list of all ProviderObservers associated with this Provider object. If no
observers exist on this Provider, then this method returns null.

Post−conditions:
1. Let ProviderObserver[] observers = this.getObservers()
2. observers == null or observers.length >= 1

Returns:
An array of ProviderObserver objects associated with this Provider.

o removeObserver

 public abstract void removeObserver(ProviderObserver observer)

Removes the given observer from the Provider. The given observer will no longer
receive events generated by this Provider object. The final event will be the
ProvObservationEndedEv event and will no longer be listed by the
Provider.getObservers() method.

Also, if an observer is not part of the Provider, then this method fails silently, i.e.
no observer is removed an no exception is thrown.

Post−conditions:
1. observer is not an element of this.getObservers()
2. ProvObservationEndedEv is delivered to observer

Parameters:
observer − The observer which is being removed.

o getProviderCapabilities

 public abstract ProviderCapabilities getProviderCapabilities()

Returns the static capabilities of the Provider object. The value of these
capabilities will not change over the lifetime of the Provider. They represent the
static abilities of the implementation to perform certain methods on the Provider
object. For all capability methods which return false, the invocation of that method
will always throw MethodNotSupportedException.

NOTE: This method is different from the Provider.getCapabilities() ,
method which returns the dynamic capabilities of a Provider object instance.

Returns:
The static capabilities of the Provider object.

o getCallCapabilities

 public abstract CallCapabilities getCallCapabilities()

Returns the static capabilities of the Call object. The value of these capabilities
will not change over the lifetime of the Provider. They represent the static abilities
of the implementation to perform certain methods on the Call object. For all
capability methods which return false, the invocation of that method will always
throw MethodNotSupportedException.

Returns:
The static capabilities of the Call object.

o getAddressCapabilities

 public abstract AddressCapabilities getAddressCapabilities()

Returns the static capabilities of the Address object. The value of these capabilities
will not change over the lifetime of the Provider. They represent the static abilities
of the implementation to perform certain methods on the Address object. For all
capability methods which return false, the invocation of that method will always
throw MethodNotSupportedException.

Returns:
The static capabilities of the Address object.

o getTerminalCapabilities

 public abstract TerminalCapabilities getTerminalCapabilities()

Returns the static capabilities of the Terminal object. The value of these
capabilities will not change over the lifetime of the Provider. They represent the
static abilities of the implementation to perform certain methods on the Terminal
object. For all capability methods which return false, the invocation of that method
will always throw MethodNotSupportedException.

Returns:
The static capabilities of the Address object.

o getConnectionCapabilities

 public abstract ConnectionCapabilities getConnectionCapabilities()

Returns the static capabilities of the Connection object. The value of these
capabilities will not change over the lifetime of the Provider. They represent the
static abilities of the implementation to perform certain methods on the
Connection object. For all capability methods which return false, the invocation of
that method will always throw MethodNotSupportedException.

Returns:

The static capabilities of the Connection object.

o getTerminalConnectionCapabilities

 public abstract TerminalConnectionCapabilities getTerminalConnectionCapabilities()

Returns the static capabilities of the TerminalConnection object. The value of
these capabilities will not change over the lifetime of the Provider. They represent
the static abilities of the implementation to perform certain methods on the
TerminalConnection object. For all capability methods which return false, the
invocation of that method will always throw MethodNotSupportedException.

Returns:
The static capabilities of the TerminalConnection object.

o getCapabilities

 public abstract ProviderCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Provider object. Dynamic
capabilities tell the application which actions are possible at the time this method
is invoked based upon the implementations knowledge of its ability to successfully
perform the action. This determination may be based upon argument passed to
this method, the current state of the call model, or some implementation−specific
knowledge. These indications do not guarantee that a particular method can be
successfully invoked, however.

There are no arguments passed into this method for dynamic Provider capabilities

NOTE: This method is different from the
Provider.getProviderCapabilities() method which returns the static
capabilities for the Provider object.

Returns:
The dynamic Provider capabilities.

o getProviderCapabilities

 public abstract ProviderCapabilities getProviderCapabilities(Terminal terminal) throws InvalidArgume

Note: getProviderCapabilities() is deprecated.Since JTAPI v1.2. This method
has been replaced by the Provider.getProviderCapabilities() method.

Returns the ProviderCapabilities object with respect to a Terminal. If null is
passed as a Terminal parameter, the general/provider−wide Provider capabilities
are returned.

Note: This method has been replaced in JTAPI v1.2. The

Provider.getProviderCapabilities() method returns the static Provider
capabilities. This method now should simply invoke the
Provider.getProviderCapabilities(void) method.

Parameters:
terminal − This parameter is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

o getCallCapabilities

 public abstract CallCapabilities getCallCapabilities(Terminal terminal,
 Address address) throws InvalidArgumentExceptio

Note: getCallCapabilities() is deprecated.Since JTAPI v1.2. This method has
been replaced by the Provider.getCallCapabilities() method.

Gets the CallCapabilities object with respect to a Terminal and an Address. If null
is passed as a Terminal/Address parameter, the general/provider−wide Call
capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The
Provider.getCallCapabilities() method returns the static Call capabilities.
This method now should simply invoke the
Provider.getCallCapabilities(void) method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later.
address − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

o getConnectionCapabilities

 public abstract ConnectionCapabilities getConnectionCapabilities(Terminal terminal,
 Address address) throws InvalidArgu

Note: getConnectionCapabilities() is deprecated.Since JTAPI v1.2. This
method has been replaced by the Provider.getConnectionCapabilities() method.

Gets the ConnectionCapabilities object with respect to a Terminal and an Address.
If null is passed as a Terminal/Address parameter, the general/ provider−wide
Connection capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The
Provider.getConnectionCapabilities() method returns the static
Connection capabilities. This method now should simply invoke the
Provider.getConnectionCapabilities(void) method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later.
exception − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

o getAddressCapabilities

 public abstract AddressCapabilities getAddressCapabilities(Terminal terminal) throws InvalidArgument

Note: getAddressCapabilities() is deprecated.Since JTAPI v1.2. This method
has been replaced by the Provider.getAddressCapabilities() method.

Gets the AddressCapabilities object with respect to a Terminal. If null is passed as
a Terminal parameter, the general/provider−wide Address capabilities are
returned.

Note: This method has been replaced in JTAPI v1.2. The
Provider.getAddressCapabilities() method returns the static Address
capabilities. This method now should simply invoke the
Provider.getAddressCapabilities(void) method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

o getTerminalConnectionCapabilities

 public abstract TerminalConnectionCapabilities getTerminalConnectionCapabilities(Terminal terminal)

Note: getTerminalConnectionCapabilities() is deprecated.Since JTAPI v1.2.
This method has been replaced by the
Provider.getTerminalConnectionCapabilities() method.

Gets the TerminalConnectionCapabilities of a Terminal. If null is passed as a
Terminal parameter, the general/provider−wide TerminalConnection capabilities
are returned.

Note: This method has been replaced in JTAPI v1.2. The
Provider.getTerminalConnectionCapabilities() method returns the
static TerminalConnection capabilities. This method now should simply invoke the
Provider.getTerminalConnectionCapabilities(void) method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later. are being
queried

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

o getTerminalCapabilities

 public abstract TerminalCapabilities getTerminalCapabilities(Terminal terminal) throws InvalidArgume

Note: getTerminalCapabilities() is deprecated.Since JTAPI v1.2. This method
has been replaced by the Provider.getTerminalCapabilities() method.

Gets the TerminalCapabilities object with respect to a Terminal. If null is passed
as a Terminal parameter, the general/provider−wide Terminal capabilities are
returned.

Note: This method has been replaced in JTAPI v1.2. The
Provider.getTerminalCapabilities() method returns the static Terminal
capabilities. This method now should simply invoke the
Provider.getTerminalCapabilities(void) method.

Parameters:
terminal − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

Interface javax.telephony.ProviderObserver

public interface ProviderObserver

Introduction

The ProviderObserver interface reports all changes which happen to the Provider
object. These changes are reported as events to the
ProviderObserver.providerChangedEvent() method. Applications must
instantiate an object which implements this interface and then use the
Provider.addObserver()) method to register the object to receive all future events
associated with the Provider object.

The ProviderObserver.providerChangedEvent() method receives an array of
events which all must extend the ProvEv interface. Since several changes may happen
to a single JTAPI object at once, a list of events is needed to convey those changes which
happen at the same time. Applications iterate through the array of events provided.

Provider State Changes

In the core package, an event is delivered whenever the Provider changes state. The
event interfaces which correspond to these state changes for the core package are:
ProvInServiceEv , ProvOutOfServiceEv , and ProvShutdownEv .

Provider Observation Ending

At various times, the underlying implementation may not be able to observe the
Provider. In these instances, the ProviderObserver is sent an ProvObservationEndedEv
event. This indicates that the application will not receive further events associated with
the Provider object. This observer will no longer be reported via the
Provider.getObservers() method.

See Also:
ProvEv, ProvInServiceEv, ProvOutOfServiceEv, ProvShutdownEv,
ProvObservationEndedEv

Method Index

o providerChangedEvent(ProvEv[])

Reports all events associated with the Provider object.

Methods

o providerChangedEvent

 public abstract void providerChangedEvent(ProvEv eventList[])

Reports all events associated with the Provider object. This method passes an
array of ProvEv objects as its arguments which correspond to the list of events
representing the changes to the Provider object.

Parameters:
eventList − The list of Provider events.

Interface javax.telephony.Terminal

public interface Terminal

Introduction

A Terminal represents a physical hardware endpoint connected to the telephony domain.
An example of a Terminal is a telephone set, but a Terminal does not have to take the
form of this limited and traditional example. For example, computer workstations and
hand−held devices are modeled as Terminals if they act as physical endpoints in a
telephony network.

A Terminal object has a string name which is unique for all Terminal objects. The
Terminal does not attempt to interpret this string in any way. This name is first
assigned when the Terminal is created and does not change throughout the lifetime of
the object. The method Terminal.getName() returns the name of the Terminal object.
The name of the Terminal may not have any real−world interpretation. Typically,
Terminals are chosen from a list of Terminals obtained from an Address object.

Terminal objects may be classified into two categories: local and remote. Local Terminal
objects are those terminals which are part of the Provider’s local domain. These
Terminal objects are created by the implementation of the Provider object when it is first
instantiated. All of the Provider’s local terminals are reported via the
Provider.getTerminals() method. Remote Terminal objects are those outside of the
Provider’s domain which the Provider learns about during its lifetime through various
happenings (e.g. an incoming call from a currently unknown address). Remote Terminal
objects are not reported via the Provider.getTerminals() method. Note that
applications never explicitly create new Terminal objects.

Address and Terminal objects

Address and Terminal objects exist in a many−to−many relationship. An Address object
may have zero or more Terminals associated with it. For each Terminal associated with
an Address, that Terminal must also reflect its association with the Address. Since the
implementation creates Address (and Terminal) objects, it is responsible for insuring the
correctness of these relationships. The Terminals associated with an Address is given by
the Address.getTerminals() method.

An association between an Address and Terminal object indicates that the Terminal
contains the Address object as one of its telephone number addresses. In many
instances, a telephone set (represented by a Terminal object) has only one telephone
number (represented by an Address object) associated with it. In more complex

configurations, telephone sets may have several telephone numbers associated with
them. Likewise, a telephone number may appear on more than one telephone set. For
example, feature phones in PBX environments may exhibit this configuration.

Terminals and Call objects

Terminal objects represent the physical endpoints of a telephone call. With respect to a
single Address endpoint on a Call, multiple physical Terminal endpoints may exist.
Terminal objects are related to Call objects via the TerminalConnection object.
TerminalConnection objects are associated with Call indirectly via Connections. A
Terminal may be associated with a Call only if one of its Addresses is associated with the
Call. The TerminalConnection object has a state which describes the current relationship
between the Connection and the Terminal. Each Terminal object may be part of more
than one telephone call, and in each case, is represented by a separate
TerminalConnection objet. The Terminal.getTerminalConnections() method
returns all TerminalConnection object currently associated with the Terminal.

A Terminal object is associated with a Connection until the TerminalConnection moves
into the TerminalConnection.DROPPED state. At that time, the TerminalConnection
is no longer reported via the Terminal.getTerminalConnections() method.
Therefore, the Terminal.getTerminalConnections() method never reports a
TerminalConnection in the TerminalConnection.DROPPED state.

Existing Telephone Calls

The Java Telephony API specification states that the implementation is responsible for
reporting all existing telephone calls when a Provider is first created. This implies that
an Terminal object must report information regarding existing telephone calls to that
Terminal. In other words, Terminal objects must reports all TerminalConnection objects
which represent existing telephone calls.

Terminal Observers and Events

All changes in an Terminal object are reported via the TerminalObserver interface.
Applications instantiate an object which implements this interface and begins this
delivery of events to this object using the Terminal.addObserver() method. All
Terminal−related events extend the TermEv interface provided in the core package.
Applications receive events on an observer until the observer is removed via the
Terminal.removeObserver() method or until the Terminal is no longer observable.
In these instances, each TerminalObserver receives a TermObservationEndedEv as its
final event.

Currently in the core package, the only Terminal−related event is
TermObservationEndedEv.

Call Observers

At times, applications may want to monitor a particular Terminal for all Calls which
come to that Terminal. For example, a desktop telephone application is only interested
in telephone calls associated with a particular agent terminal. To achieve this sort of
Terminal−based Call monitoring applications may add CallObservers to an Terminal via
the Terminal.addCallObserver() method.

When a CallObserver is added to an Terminal, this observer instance is immediately
added to all Calls at this Terminal and is added to all Calls which come to this Terminal
in the future. These observers remain on the telephone call as long as the Terminal is
associated with the telephone call.

The specification of Terminal.addCallObserver() contains more precise semantics.

See Also:
TerminalObserver, CallObserver

Method Index

o addCallObserver(CallObserver)
Adds an observer to a Call object when this Terminal object first becomes part of
that Call.

o addObserver(TerminalObserver)
Adds an observer to the Terminal.

o getAddresses()
Returns an array of Address objects associated with this Terminal object.

o getCallObservers()
Returns a list of all CallObservers associated with this Terminal object.

o getCapabilities()
Returns the dynamic capabilities for the instance of the Terminal object.

o getName()
Returns the name of the Terminal.

o getObservers()
Returns a list of all TerminalObservers associated with this Terminal object.

o getProvider()
Returns the Provider associated with this Terminal.

o getTerminalCapabilities(Terminal, Address)
Gets the TerminalCapabilities object with respect to a Terminal and an Address.
Deprecated.

o getTerminalConnections()
Returns an array of TerminalConnection objects associated with this Terminal.

o removeCallObserver(CallObserver)
Removes the given CallObserver from the Terminal.

o removeObserver(TerminalObserver)
Removes the given observer from the Terminal.

Methods

o getName

 public abstract String getName()

Returns the name of the Terminal. Each Terminal possesses a unique name. This
name is assigned by the implementation and may or may not carry a real−world
interpretation.

Returns:
The name of the Terminal.

o getProvider

 public abstract Provider getProvider()

Returns the Provider associated with this Terminal. This Provider object is valid
throughout the lifetime of the Terminal and does not change once the Terminal is
created.

Returns:
The Provider associated with this Terminal.

o getAddresses

 public abstract Address [] getAddresses()

Returns an array of Address objects associated with this Terminal object. The
Terminal object must have at least one Address object associated with it. This list
does not change throughout the lifetime of the Terminal object.

Post−conditions:
1. Let Address[] addrs = this.getAddresses()
2. addrs.length >= 1

Returns:
An array of Address objects associated with this Terminal.

o getTerminalConnections

 public abstract TerminalConnection [] getTerminalConnections()

Returns an array of TerminalConnection objects associated with this Terminal.
Once a TerminalConnection is added to a Terminal, the Terminal maintains a
reference until the TerminalConnection moves into the
TerminalConnection.DROPPED state. Therefore, all TerminalConnections
returned by this method will never be in the TerminalConnection.DROPPED

state. If there are no TerminalConnections associated with this Terminal, this
method returns null.

Post−conditions:
1. Let TerminalConnection tc[] = this.getTerminalConnections()
2. tc == null or tc.length >= 1
3. For all i, tc[i].getState() != TerminalConnection.DROPPED

Returns:
An array of TerminalConnection objects associated with this Terminal.

o addObserver

 public abstract void addObserver(TerminalObserver observer) throws ResourceUnavailableException

Adds an observer to the Terminal. The TerminalObserver reports all
Terminal−related state changes as events. The Terminal object will report events
to this TerminalObserver object for the lifetime of the Terminal object or until the
observer is removed with the Terminal.removeObserver() or until the
Terminal is no longer observable. In these instances, a TermObservationEndedEv
is delivered to the observer as its final event. The observer will receive no events
after TermObservationEndedEv unless the observer is explicitly re−added via the
Terminal.addObserver() method. Also, once an observer receives an
TermObservationEndedEv, it will no longer be reported via the
Terminal.getObservers() .

If an application attempts to add an instance of an observer already present on
this Terminal, this attempt will silently fail, i.e. multiple instances of an observer
are not added and no exception will be thrown.

Currently, only the TermObservationEndedEv event is defined by the core package
and delivered to the TerminalObserver.

Post−conditions:
1. observer is an element of this.getObservers()

Parameters:
observer − The observer being added.

Throws:ResourceUnavailableException
The resource limit for the numbers of observers has been exceeded.

o getObservers

 public abstract TerminalObserver [] getObservers()

Returns a list of all TerminalObservers associated with this Terminal object. If
there are no observers associated with this Terminal, this method returns null.

Post−conditions:
1. Let TerminalObserver[] obs = this.getObservers()
2. obs == null or obs.length >= 1

Returns:
An array of TerminalObserver objects associated with this Terminal.

o removeObserver

 public abstract void removeObserver(TerminalObserver observer)

Removes the given observer from the Terminal. If successful, the observer will no
longer receive events generated by this Terminal object. As its final event, the
TerminalObserver receives a TermObservationEndedEv.

If an observer is not part of the Terminal, then this method fails silently, i.e. no
observer is removed an no exception is thrown.

Post−conditions:
1. A TermObservationEndedEv event is reported to the observer as its final

event.
2. observer is not an element of this.getObservers()

Parameters:
observer − The observer which is being removed.

o addCallObserver

 public abstract void addCallObserver(CallObserver observer) throws ResourceUnavailableException

Adds an observer to a Call object when this Terminal object first becomes part of
that Call. This method permits applications to select a Terminal object in which
they are interested and automatically have the implementation attach an observer
to all present and future Calls which come to this Terminal.

JTAPI v1.0 Semantics

In version 1.0 of the Java Telephony API specification, the application monitored
the Terminal object for the TermCallAtTermEv event. This event indicated that a
Call has come to this Terminal. Then, applications would manually add an
observer to the Call. With this architecture, potentially dangerous race conditions
existed while an application was adding an observer to the Call. As a result, this
mechanism has been replaced in version 1.1.

JTAPI v1.1 Semantics

In version 1.1 of the specification, the TermCallAtTermEv event does not exist and

this method replaces the functionality described above. Instead of monitoring for a
TermCallAtTermEv event, the application simply uses the
Terminal.addCallObserver() method, and observer will be added to new
telephone calls at this Terminal automatically.

If an application attempts to add an instance of a call observer already present on
this Terminal, these repeated attempts will silently fail, i.e. multiple instances of a
call observer are not added and no exception will be thrown.

When a call observer is added to an Terminal with this method, the following
behavior is exhibited by the implementation.

1. It is immediately associated with any existing calls at the Terminal and a
snapshot of those calls are reported to the call observer. For each of these
calls, the observer is reported via Call.getObservers() .

2. It is associated with all future calls which comes to this Terminal. For each
new calls, the observer is reported via Call.getObservers().

Note that the definition of the term ".. when a call is at an Terminal" means that
the Call contains a Connection which contains a TerminalConnection with this
Terminal as its Terminal.

Call Observer Lifetime

For all call observers which are present on Calls because of this method, the
following behavior is exhibited with respect to the lifetime of the call.

1. The call observer receives events until the Call is no longer at this Terminal.
In this case, the call observer will be re−applied to the Call if the Call
returns to this Terminal at some point in the future.

2. The call observer is removed with Call.removeObserver() . Note that this
only affects the instance of the call observer for that particular call. If the
Call subsequently leaves and returns to the Terminal, the observer will be
re−applied.

3. The Call can no longer be monitored by the implementation.
4. The Call moves into the Call.INVALID state.

When the CallObserver leaves the Call because of one of the reasons above, it
receives a CallObservationEndedEv as its final event.

Call Observer on Multiple Addresses and Terminals

It is possible for an application to add CallObservers to more than one Address and
Terminal (using Address.addCallObserver() and
Terminal.addCallObserver() , respectively). The rules outlined above still
apply, with the following additions:

1. A CallObserver is not added to a Call more than once, even if it has been
added to more than one Address/Terminal which are present on the Call.

2. The CallObserver leaves the call only if ALL of the Addresses and Terminals
on which the Call Observer was added leave the Call. If one of those
Addresses/Terminals becomes part of the Call again, the call observer is
re−applied to the Call.

Post−Conditions:
1. observer is an element of this.getCallObservers()
2. observer is an element of Call.getObservers() for each Call associated with

the Connections from this.getConnections().
3. An array of snapshot events are reported to the observer for existing calls

associated with this Terminal.

Parameters:
observer − The observer being added.

Throws:ResourceUnavailableException
The resource limit for the numbers of observers has been exceeded.

See Also:
Call

o getCallObservers

 public abstract CallObserver [] getCallObservers()

Returns a list of all CallObservers associated with this Terminal object. That is, it
returns a list of CallObserver object which have been added via the
Terminal.addCallObserver() method. If there are no Call observers associated
with this Terminal object, this method returns null.

Post−conditions:
1. Let CallObserver[] obs = this.getCallObservers()
2. obs == null or obs.length >= 1

Returns:
An array of CallObserver objects associated with this Address.

o removeCallObserver

 public abstract void removeCallObserver(CallObserver observer)

Removes the given CallObserver from the Terminal. In other words, it removes a
CallObserver which was added via the Terminal.addCallObserver() method.
If successful, the observer will no longer be added to new Calls which are
presented to this Terminal, however it does not affect CallObservers which have
already been added at a Call.

Also, if the CallObserver is not part of the Terminal, then this method fails

silently, i.e. no observer is removed an no exception is thrown.

Post−conditions:
1. observer is not an element of this.getCallObservers()

Parameters:
observer − The CallObserver which is being removed.

o getCapabilities

 public abstract TerminalCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the Terminal object. Dynamic
capabilities tell the application which actions are possible at the time this method
is invoked based upon the implementations knowledge of its ability to successfully
perform the action. This determination may be based upon argument passed to
this method, the current state of the call model, or some implementation−specific
knowledge. These indications do not guarantee that a particular method will be
successful when invoked, however.

The dynamic Terminal capabilities require no additional arguments.

Returns:
The dynamic Terminal capabilities.

o getTerminalCapabilities

 public abstract TerminalCapabilities getTerminalCapabilities(Terminal terminal,
 Address address) throws InvalidArgument

Note: getTerminalCapabilities() is deprecated.Since JTAPI v1.2. This method
has been replaced by the Terminal.getCapabilities() method.

Gets the TerminalCapabilities object with respect to a Terminal and an Address. If
null is passed as a Terminal parameter, the general/provider− wide Terminal
capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The
Terminal.getCapabilities() method returns the dynamic Terminal
capabilities. This method now should simply invoke the
Terminal.getCapabilities() method.

Parameters:
address − This argument is ignored in JTAPI v1.2 and later.
terminal − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException

A platform−specific exception occurred.

Interface javax.telephony.TerminalConnection

public interface TerminalConnection

Introduction

The TerminalConnection represents the relationship between a Connection and a
Terminal. A TerminalConnection object must always be associated with a Connection
object and a Terminal object. The Connection and the Terminal objects associated with
the TerminalConnection do not change throughout the lifetime of the
TerminalConnection. Applications obtain the Connection and Terminal associated with
the TerminalConnection via the TerminalConnection.getConnection() and
TerminalConnection.getTerminal() methods, respectively.

Because a TerminalConnection is associated with a Connection, it there is also
associated with some Call. The TerminalConnection describes the specific relationship
between a physical Terminal endpoint with respect to an Address on a Call.
TerminalConnections provide a physical view of a Call. For a particular Address
endpoint on a Call, there may be zero or more Terminals at which the Call terminates.
The TerminalConnection describes each specific Terminal on the Call associated with a
particular Address endpoint on the Call. Many simple applications may not care about
which specific Terminals are on the Call at a particular Address endpoint. In these
cases, the logical view provided by Connections are sufficient.

Requirements for TerminalConnections

In order for a Terminal to be on a Call and associated with a Connection, the Terminal
must be associated with the Address object endpoint of the Connection. That is, for each
TerminalConnection on a Connection, the Connection’s Address must be associated with
the TerminalConnection’s Terminal. The following predicates illustrates this necessary
relationship:

1. Let address = connection.getAddress();
2. Let tc[] = connection.getTerminalConnections();
3. For all i in tc[], let terminal[i] = tc[i].getTerminal();
4. Assert for all i: address is an element of terminal[i].getAddresses();
5. Assert for all i: terminal[i] is an element of address.getTerminals();

TerminalConnection States

The TerminalConnection has a state which describes the current relationship between a
Terminal and a Connection. TerminalConnection states are distinct from Connection
states. Connection states describe the relationship between an entire Address endpoint
and a Call, whereas the TerminalConnection state describes the relationship between
one of the Terminals at the endpoint Address on the Call with respect to its Connection.
Different Terminals on a Call which are associated with the same Connection may be in
different states. Furthermore, the state of the TerminalConnection has a dependency
and specific relationship to the state of its Connection, as described later on.

The TerminalConnection interface in the core package has six states defined in
real−world terms below: TerminalConnection.IDLE This state is the initial state for
all TerminalConnections. TerminalConnection objects do not stay in this state for long.
They typically transition into another state quickly. TerminalConnection.RINGING
This state indicates the a Terminal is ringing, indicating that the Terminal has an
incoming Call. TerminalConnection.PASSIVE This state indicates that a Terminal is
part of a telephone call but not in an active fashion. This may imply that a resource of
the Terminal is being used and may limit actions on the Terminal.
TerminalConnection.ACTIVE This state indicates that a Terminal is actively part of a
telephone call. This usually implies that the party speaking on that Terminal is part of
the telephone call. TerminalConnection.DROPPED This state indicates that a
particular Terminal has permanently left the telephone call.
TerminalConnection.UNKNOWN This state indicates that the implementation is unable
to determine the state of the TerminalConnection. TerminalConnections may transition
into and out of this state at any time.

When a TerminalConnection moves into the TerminalConnection.DROPPED state, it is
no longer associated with its Connection and Terminal. That is, both of these objects lose
their references to the TerminalConnection. However, the TerminalConnection still
maintains its references to the Connection and Terminal object for application reference.
That is, when a TerminalConnection moves into the TerminalConnection.DROPPED
state, the methods TerminalConnection.getConnection() and
TerminalConnection.getTerminal() still return valid objects.

TerminalConnection state transitions

Similar to the Connection, there is a finite−state diagram which describes the allowable
state transitions of a TerminalConnection. The implementation must guarantee these
state transitions. The specifications of methods which affect the state of the
TerminalConnections also obey these state transitions. This state diagram is below:

[IMAGE]

Note the TerminalConnection may transition into the TerminalConnection.DROPPED
state from any state, and into and out of the TerminalConnection.UNKNOWN state
from any state.

Relationship between Connections and TerminalConnections

As mentioned previously, the state of the Connection determines the following about
TerminalConnections:

Whether TerminalConnections may exist on a Connection.
The allowable states of the TerminalConnections if they exist.

These properties about Connections and TerminalConnections are guaranteed by the
implementation. This relationship is further illustrated in the description of such
methods as Call.connect() , Connection.disconnected() , and
TerminalConnection.answer() . The following chart defines the specific relationship
between Connection states and TerminalConnections.

If the Connection is in state...... then the TerminalConnection isConnection.IDLE No
TerminalConnections may exist on this Connection, that is, the
Connection.getTerminalConnections() method returns null.
Connection.INPROGRESS No TerminalConnections may exist on this Connection, that
is, the Connection.getTerminalConnections() method returns null.
Connection.ALERTING Zero or more TerminalConnections may exist on this
Connection, and each must be in the TerminalConnection.RINGING state.
Connection.CONNECTED Zero or more TerminalConnections may exist on this
Connection, and each must be in the TerminalConnection.PASSIVE or the
TerminalConnection.ACTIVE state. Note that when TerminalConnections must into
the TerminalConnection.DROPPED state they are no longer associated with the
Connection. Connection.DISCONNECTED No TerminalConnections may exist on this
Connection, that is, the Connection.getTerminalConnections() method returns
null. Note that all TerminalConnections previously associated with this Connection will
move into the TerminalConnection.DROPPED state. Connection.FAILED No
TerminalConnections may exist on this Connection, that is, the
Connection.getTerminalConnections() method returns null. Note that all
TerminalConnections previously associated with this Connection will move into the
TerminalConnection.DROPPED state. Connection.UNKNOWN Zero or more
TerminalConnections may exist on this Connection, and each must be in the
TerminalConnection.UNKNOWN state.

The TerminalConnection.answer() Method

The primary method supported on the core package’s TerminalConnection interface is
the TerminalConnection.answer() method. This method answers a telephone call at
a Terminal. This method moves the TerminalConnection into the
TerminalConnection.ACTIVE state upon success. The TerminalConnection must be in
the TerminalConnection.RINGING state when this method is invoked.

Observers and Events

All events pertaining to the TerminalConnection object are reported via the

CallObserver interface on the Call object associated with this TerminalConnection. In
the core package, events are reported to a CallObserver when a new
TerminalConnection is created and whenever a TerminalConnection changes state.
Observers are added to Call objects via the Call.addObserver() method and more
indirectly via the Address.addCallObserver() and Terminal.addCallObserver()
methods. See the specifications for the Call, Address, and Terminal interfaces for more
information.

The following TerminalConnection−related events are defined in the core package. Each
of these events extend the TermConnEv interface (which, in turn, extends the CallEv
interface).

TermConnCreatedEv Indicates a new TerminalConnection has been created on a
Connection. TermConnRingingEv Indicates the TerminalConnection has moved into the
TerminalConnection.RINGING state. TermConnActiveEv Indicates the
TerminalConnection has moved into the TerminalConnection.ACTIVE state.
TermConnPassiveEv Indicates the TerminalConnection has moved into the
TerminalConnection.PASSIVE state. TermConnDroppedEv Indicates the
TerminalConnection has moved into the TerminalConnection.DROPPED state.
TermConnUnknownEv Indicates the TerminalConnection has moved into the
TerminalConnection.UNKNOWN state.

See Also:
CallObserver, TerminalObserver, TermConnEv, CallEv, TermConnRingingEv,
TermConnActiveEv, TermConnPassiveEv, TermConnDroppedEv,
TermConnUnknownEv

Variable Index

o ACTIVE
The TerminalConnection.ACTIVE state indicates that a Terminal is actively
part of a telephone call.

o DROPPED
The TerminalConnection.DROPPED state indicates that a particular Terminal
has permanently left the telephone call.

o IDLE
The TerminalConnection.IDLE state is the initial state for all
TerminalConnection objects.

o PASSIVE
The TerminalConnection.PASSIVE state indicates that a Terminal is part of a
telephone call but not in an active fashion.

o RINGING
The TerminalConnection.RINGING state indicates the a Terminal is ringing,
indicating that the Terminal has an incoming Call.

o UNKNOWN
The TerminalConnection.UNKNOWN state indicates that the implementation is

unable to determine the state of the TerminalConnection.

Method Index

o answer()
Answers an incoming telephone call on this TerminalConnection.

o getCapabilities()
Returns the dynamic capabilities for the instance of the TerminalConnection
object.

o getConnection()
Returns the Connection object associated with this TerminalConnection.

o getState()
Returns the state of the TerminalConnection object.

o getTerminal()
Returns the Terminal associated with this TerminalConnection object.

o getTerminalConnectionCapabilities(Terminal, Address)
Gets the TerminalConnectionCapabilities object with respect to a Terminal and an
Address. Deprecated.

Variables

o IDLE

 public static final int IDLE

The TerminalConnection.IDLE state is the initial state for all
TerminalConnection objects.

o RINGING

 public static final int RINGING

The TerminalConnection.RINGING state indicates the a Terminal is ringing,
indicating that the Terminal has an incoming Call.

o PASSIVE

 public static final int PASSIVE

The TerminalConnection.PASSIVE state indicates that a Terminal is part of a
telephone call but not in an active fashion. This may imply that a resource of the
Terminal is being used and may limit actions on the Terminal.

o ACTIVE

 public static final int ACTIVE

The TerminalConnection.ACTIVE state indicates that a Terminal is actively
part of a telephone call. This usually implies that the party speaking on that
Terminal is party of the telephone call.

o DROPPED

 public static final int DROPPED

The TerminalConnection.DROPPED state indicates that a particular Terminal
has permanently left the telephone call.

o UNKNOWN

 public static final int UNKNOWN

The TerminalConnection.UNKNOWN state indicates that the implementation is
unable to determine the state of the TerminalConnection.

Methods

o getState

 public abstract int getState()

Returns the state of the TerminalConnection object.

Returns:
The current state of the TerminalConnection object.

o getTerminal

 public abstract Terminal getTerminal()

Returns the Terminal associated with this TerminalConnection object. A
TerminalConnection’s reference to its Terminal remains valid for the lifetime of
the object, even if the Terminal loses its references to this TerminalConnection
object. Also, this reference does not change once the TerminalConnection object
has been created.

Returns:
The Terminal object associated with this TerminalConnection.

o getConnection

 public abstract Connection getConnection()

Returns the Connection object associated with this TerminalConnection. A
TerminalConnection’s reference to the Connection remains valid throughout the

lifetime of the TerminalConnection. Also, this reference does not change once the
TerminalConnection object has been created.

Returns:
The Connections associated with this TerminalConnection.

o answer

 public abstract void answer() throws PrivilegeViolationException , ResourceUnavailableException , Meth

Answers an incoming telephone call on this TerminalConnection. This method
waits (i.e. the invoking thread blocks) until the telephone call has been answered
at the endpoint before returning. When this method returns successfully, the state
of this TerminalConnection object is TerminalConnection.ACTIVE .

Allowable TerminalConnection States

The TerminalConnection must be in the TerminalConnection.RINGING state
when this method is invoked. According to the specification of the
TerminalConnection object, this state implies the associated Connection object is
also in the Connection.ALERTING state. There may be more than one
TerminalConnection on the Connection which are in the
TerminalConnection.RINGING state. In fact, if the Connection is in the
Connection.ALERTING state, all of these TerminalConnections must be in the
TerminalConnection.RINGING state. Any of these TerminalConnections may
invoke this method to answer the telephone call.

Multiple TerminalConnections

The underlying telephone hardware determines the resulting state of other
TerminalConnection objects after the telephone call has been answered by one of
the TerminalConnections. The other TerminalConnection object may either move
into the TerminalConnection.PASSIVE state or the
TerminalConnection.DROPPED state. If a TerminalConnection moves into the
TerminalConnection.PASSIVE state, it remains part of the telephone call, but
not actively so. It may have the ability to join the call in the future. If a
TerminalConnection moves into the TerminalConnection.DROPPED state, it is
removed from the telephone call and will never have the ability to join the call in
the future. The appropriate events are delivered to the application indicates into
which of these two states the other TerminalConnection objects have moved.

Events

The following events are reported to applications via the CallObserver interface as
a result of the successful outcome of this method:

1. TermConnActiveEv for the TerminalConnection which invoked this method.
2. ConnConnectedEv for the Connection associated with the

TerminalConnection.
3. TermConnPassiveEv or TermConnActiveEv for other TerminalConnections

associated with the Connection.

Pre−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == TerminalConnection.RINGING
3. (this.getConnection()).getState() == Connection.ALERTING

Post−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == TerminalConnection.ACTIVE
3. (this.getConnection()).getState() == Connection.CONNECTED
4. TermConnActiveEv for the TerminalConnection which invoked this method.
5. ConnConnectedEv for the Connection associated with the

TerminalConnection.
6. TermConnPassiveEv or TermConnActiveEv for other TerminalConnections

associated with the Connection.

Throws:PrivilegeViolationException
The application did not have proper authority to answer the telephone call.
For example, the Terminal associated with the TerminalConnection may not
be in the Provider’s local domain.

Throws:ResourceUnavailableException
The necessary resources to answer the telephone call were not available
when the method was invoked.

Throws:MethodNotSupportedException
This method is currently not supported by this implementation.

Throws:InvalidStateException
An object was not in the proper state, violating the pre−conditions of this
method. For example, the Provider was not in the Provider.IN_SERVICE
state or the TerminalConnection was not in the
TerminalConnection.RINGING state.

See Also:
TermConnActiveEv, TermConnPassiveEv, TermConnDroppedEv,
ConnConnectedEv

o getCapabilities

 public abstract TerminalConnectionCapabilities getCapabilities()

Returns the dynamic capabilities for the instance of the TerminalConnection
object. Dynamic capabilities tell the application which actions are possible at the
time this method is invoked based upon the implementations knowledge of its
ability to successfully perform the action. This determination may be based upon
argument passed to this method, the current state of the call model, or some
implementation− specific knowledge. These indications do not guarantee that a
particular method will be successful when invoked, however.

The dynamic TerminalConnection capabilities require no additional arguments.

Returns:
The dynamic TerminalConnection capabilities.

o getTerminalConnectionCapabilities

 public abstract TerminalConnectionCapabilities getTerminalConnectionCapabilities(Terminal terminal,
 Address address) th

Note: getTerminalConnectionCapabilities() is deprecated.Since JTAPI v1.2.
This method has been replaced by the TerminalConnection.getCapabilities()
method.

Gets the TerminalConnectionCapabilities object with respect to a Terminal and an
Address. If null is passed as a Terminal parameter, the general/ provider−wide
Terminal Connection capabilities are returned.

Note: This method has been replaced in JTAPI v1.2. The
TerminalConnection.getCapabilities() method returns the dynamic
TerminalConnection capabilities. This method now should simply invoke the
TerminalConnection.getCapabilities() method.

Parameters:
address − This argument is ignored in JTAPI v1.2 and later.
terminal − This argument is ignored in JTAPI v1.2 and later.

Throws:InvalidArgumentException
This exception is never thrown in JTAPI v1.2 and later.

Throws:PlatformException
A platform−specific exception occurred.

Interface javax.telephony.TerminalObserver

public interface TerminalObserver

Introduction

The TerminalObserver interface reports all changes which happen to the Terminal
object. These changes are reported as events to the
TerminalObserver.terminalChangedEvent() method. Applications must
instantiate an object which implements this interface and then use the
Terminal.addObserver()) method to register the object to receive all future events
associated with the Terminal object.

The TerminalObserver.terminalChangedEvent() method receives an array of
events which all must extend the TermEv interface. Since several changes may happen
to a single JTAPI object at once, a list of events is needed to convey those changes which
happen at the same time. Applications iterate through the array of events provided.

Terminal Observation Ending

At various times, the underlying implementation may not be able to observe the
Terminal. In these instances, the TerminalObserver is sent an
TermObservationEndedEv event. This indicates that the application will not receive
further events associated with the Terminal object. This observer is no longer reported
via the Terminal.getObservers() method.

See Also:
TermEv, TermObservationEndedEv

Method Index

o terminalChangedEvent(TermEv[])
Reports all events associated with the Terminal object.

Methods

o terminalChangedEvent

 public abstract void terminalChangedEvent(TermEv eventList[])

Reports all events associated with the Terminal object. This method passes an
array of TermEv objects as its arguments which correspond to the list of events
representing the changes to the Terminal object.

Parameters:
eventList − The list of Terminal events.

Class javax.telephony.InvalidArgumentException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidArgumentException

public class InvalidArgumentException
extends Exception

An InvalidArgumentException indicates an argument passed to the method is invalid.

Constructor Index

o InvalidArgumentException()
Constructor with no string.

o InvalidArgumentException(String)
Constructor which takes a string description.

Constructors

o InvalidArgumentException

 public InvalidArgumentException()

Constructor with no string.

o InvalidArgumentException

 public InvalidArgumentException(String s)

Constructor which takes a string description.

Class javax.telephony.InvalidObjectException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidObjectException

public class InvalidObjectException
extends Exception

An InvalidObjectException indicates the object on which the method exists is invalid. An
invalid object exception typically occurs when an internal error occurs which causes this
object to become invalid for unknown reasons. Typically, once an object becomes invalid,
it generally stays that way. This exception indicates which object is invalid.

Variable Index

o ADDRESS_OBJECT
The invalid object in question is the Address

o CALL_OBJECT
The invalid object in question is the Call

o CONNECTION_OBJECT
The invalid object in question is the Connection

o PROVIDER_OBJECT
The invalid object in question is the Provider

o TERMINAL_CONNECTION_OBJECT
The invalid object in question is the TerminalConnection

o TERMINAL_OBJECT
The invalid object in question is the Terminal

Constructor Index

o InvalidObjectException(Object, int)
Constructor with no string.

o InvalidObjectException(Object, int, String)

Constructor which takes a string description.

Method Index

o getObject()
Returns a generic pointer to the object which caused the exception.

o getObjectType()
Returns the type of object in question

Variables

o PROVIDER_OBJECT

 public static final int PROVIDER_OBJECT

The invalid object in question is the Provider

o CALL_OBJECT

 public static final int CALL_OBJECT

The invalid object in question is the Call

o CONNECTION_OBJECT

 public static final int CONNECTION_OBJECT

The invalid object in question is the Connection

o TERMINAL_OBJECT

 public static final int TERMINAL_OBJECT

The invalid object in question is the Terminal

o ADDRESS_OBJECT

 public static final int ADDRESS_OBJECT

The invalid object in question is the Address

o TERMINAL_CONNECTION_OBJECT

 public static final int TERMINAL_CONNECTION_OBJECT

The invalid object in question is the TerminalConnection

Constructors

o InvalidObjectException

 public InvalidObjectException(Object object,
 int type)

Constructor with no string.

o InvalidObjectException

 public InvalidObjectException(Object object,
 int type,
 String s)

Constructor which takes a string description.

Methods

o getObjectType

 public int getObjectType()

Returns the type of object in question

Returns:
The type of object in question.

o getObject

 public Object getObject()

Returns a generic pointer to the object which caused the exception.

Returns:
The object which caused the exception.

Class javax.telephony.InvalidPartyException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidPartyException

public class InvalidPartyException
extends Exception

An InvalidPartyException indicates that a party given as an argument to the method
call was invalid. This may either be the originating party of a telephone call or the
destination party of a telephone call.

Variable Index

o DESTINATION_PARTY
Indicates that the destination party was invalid.

o ORIGINATING_PARTY
Indicates that the originating party was invalid.

o UNKNOWN_PARTY
Indicates that the party was unknown.

Constructor Index

o InvalidPartyException(int)
Constructor with no string.

o InvalidPartyException(int, String)
Constructor which takes a string description.

Method Index

o getType()
Returns the type of party.

Variables

o ORIGINATING_PARTY

 public static final int ORIGINATING_PARTY

Indicates that the originating party was invalid.

o DESTINATION_PARTY

 public static final int DESTINATION_PARTY

Indicates that the destination party was invalid.

o UNKNOWN_PARTY

 public static final int UNKNOWN_PARTY

Indicates that the party was unknown.

Constructors

o InvalidPartyException

 public InvalidPartyException(int type)

Constructor with no string.

o InvalidPartyException

 public InvalidPartyException(int type,
 String s)

Constructor which takes a string description.

Methods

o getType

 public int getType()

Returns the type of party.

Returns:
The type of party.

Class javax.telephony.InvalidStateException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.InvalidStateException

public class InvalidStateException
extends Exception

An InvalidStateException indicates the current state of an object involved in the method
invocation does not meet the acceptable pre−conditions for the method. Each method
which changes the call model typically has a set of states in which the object must be as
a pre−condition for the method. Each method documents the pre−condition states for
objects. Typically, this method will succeed in the future once the object in question has
reached the proper state.

This exception provides the application with the object in question and the state it is
currently in.

Variable Index

o ADDRESS_OBJECT
The invalid object in question is the Address

o CALL_OBJECT
The invalid object in question is the Call

o CONNECTION_OBJECT
The invalid object in question is the Connection

o PROVIDER_OBJECT
The invalid object in question is the Provider

o TERMINAL_CONNECTION_OBJECT
The invalid object in question is the Terminal Connection

o TERMINAL_OBJECT
The invalid object in question is the Terminal

Constructor Index

o InvalidStateException(Object, int, int)
Constructor with no string.

o InvalidStateException(Object, int, int, String)
Constructor which takes a string description.

Method Index

o getObject()
Returns the object which has the incorrect state.

o getObjectType()
Returns the type of object in question.

o getState()
Returns the state of the object.

Variables

o PROVIDER_OBJECT

 public static final int PROVIDER_OBJECT

The invalid object in question is the Provider

o CALL_OBJECT

 public static final int CALL_OBJECT

The invalid object in question is the Call

o CONNECTION_OBJECT

 public static final int CONNECTION_OBJECT

The invalid object in question is the Connection

o TERMINAL_OBJECT

 public static final int TERMINAL_OBJECT

The invalid object in question is the Terminal

o ADDRESS_OBJECT

 public static final int ADDRESS_OBJECT

The invalid object in question is the Address

o TERMINAL_CONNECTION_OBJECT

 public static final int TERMINAL_CONNECTION_OBJECT

The invalid object in question is the Terminal Connection

Constructors

o InvalidStateException

 public InvalidStateException(Object object,
 int type,
 int state)

Constructor with no string.

o InvalidStateException

 public InvalidStateException(Object object,
 int type,
 int state,
 String s)

Constructor which takes a string description.

Methods

o getObjectType

 public int getObjectType()

Returns the type of object in question.

Returns:
The type of object in question.

o getObject

 public Object getObject()

Returns the object which has the incorrect state.

Returns:
The object which is in the wrong state.

o getState

 public int getState()

Returns the state of the object.

Returns:
The state of the object.

Class javax.telephony.JtapiPeerUnavailableException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.JtapiPeerUnavailableException

public class JtapiPeerUnavailableException
extends Exception

The JtapiPeerUnavailableException indicates that the JtapiPeer (i.e. a particular
implementation of the Java Telephony API is unavailable on the current system.

Constructor Index

o JtapiPeerUnavailableException()
Constructor with no string.

o JtapiPeerUnavailableException(String)
Constructor which takes a string description.

Constructors

o JtapiPeerUnavailableException

 public JtapiPeerUnavailableException()

Constructor with no string.

o JtapiPeerUnavailableException

 public JtapiPeerUnavailableException(String s)

Constructor which takes a string description.

Class javax.telephony.MethodNotSupportedException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.MethodNotSupportedException

public class MethodNotSupportedException
extends Exception

The MethodNotSupportedException indicates that the method which was invoked is not
supported by the implementation.

Constructor Index

o MethodNotSupportedException()
Constructor with no string.

o MethodNotSupportedException(String)
Constructor which takes a string description.

Constructors

o MethodNotSupportedException

 public MethodNotSupportedException()

Constructor with no string.

o MethodNotSupportedException

 public MethodNotSupportedException(String s)

Constructor which takes a string description.

Class javax.telephony.PlatformException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.lang.RuntimeException
 |
 +−−−−javax.telephony.PlatformException

public class PlatformException
extends RuntimeException

A PlatformException indicates an implementation−specific exception. The specific
exceptions which implementations throw is documented in their release notes.

JTAPI v1.1.1 NOTE: PlatformException extend Java’s RuntimeException. This permits
it to be thrown from an JTAPI method without being declared in its signature. Note that
no JTAPI methods declare PlatformException to be thrown. This is a change from v1.1,
but does not affect applications.

Since PlatformException typically denotes some form of unrecoverable
platform−dependent error, invoking the method again typically does not yield success.
These types of exceptions are often best dealt with at a higher level, in a top−level
"try−catch" block where the entire application could be restarted.

Constructor Index

o PlatformException()
Constructor with no string.

o PlatformException(String)
Constructor which takes a string description.

Constructors

o PlatformException

 public PlatformException()

Constructor with no string.

o PlatformException

 public PlatformException(String s)

Constructor which takes a string description.

Class javax.telephony.PrivilegeViolationException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.PrivilegeViolationException

public class PrivilegeViolationException
extends Exception

A PrivilegeViolationException indicates that an action pertaining to a certain object
failed because the application did not have the proper security permissions to execute
that command.

This class stores the type of privilege not available which is obtained via the
PrivilegeViolationException.getType() method.

Variable Index

o DESTINATION_VIOLATION
A privilege violation occurred on the destination.

o ORIGINATOR_VIOLATION
A privilege violation occurred on the originator.

o UNKNOWN_VIOLATION
A privilege violation occurred at an unknown place.

Constructor Index

o PrivilegeViolationException(int)
Constructor, takes a type but no string.

o PrivilegeViolationException(int, String)
Constructor, takes a type and a string.

Method Index

o getType()
Returns the type of privilege which is not available.

Variables

o ORIGINATOR_VIOLATION

 public static final int ORIGINATOR_VIOLATION

A privilege violation occurred on the originator.

o DESTINATION_VIOLATION

 public static final int DESTINATION_VIOLATION

A privilege violation occurred on the destination.

o UNKNOWN_VIOLATION

 public static final int UNKNOWN_VIOLATION

A privilege violation occurred at an unknown place.

Constructors

o PrivilegeViolationException

 public PrivilegeViolationException(int type)

Constructor, takes a type but no string.

o PrivilegeViolationException

 public PrivilegeViolationException(int type,
 String s)

Constructor, takes a type and a string.

Methods

o getType

 public int getType()

Returns the type of privilege which is not available.

Returns:
The type of privilege.

Class javax.telephony.ProviderUnavailableException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.lang.RuntimeException
 |
 +−−−−javax.telephony.ProviderUnavailableException

public class ProviderUnavailableException
extends RuntimeException

The ProviderUnavailableException indicates that the Provider is currently not available
to the application. This exception extends Java’s RuntimeException, and therefore can
be thrown on any JTAPI method. It is typically thrown in two situations: when
JtapiPeer.getProvider() is called or on any method when the Provider is in a
Provider.SHUTDOWN state. Because this method extends RuntimeException , it can be
thrown from any method without being declared.

This exception is thrown on JtapiPeer.getProvider() when the requested Provider
is not available to the application for a number of reasons, including when an invalid
service string or optional argument was given. If this exception is thrown on a random
JTAPI method, it indicates that the method call is invalid because the Provider is not in
the "in service" state.

This exception stores the reason for the failure which may be obtained via the
ProviderUnavailableException.getCause() method.

Variable Index

o CAUSE_INVALID_ARGUMENT
Constant definition for an invalid optional argument given to
JtapiPeer.getProvider() .

o CAUSE_INVALID_SERVICE
Constant definition for an invalid service string given to
JtapiPeer.getProvider() .

o CAUSE_NOT_IN_SERVICE
Constant definition for the Provider not in the "in service" state.

o CAUSE_UNKNOWN
Constant definition for an unknown cause.

Constructor Index

o ProviderUnavailableException()
Constructor with no cause and string.

o ProviderUnavailableException(int)
Constructor which takes a cause string.

o ProviderUnavailableException(int, String)
Constructor which takes both a string and a cause.

o ProviderUnavailableException(String)
Constructor which takes a string description.

Method Index

o getCause()
Returns the cause for this exception.

Variables

o CAUSE_UNKNOWN

 public static final int CAUSE_UNKNOWN

Constant definition for an unknown cause.

o CAUSE_NOT_IN_SERVICE

 public static final int CAUSE_NOT_IN_SERVICE

Constant definition for the Provider not in the "in service" state.

o CAUSE_INVALID_SERVICE

 public static final int CAUSE_INVALID_SERVICE

Constant definition for an invalid service string given to
JtapiPeer.getProvider() .

o CAUSE_INVALID_ARGUMENT

 public static final int CAUSE_INVALID_ARGUMENT

Constant definition for an invalid optional argument given to

JtapiPeer.getProvider() .

Constructors

o ProviderUnavailableException

 public ProviderUnavailableException()

Constructor with no cause and string.

o ProviderUnavailableException

 public ProviderUnavailableException(int cause)

Constructor which takes a cause string.

o ProviderUnavailableException

 public ProviderUnavailableException(String s)

Constructor which takes a string description.

o ProviderUnavailableException

 public ProviderUnavailableException(int cause,
 String s)

Constructor which takes both a string and a cause.

Methods

o getCause

 public int getCause()

Returns the cause for this exception.

Returns:
The cause of this exception.

Class javax.telephony.ResourceUnavailableException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−javax.telephony.ResourceUnavailableException

public class ResourceUnavailableException
extends Exception

The ResourceUnavailableException indicates that a resource inside the system in not
available to complete an operation. The type embodied in this exception further clarifies
what is not available and is obtained via the
ResourceUnavailableException.getType() method.

Variable Index

o NO_DIALTONE
No dialtone detected.

o OBSERVER_LIMIT_EXCEEDED
The number of observers existing already reached the limit.

o ORIGINATOR_UNAVAILABLE
The originating device was not available for this action.

o OUTSTANDING_METHOD_EXCEEDED
The internal resources to handle another method have been exceeded.

o TRUNK_LIMIT_EXCEEDED
The number of trunks which are currently in use has been exceeded.

o UNKNOWN
Indicates the specific reasons is unspecified.

o UNSPECIFIED_LIMIT_EXCEEDED
An internal resource, unspecified by the implementation, has been exceeded.

o USER_RESPONSE
A user has not responded in the time allowed by an implementation.

Constructor Index

o ResourceUnavailableException(int)
Constructor, takes a type but no string.

o ResourceUnavailableException(int, String)
Constructor, takes a type and a string.

Method Index

o getType()
Returns the type of resource which was unavailable.

Variables

o UNKNOWN

 public static final int UNKNOWN

Indicates the specific reasons is unspecified.

o ORIGINATOR_UNAVAILABLE

 public static final int ORIGINATOR_UNAVAILABLE

The originating device was not available for this action.

o OBSERVER_LIMIT_EXCEEDED

 public static final int OBSERVER_LIMIT_EXCEEDED

The number of observers existing already reached the limit.

o TRUNK_LIMIT_EXCEEDED

 public static final int TRUNK_LIMIT_EXCEEDED

The number of trunks which are currently in use has been exceeded.

o OUTSTANDING_METHOD_EXCEEDED

 public static final int OUTSTANDING_METHOD_EXCEEDED

The internal resources to handle another method have been exceeded.

o UNSPECIFIED_LIMIT_EXCEEDED

 public static final int UNSPECIFIED_LIMIT_EXCEEDED

An internal resource, unspecified by the implementation, has been exceeded.

o NO_DIALTONE

 public static final int NO_DIALTONE

No dialtone detected.

o USER_RESPONSE

 public static final int USER_RESPONSE

A user has not responded in the time allowed by an implementation.

Constructors

o ResourceUnavailableException

 public ResourceUnavailableException(int type)

Constructor, takes a type but no string.

o ResourceUnavailableException

 public ResourceUnavailableException(int type,
 String s)

Constructor, takes a type and a string.

Methods

o getType

 public int getType()

Returns the type of resource which was unavailable.

Returns:
The type of resource unavailable.

package javax.telephony.callcenter

Interface Index

ACDAddress
ACDAddressObserver
ACDConnection
ACDManagerAddress
ACDManagerConnection
Agent
AgentTerminal
AgentTerminalObserver
CallCenterAddress
CallCenterCall
CallCenterCallObserver
CallCenterProvider
CallCenterTrunk
RouteAddress
RouteCallback
RouteSession

Interface javax.telephony.callcenter.ACDAddress

public interface ACDAddress
extends CallCenterAddress

The ACDAddress interface models an ACD Group for the ACD feature.

The ACD Group is a logical PBX extension, so it is being modeled by an extended
CallCenterAddress.

Connections to an ACDAddress are being modeled by ACDConnection.

The interface adds the necessary methods to obtain ACD specific information such as the
Agent objects associated with the ACDAddress.

To observe Agent state changes for Agents associated with an ACDAddress, an
application must implement an ACDAddressObserver interface and associate it with the
ACDAddress using the addObserver method on the ACDAddress interface.

See Also:
ACDConnection

Method Index

o getACDManagerAddress()
This method returns the ACDManagerAddess associated administratively with
this ACDAddress.

o getLoggedOnAgents()
This method returns the Agents logged into the ACDAddress.

o getNumberQueued()
This method returns the number of calls queued to an ACDAddress.

o getOldestCallQueued()
This method returns the oldest call queued to an ACDAddress.

o getQueueWaitTime()
This method returns the estimated wait time for new calls queued to an
ACDAddress.

o getRelativeQueueLoad()
This method returns the relative load of an ACDAddress queue.

Methods

o getLoggedOnAgents

 public abstract Agent [] getLoggedOnAgents() throws MethodNotSupportedException

This method returns the Agents logged into the ACDAddress.

Returns:
The list of Agents associated with the ACDAddress.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

o getNumberQueued

 public abstract int getNumberQueued() throws MethodNotSupportedException

This method returns the number of calls queued to an ACDAddress.

Returns:
The number of calls queued.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

o getOldestCallQueued

 public abstract Call getOldestCallQueued() throws MethodNotSupportedException

This method returns the oldest call queued to an ACDAddress.

Returns:
The oldest Call queued.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

o getRelativeQueueLoad

 public abstract int getRelativeQueueLoad() throws MethodNotSupportedException

This method returns the relative load of an ACDAddress queue.

Returns:
The relative load of ACDAddress.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

o getQueueWaitTime

 public abstract int getQueueWaitTime() throws MethodNotSupportedException

This method returns the estimated wait time for new calls queued to an
ACDAddress.

Returns:
The estimated wait time for new calls at the ACDAddress.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

o getACDManagerAddress

 public abstract ACDManagerAddress getACDManagerAddress() throws MethodNotSupportedException

This method returns the ACDManagerAddess associated administratively with
this ACDAddress.

This method returns a null if no ACDManagerAddress is associated with this
ACDAddress.

It does not return the ACDManagerAddress dynamically associated with this
ACDAddress in a Call. That information can be obtained through the
getACDManagerConnection method on ACDConnection.

Returns:
The ACDManagerAddress associated with this ACDAddress.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Interface javax.telephony.callcenter.ACDAddressObserver

public interface ACDAddressObserver
extends AddressObserver

The ACDAddressObserver interface reports all Agent state changes for Agents
associated with the ACDAddress object, as events. Applications instantiate an object
which implements this interface and use the Address.addObserver() to request delivery
of events to this observer object. Applications may use the Address.removeObserver()
method to discontinue the delivery of events to an observer object. A list of observers on
the ACDAddress object can be obtained via the Address.getObservers() method. Events
will be delivered to the ACDAddressObserver interface only if the Provider is in the
Provider.IN_SERVICE state.

The ACDAddressObserver interface utilizes the addressChangedEvent() from the
AddressObserver interface to report a given set of events.

See Also:
ACDAddrBusyEv, ACDAddrLoggedOffEv, ACDAddrLoggedOnEv,
ACDAddrNotReadyEv, ACDAddrReadyEv, ACDAddrUnknownEv,
ACDAddrWorkNotReadyEv, ACDAddrWorkReadyEv

Interface javax.telephony.callcenter.ACDConnection

public interface ACDConnection
extends Connection

The ACDConnection interface extends the core Connection class.

This interface represents either a direct relationship between a Call and an ACDAddress
or an indirect relationship between a Call and an ACDAddress through an
ACDManagerAddress.

The direct relationship occurs when a Call arrives at an ACDAddress. In this case, the
getConnections() method on the Call interface will return the ACDConnection.

The indirect relationship occurs when a Call arrives at an ACDManagerAddress and
functionality of the ACDMangerAddress determines that it must involve an
ACDAddress in the Call. In this case, the getConnections() method on the Call interface
will not return the ACDConnection only the ACDManagerConnection.

The getTerminalConnection() method on the Connection interface, that ACDConnection
extends, will always return null because ACDAddresses do not have Terminals
associated with them.

The following are the possible Connection states presented by this interface: IDLE,
INPROGRESS, ALERTING, DISCONNECTED.

The following are the definitions for these states with respect to the ACDAddress:

The IDLE state is defined similiarly here as it is in the core. The IDLE state is the
initial and transitory state for new ACDConnection objects.

The INPROGRESS state indicates that a ACDConnection is queued at a particular
ACDAddress. This will result when there are no agents available to route the call to.

The ALERTING state indicates that the ACDConnection has arrived at a particular
ACDAddress. This state is only valid for ACDConnections that are not associated with
an ACDManagerConnection.

The DISCONNECTED state has the same definition as in the core.

See Also:
ACDAddress, ACDManagerAddress, ACDManagerConnection

Method Index

o getACDManagerConnection()
Returns the ACDManagerConnection associated with this ACDConnection.

Methods

o getACDManagerConnection

 public abstract ACDManagerConnection getACDManagerConnection() throws MethodNotSupportedException

Returns the ACDManagerConnection associated with this ACDConnection. A null
will be returned if this ACDConnection is not in an indirect relationship between a
Call, an ACDAddress and an ACDManagerAddress.

Returns:
The ACDManagerConnection associated with this ACDConnection.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Interface javax.telephony.callcenter.ACDManagerAddress

public interface ACDManagerAddress
extends CallCenterAddress

The ACDManagerAddress interface models an ACD management control point that
manages one or more ACDAddresses. Call are presented to this address for distribution
to agents of the ACDAddress(es) associated with this ACDManagerAddress.

The ACD Manager is a logical PBX extension, so it is being modeled by an extended
CallCenterAddress.

Connections to an ACDManagerAddress are being modeled by ACDManagerConnection.

See Also:
ACDManagerConnection

Method Index

o getACDAddresses()
This method returns the ACDAddess(es) associated administratively with this
ACDManagerAddress.

Methods

o getACDAddresses

 public abstract ACDAddress [] getACDAddresses() throws MethodNotSupportedException

This method returns the ACDAddess(es) associated administratively with this
ACDManagerAddress.

This method returns a null if no ACDAddress is associated with this
ACDManagerAddress.

It does not return the ACDAddress(es) dynamically associated with this
ACDManagerAddress in a Call. That information can be obtained through the
getACDConnection method on ACDManagerConnection.

Returns:

The ACDAddresses associated with this ACDManagerAddress.
Throws: MethodNotSupportedException

This method is not supported by the implementation.

Interface
javax.telephony.callcenter.ACDManagerConnection

public interface ACDManagerConnection
extends Connection

The ACDManagerConnection interface extends the core Connection class.

This interface represents the relationship between a Call and an ACDManagerAddress.

ACDManagerConnections may contain zero or more ACDConnections when a Call
arrives at an ACDManagerAddress and functionality of the ACDMangerAddress
determines that it must involve an ACDAddress in the Call as ACDConnections.

The getTerminalConnection() method on the Connection interface, that
ACDManagerConnection extends, will always return null because
ACDManagerAddresses do not have Terminals associated with them.

The following are the possible core Connection states presented by this interface: IDLE,
ALERTING, FAILED, DISCONNECTED.

The following are the definitions for these states with respect to the
ACDManagerAddress:

The IDLE state is defined similiarly here as it is in the core. The IDLE state is the
initial and transitory state for new ACDManagerConnection objects.

The ALERTING state indicates that the ACDManagerConnection has arrived at a
particular ACDManagerAddress.

The FAILED state has the same definition as in the core.

The DISCONNECTED state has the same definition as in the core.

See Also:
ACDAddress, ACDManagerAddress, ACDConnection

Method Index

o getACDConnections()

Returns the ACDConnection objects associated with this ACDManagerConnection.

Methods

o getACDConnections

 public abstract ACDConnection [] getACDConnections() throws MethodNotSupportedException

Returns the ACDConnection objects associated with this ACDManagerConnection.
A null will be returned if this ACDManagerConnection has no associated
ACDConnections.

Returns:
The list of ACDConnection associated with this ACDManagerConnection.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Interface javax.telephony.callcenter.Agent

public interface Agent

The Agent object represents an AgentTerminal’s relationship to an ACDAddress. The
Agent object represents a person acting as an agent in the simplest case where the
person is logged into only one ACD Address. If the person were logged into several ACD
Addresses these scenarios would be represented as several Agent objects.

This object can be created by an application by invoking the the addAgent method on the
AgentTerminal interface.

The getAgent method on the AgentTerminal interface returns Agent objects that are
appropriate for the AgentTerminal.

The state of this object can be altered by invoking the the setState method.

The Agent object can be removed by invoking the removeAgent method on the
AgentTerminal interface.

Variable Index

o BUSY
When the provider determines that the AgentTerminal is busy with a call and is
not available to handle other ACD calls, it reports the AgentTerminal’s state as
BUSY.

o LOG_IN
When the provider determines that the AgentTerminal has logged into an
ACDAddress it reports the AgentTerminal’s state as LOG_IN.

o LOG_OUT
When the provider determines that the AgentTerminal has logged out of an
ACDAddress it reports the AgentTerminal’s state as LOG_OUT.

o NOT_READY
When the provider determines that the AgentTerminal is busy with tasks other
than servicing calls it reports the AgentTerminal’s state as NOT_READY.

o READY
When the provider determines that the AgentTerminal is ready to service calls it
reports the AgentTerminal’s state as READY.

o UNKNOWN
When the provider is unable to determine the state of the AgentTerminal it reports
is at UNKNOWN.

o WORK_NOT_READY
When the provider determines that the AgentTerminal has been disconnected from
a call and is busy handling tasks associated with a call and is not available to
service calls it reports the AgentTerminal’s state as WORK_NOT_READY.

o WORK_READY
When the provider determines that the AgentTerminal has been disconnected from
a call and is busy handling tasks associated with a call and is available to service
calls it reports the AgentTerminal’s state as WORK_READY.

Method Index

o getACDAddress()
This returns the ACDAddress this Agent is logged into.

o getAgentAddress()
This returns the Address of the AgentTerminal that this Agent is logged in from.

o getAgentID()
This returns this Agent’s ID.

o getAgentTerminal()
This returns the Agent Terminal that this Agent is logged in from.

o getState()
This returns this Agent’s state.

o setState(int)
This method changes the state of the Agent.

Variables

o UNKNOWN

 public static final int UNKNOWN

When the provider is unable to determine the state of the AgentTerminal it reports
is at UNKNOWN.

o LOG_IN

 public static final int LOG_IN

When the provider determines that the AgentTerminal has logged into an
ACDAddress it reports the AgentTerminal’s state as LOG_IN.

o LOG_OUT

 public static final int LOG_OUT

When the provider determines that the AgentTerminal has logged out of an
ACDAddress it reports the AgentTerminal’s state as LOG_OUT.

o NOT_READY

 public static final int NOT_READY

When the provider determines that the AgentTerminal is busy with tasks other
than servicing calls it reports the AgentTerminal’s state as NOT_READY.

o READY

 public static final int READY

When the provider determines that the AgentTerminal is ready to service calls it
reports the AgentTerminal’s state as READY.

o WORK_NOT_READY

 public static final int WORK_NOT_READY

When the provider determines that the AgentTerminal has been disconnected from
a call and is busy handling tasks associated with a call and is not available to
service calls it reports the AgentTerminal’s state as WORK_NOT_READY.

o WORK_READY

 public static final int WORK_READY

When the provider determines that the AgentTerminal has been disconnected from
a call and is busy handling tasks associated with a call and is available to service
calls it reports the AgentTerminal’s state as WORK_READY.

o BUSY

 public static final int BUSY

When the provider determines that the AgentTerminal is busy with a call and is
not available to handle other ACD calls, it reports the AgentTerminal’s state as
BUSY.

Methods

o setState

 public abstract void setState(int state) throws InvalidArgumentException, InvalidStateException

This method changes the state of the Agent.

Pre−Conditions

Note: state is supplied as a parameter to this method
1. this.getAgentTerminal().getProvider().getState() == IN_SERVICE
2. this.getState() == (appropriate state based on the agent state model)
3. state must be READY, NOT_READY, WORK_READY,

WORK_NOT_READY.

Post−Conditions

1. this.getAgentTerminal().getProvider().getState() == IN_SERVICE
2. this.getState() == state, where state is requested in the method

Parameters:
state − specifies the requested state this Agent should be set to.

Throws: InvalidArgumentException
An argument provided is not valid.

Throws: InvalidStateException
Either the provider is not in service or the Agent is not in a state in which
the requested state change can be honored.

o getState

 public abstract int getState()

This returns this Agent’s state.

Returns:
s the current state of the Agent. Valid values of state returned are
UNKNOWN, BUSY, READY, NOT_READY, WORK_READY,
WORK_NOT_READY, LOG_IN and LOG_OUT.

o getAgentID

 public abstract String getAgentID()

This returns this Agent’s ID.

Returns:
s the Agent’s ID.

o getACDAddress

 public abstract ACDAddress getACDAddress()

This returns the ACDAddress this Agent is logged into.

Returns:
s the ACDAddress this Agent is logged into.

o getAgentAddress

 public abstract Address getAgentAddress()

This returns the Address of the AgentTerminal that this Agent is logged in from.

Returns:
s the Agent’s Address.

o getAgentTerminal

 public abstract AgentTerminal getAgentTerminal()

This returns the Agent Terminal that this Agent is logged in from.

If the agent state is LOG_OUT, this method will return a null for the
AgentTerminal object.

Returns:
s the Agent’s Terminal.

Interface javax.telephony.callcenter.AgentTerminal

public interface AgentTerminal
extends Terminal

The AgentTerminal interface models an agent extension for the ACD feature.
AgentTerminal extends the core Terminal.

The methods added allow any Terminal to manage the association with an ACDAddress
in order to accept calls coming to the ACDAddress.

To observe state changes for the agent, an application must use the methods
Terminal.addObserver and Terminal.deleteObserver.

Method Index

o addAgent(Address, ACDAddress, int, String, String)
This method creates an Agent object, adds it to this AgentTerminal and returns
the Agent object.

o getAgents()
This returns one or more Agent objects added previously to this AgentTerminal.

o removeAgent(Agent)
This method removes a previously added Agent object from this AgentTerminal.

o setAgents(Agent[])
This method either adds an Agent to this AgentTerminal in the state specified or
changes the state of a previously added Agent or removes a previously added
Agent.

Methods

o addAgent

 public abstract Agent addAgent(Address agentAddress,
 ACDAddress acdAddress,
 int initialState,
 String agentID,
 String password) throws InvalidArgumentException, InvalidStateExcepti

This method creates an Agent object, adds it to this AgentTerminal and returns
the Agent object.

An Agent object represents an AgentTerminal logged into an ACDAddress.

If the getAgents() method is invoked subsequently it will return this Agent object.

The Agent can be removed from this AgentTerminal by invoking the
removeAgent() method.

Once an Agent (as defined by the parameters agentAddress and acdAddress) has
been added any attempts to add another agent with the same parameters will
return the initial Agent.

Pre−Conditions

Note: initialState is supplied as a parameter to this method
1. this.getProvider().getState() == IN_SERVICE
2. initialState must be either LOGIN, READY, or NOT_READY

Post−Conditions

1. this.getProvider().getState() == IN_SERVICE
2. agent is an element of this.getAgents()
3. agent.getState() == initialState

Parameters:
agentAddress − specifies the agent’s Address associated with this Terminal,
where the Terminal may support several Addresses.
acdAddress − specifies the ACDAddress that the Terminal is to be logged in
to.
initialState − is the Agent state of the Agent when added.
agentID − is the Agent’s ID.
password − is the Agent’s password.

Returns:
An Agent object representing the association between this AgentTerminal
and the ACDAddress.

Throws: ResourceUnavailableException
An internal resource neccessary for adding the Agent to this Terminal and
ACDAddress is unavailable.

Throws: InvalidArgumentException
An argument provided is not valid either by not providing enough
information for addAgent() or is inconsistent with another argument.

Throws: InvalidStateException
Either the provider is not in service or the AgentTerminal is not in a state in
which it can be logged into the ACDAddress.

o removeAgent

 public abstract void removeAgent(Agent agent) throws InvalidArgumentException, InvalidStateException

This method removes a previously added Agent object from this AgentTerminal.

This AgentTerminal is logged out of the associated ACDAddress and the Agent
object is moved to the state LOG_OUT.

Pre−Conditions

1. this.getProvider().getState() == IN_SERVICE
2. agent is an element of this.getAgents()

Post−Conditions

1. this.getProvider().getState() == IN_SERVICE
2. agent is not an element of this.getAgents()
3. agent.getState() == LOG_OUT

Parameters:
agent − specifies the Agent object that is requested to be removed from this
AgentTerminal.

Throws: InvalidArgumentException
An argument provided is not valid either by not providing enough
information for removeAgent() or is inconsistent with another argument.

Throws: InvalidStateException
Either the provider is not in service or the AgentTerminal is not in a state in
which it can be logged out of the ACDAddress.

o getAgents

 public abstract Agent [] getAgents()

This returns one or more Agent objects added previously to this AgentTerminal.

If an Agent has been removed from an AgentTerminal, no Agent object will be
returned to represent that.

Returns:
A list of Agents associated with this Terminal.

Throws: PlatformException
An platform−specific exception occurred.

o setAgents

 public abstract void setAgents(Agent agents[]) throws MethodNotSupportedException

This method either adds an Agent to this AgentTerminal in the state specified or

changes the state of a previously added Agent or removes a previously added
Agent.

If the state was set to LOG_IN, the Agent is added to this AgentTerminal and the
post and pre conditions are as follows:

The pre−condition predicates for this method are:
1. (agentTerm.getProvider()).getState() == IN_SERVICE
2. agent.setState (appropriate state)
3. agent.agentAddress (an Address associated with the AgentTerminal)
4. agent.set (any attribute that is needed by the implementation to associate the
Agent with the AgentTerminal in the specified state).

The post−condition predicates for this method are:
1. (agentTerm.getProvider()).getState() == IN_SERVICE
2. agent.getState() == (state specified from the setState)

If the Agent has already been added, this method can be used to change the
Agent’s state and the post and pre conditions are as follows:

The pre−condition predicates for this method are:
1. (agentTerm.getProvider()).getState() == IN_SERVICE
2. (agentTerm.getAgents() union agent) == agent
3. agent.setState (appropriate state)

The post−condition predicates for this method are:
1. (agentTerm.getProvider()).getState() == IN_SERVICE
2. agent.getState() == (state specified from the setState)

If the state was set to LOG_OUT, the Agent is removed from this AgentTerminal
and the post and pre conditions are as follows:

The pre−condition predicates for this method are:
1. (agentTerm.getProvider()).getState() == IN_SERVICE
2. (agentTerm.getAgents() union agent) == agent

The post−condition predicates for this method are:
1. (agentTerm.getProvider()).getState() == IN_SERVICE
2. (agentTerm.getAgents() union agent) == nil

Parameters:
agents − being added, changed or removed.

Throws: PlatformException
A platform−specific exception occurred.

Interface javax.telephony.callcenter.AgentTerminalObserver

public interface AgentTerminalObserver
extends TerminalObserver

The AgentTerminalObserver interface reports all Agent state changes associated with
the AgentTerminal object, as events. Applications instantiate an object which
implements this interface and use the Terminal.addObserver() to request delivery of
events to this observer object. Applications may use the Terminal.removeObserver()
method to discontinue the delivery of events to an obsverver object. A list of observers on
the AgentTerminal object can be obtained via the Terminal.getObservers() method.
Events will be delivered to the AgentTerminalObserver interface only if the Provider is
in the Provider.IN_SERVICE state.

The AgentTerminalObserver interface utilizes the terminalChangedEvent() from the
TerminalObserver interface to report given set of events.

See Also:
AgentTermBusyEv, AgentTermLoggedOffEv, AgentTermLoggedOnEv,
AgentTermNotReadyEv, AgentTermReadyEv, AgentTermUnknownEv,
AgentTermWorkNotReadyEv, AgentTermWorkReadyEv

Interface javax.telephony.callcenter.CallCenterAddress

public interface CallCenterAddress
extends Address

The CallCenterAddress interface is the base interface for the call center addresses,
ACDAddress and ACDManagerAddress.

This interface overloads the addCallObserver method on the Address interface with a
flag to allow observing the call for life not just while it is at this Address.

Method Index

o addCallObserver(CallObserver, boolean)
This method is an overload of Address.addCallObserver.

Methods

o addCallObserver

 public abstract void addCallObserver(CallObserver observer,
 boolean remain) throws ResourceUnavailableException, PrivilegeV

This method is an overload of Address.addCallObserver. This differs from the
Address.addCallObserver() method in that is takes a boolean argument. If true,
the CallObserver will remain on the Call object for the lifetime of the Call or until
it is removed. If false, the behavior of the method is equivalent to
Address.addCallObserver.

If an application attempts to add an instance of a call observer already present on
this CallCenterAddress, these repeated attempts will silently fail, i.e. multiple
instances of a call observer are not added and no exception will be thrown.

Post−Conditions:

1. observer is an element of this.getCallObservers()
2. observer is an element of Call.getObservers() for each Call associated with

the Connections from this.getConnections.
3. An array of snapshot events is reported to the observer for existing calls

associated with this Address.

Parameters:
observer − The observer being added.
remain − If true, the observer remains on the Call for the lifetime of the Call.
If false, the observer uses the default behavior.

Throws: ResourceUnavailableException
The resource limit for the numbers of observers has been exceeded.

Throws: PrivilegeViolationException
The application does not have the proper authority to perform this type of
observation.

Interface javax.telephony.callcenter.CallCenterCall

public interface CallCenterCall
extends Call

Variable Index

o ANSWERING_TREATMENT_CONNECT
This answering endpoint treatment indicates that call should be connected if
answering endpoint is detected.

o ANSWERING_TREATMENT_DROP
This answering endpoint treatment indicates that call should be dropped if
answering endpoint is detected.

o ANSWERING_TREATMENT_NONE
This answering endpoint treatment indicates that no treatment is specified.

o ANSWERING_TREATMENT_PROVIDER_DEFAULT
This answering endpoint treatment indicates that treatment should follow the
provider’s default treatment administration.

o ENDPOINT_ANSWERING_MACHINE
This indicates that the endpoint answering the call may be an answering machine.

o ENDPOINT_ANY
This indicates that the endpoint answering the call may be any thing.

o ENDPOINT_FAX_MACHINE
This indicates that the endpoint answering the call may be a fax machine.

o ENDPOINT_HUMAN_INTERVENTION
This indicates that the endpoint answering the call may be a human.

o MAX_RINGS
Maximum number of rings allowed before classifying the call as no answer.

o MIN_RINGS
Minimum number of rings allowed before classifying the call as no answer.

Method Index

o connectPredictive(Terminal, Address, String, int, int, int, int)
This method connects a pair of connections to a call, attempting to connect the
destination first.

o getApplicationData()
Returns the application specific data associated with the call.

o getTrunks()
Returns an array of all Trunks currently being used for this Call (i.e.

o setApplicationData(Object)
This method associates application specific data with a call.

Variables

o MIN_RINGS

 public static final int MIN_RINGS

Minimum number of rings allowed before classifying the call as no answer.

o MAX_RINGS

 public static final int MAX_RINGS

Maximum number of rings allowed before classifying the call as no answer.

o ANSWERING_TREATMENT_PROVIDER_DEFAULT

 public static final int ANSWERING_TREATMENT_PROVIDER_DEFAULT

This answering endpoint treatment indicates that treatment should follow the
provider’s default treatment administration.

o ANSWERING_TREATMENT_DROP

 public static final int ANSWERING_TREATMENT_DROP

This answering endpoint treatment indicates that call should be dropped if
answering endpoint is detected.

o ANSWERING_TREATMENT_CONNECT

 public static final int ANSWERING_TREATMENT_CONNECT

This answering endpoint treatment indicates that call should be connected if
answering endpoint is detected.

o ANSWERING_TREATMENT_NONE

 public static final int ANSWERING_TREATMENT_NONE

This answering endpoint treatment indicates that no treatment is specified.

o ENDPOINT_ANSWERING_MACHINE

 public static final int ENDPOINT_ANSWERING_MACHINE

This indicates that the endpoint answering the call may be an answering machine.

o ENDPOINT_FAX_MACHINE

 public static final int ENDPOINT_FAX_MACHINE

This indicates that the endpoint answering the call may be a fax machine.

o ENDPOINT_HUMAN_INTERVENTION

 public static final int ENDPOINT_HUMAN_INTERVENTION

This indicates that the endpoint answering the call may be a human.

o ENDPOINT_ANY

 public static final int ENDPOINT_ANY

This indicates that the endpoint answering the call may be any thing.

Methods

o connectPredictive

 public abstract Connection[] connectPredictive(Terminal originatorTerminal,
 Address originatorAddress,
 String destination,
 int connectionState,
 int maxRings,
 int answeringTreatment,
 int answeringEndpointType) throws ResourceUnavailable

This method connects a pair of connections to a call, attempting to connect the
destination first. After the destination connection is CONNECTED or ALERTING
as specified by the connectionState, an attempt is made to connect the originator.

The method returns when the Connection objects are created.

The connection objects go through one or more state transitions to go from an
intial IDLE state to a final CONNECTED state.

The pre−condition predicates for the CallCenterCall.connectPredictive() method
indicate the statements that must be true in order for the method to succeed.
However, these predicates do not guarantee success.

Pre−Conditions

1. (this.getProvider()).getState() == IN_SERVICE
2. this.getState() == IDLE

Post−Conditions

Note: connectionState is provided by the application.
1. (this.getProvider()).getState() == IN_SERVICE
2. this.getState() == IDLE
3. c = this.getConnections() && sizeof(c) == 2
4. c = this.getConnections() && c[0].getState() == connectionState
5. c = this.getConnections() && c[1].getState() == IDLE

Parameters:
originatorTerminal − The originating Terminal of the telephone call. This is
optional when the originator is for example an ACDAddress.
originatorAddress − The originating Address of the telephone call.
destination − This must be a complete and valid telephone number.
connectionState − The application may set this to CONNECTED or
ALERTING.
maxRings − This specifies the the number of rings that are allowed before
classifying the call as no answer. The allowed range is from MIN_RINGS of 2
to MAX_RINGS of 15.
answeringTreatment − This specifies the call treatment when an answering
endpoint is detected. The set includes
ANSWERING_TREATMENT_PROVIDER_DEFAULT,
ANSWERING_TREATMENT_DROP,
ANSWERING_TREATMENT_CONNECT and
ANSWERING_TREATMENT_NONE.
answeringEndPointType − This specifies the type of answering endpoint.
The set includes ENDPOINT_ANSWERING_MACHINE,
ENDPOINT_FAX_MACHINE, ENDPOINT_HUMAN_INTERVENTION,
ENDPOINT_ANY.

Returns:
A pair of Connections.

Throws: ResourceUnavailableException
An internal resource neccessary for placing the phone call is unavailable.

Throws: PrivilegeViolationException
The application does not have the proper authority to place a telephone call.

Throws: InvalidPartyException
Either the originator or the destination does not represent a valid party
required to place a telephone call.

Throws: InvalidArgumentException
An argument provided is not valid either by not providing enough
information for connectPredictive() or is inconsistent with another argument.

Throws: InvalidStateException
Some object required by this method is not in a valid state as designated by

the pre−conditions for this method.
Throws: MethodNotSupportedException

The implementation does not support this method.

o setApplicationData

 public abstract void setApplicationData(Object data) throws ResourceUnavailableException, InvalidArg

This method associates application specific data with a call. The format of the data
is application specific. If application specific data exists for the call, an application
can remove it by specifying null as the value for the input parameter "data".

Pre−Conditions

Note: data is provided by the application.
1. (this.getProvider()).getState() == IN_SERVICE
2. this.getState() == ACTIVE or IDLE

Note: The application specific data associated with the Call object from which the
conference or transfer method is invoked will be retained with the call.

Post−Conditions

Note: data is provided by the application.
1. (this.getProvider()).getState() == IN_SERVICE
2. this.getState() == ACTIVE or IDLE
3. this.getApplicationData() = data

An CallCentCallAppDataEv will be reported when this method is used or the
provider associates data with the call from another source.

Parameters:
data − The data to be associated with the call.

Throws: ResourceUnavailableException
An internal resource neccessary for adding the data was unavailable. For
example, the size of the Object was not supported by the implementation.

Throws: InvalidArgumentException
An data argument provided is not valid. For example, the implementation
does not support the specific object type.

Throws: InvalidStateException
Some object required by this method is not in a valid state as designated by
the pre−conditions for this method.

Throws: MethodNotSupportedException
The implementation does not support this method.

o getApplicationData

 public abstract Object getApplicationData() throws MethodNotSupportedException

Returns the application specific data associated with the call. If no data Object is
associated with the call, this method will return null.

Post−Conditions

1. Let Object data = this.getApplicationData()
2. data == null or data = Object

Returns:
s the data Object associated with the call.

Throws: MethodNotSupportedException
The implementation does not support this method.

o getTrunks

 public abstract CallCenterTrunk [] getTrunks() throws MethodNotSupportedException

Returns an array of all Trunks currently being used for this Call (i.e. Trunks in
the VALID state). If there are no Trunks being used, this method returns null.

Post−Conditions

1. Let CallCenterTrunk[] trks = this.getTrunks()
2. trks == null or trks.length >= 1

Returns:
An array of Trunks

Throws: MethodNotSupportedException
The implementation does not support this method.

Interface javax.telephony.callcenter.CallCenterCallObserver

public interface CallCenterCallObserver
extends CallObserver

The CallCenterCallObserver interface extends the event reporting of of the core
CallObserver to include call center related events. Applications instantiate an object
which implements this interface and use the Call.addObserver() to request delivery of
events to this observer object. Applications may use the Call.removeObserver() method to
discontinue the delivery of events to an observer object. A list of observers on the
CallCenterCall object can be obtained via the Call.getObservers() method. Events will be
delivered to the CallCenterCallObserver interface only if the Provider is in the
Provider.IN_SERVICE state.

The CallCenterCallObserver interface utilizes the callChangedEvent() from the
CallObserver interface to report given set of events.

See Also:
CallCentTrunkValidEv, CallCentTrunkInvalidEv, CallCentCallAppDataEv,
CallCentConnInProgressEv

Interface javax.telephony.callcenter.CallCenterProvider

public interface CallCenterProvider
extends Provider

The CallCenterProvider interface extends the core Provider interface and provides
methods to query for call−center specific types of Addresses in the given Provider’s
domain.

Method Index

o getACDAddresses()
Returns the list of ACDAddresses in the providers domain.

o getACDManagerAddresses()
Returns the list of ACDManagerAddresses in the providers domain.

o getRouteableAddresses()
Returns the list of Addresses routeable by the provider.

Methods

o getRouteableAddresses

 public abstract RouteAddress [] getRouteableAddresses() throws MethodNotSupportedException

Returns the list of Addresses routeable by the provider.

Returns:
An array of RouteAddress objects in the Provider’s domain

Throws: MethodNotSupportedException
This method is not supported by the implementation.

o getACDAddresses

 public abstract ACDAddress [] getACDAddresses() throws MethodNotSupportedException

Returns the list of ACDAddresses in the providers domain.

Returns:
An array of ACDAddress objects in the Provider’s domain

Throws: MethodNotSupportedException

This method is not supported by the implementation.

o getACDManagerAddresses

 public abstract ACDManagerAddress [] getACDManagerAddresses() throws MethodNotSupportedException

Returns the list of ACDManagerAddresses in the providers domain.

Returns:
An array of ACDAddress objects in the Provider’s domain

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Interface javax.telephony.callcenter.CallCenterTrunk

public interface CallCenterTrunk

The CallCenterTrunk interface represents a Trunk interface on a switch.

The first attribute is its "name". The Trunk’s name identifies which Trunk interface in
the Provider is being used.

The second attribute of a Trunk is its "state". The state indicates whether the Trunk is
valid or not (i.e. associated with a call or not). There are two states: Valid and Invalid.

The third attribute of a Trunk is its "interface type". The type indicates whether the
Trunk is an Incoming, Outgoing or Unknown type of interface.

The fourth attribute of a Trunk is its "associated call". This attribute represents the Call
with which this Trunk is associated.

Variable Index

o INCOMING_TRUNK
Trunk type: The Trunk Interface is incoming.

o INVALID_TRUNK
Trunk state: The Trunk interface is invalid.

o OUTGOING_TRUNK
Trunk type: The Trunk interface is outgoing.

o UNKNOWN_TRUNK
Trunk type: The Trunk interface is unknown.

o VALID_TRUNK
Trunk state: The Trunk interface is valid.

Method Index

o getCall()
Returns the Call object associated with this Trunk.

o getName()
Returns the name of the Trunk.

o getState()
Returns the current state of the Trunk.

o getType()

Returns the type of trunk, either unknown, incoming or outgoing.

Variables

o INVALID_TRUNK

 public static final int INVALID_TRUNK

Trunk state: The Trunk interface is invalid.

o VALID_TRUNK

 public static final int VALID_TRUNK

Trunk state: The Trunk interface is valid.

o INCOMING_TRUNK

 public static final int INCOMING_TRUNK

Trunk type: The Trunk Interface is incoming.

o OUTGOING_TRUNK

 public static final int OUTGOING_TRUNK

Trunk type: The Trunk interface is outgoing.

o UNKNOWN_TRUNK

 public static final int UNKNOWN_TRUNK

Trunk type: The Trunk interface is unknown.

Methods

o getName

 public abstract String getName()

Returns the name of the Trunk. This name corresponds to its representation at the
switch.

Returns:
The name of the Trunk.

o getState

 public abstract int getState()

Returns the current state of the Trunk. The return value will be one of following
states.

VALID − This Trunk is currently associated with the given call.

INVALID − This Trunk is currently NOT associated with the given call.

Returns:
The current state of the Trunk.

o getType

 public abstract int getType()

Returns the type of trunk, either unknown, incoming or outgoing.

Returns:
The type of trunk.

o getCall

 public abstract Call getCall()

Returns the Call object associated with this Trunk. This Call reference remains
valid throughout the lifetime of the Trunk object, despite its current state. This
Call reference does not change after this object is created. If the state of the trunk
is INVALID_TRUNK, this method will return null.

Returns:
The Call object associated with this Trunk.

Interface javax.telephony.callcenter.RouteAddress

public interface RouteAddress
extends Address

The RouteAddress interface extends the core Address interface to add methods to allow
applications to register to route calls for a specific Address. Such Addresses are typically
logical PBX extension, so it is being modeled by an extended Address.

An application can register to route calls for all extensions, this is supported by invoking
registration methods on a RouteAddress created with a special valid Address,
ALL_ROUTE_ADDRESS.

Variable Index

o ALL_ROUTE_ADDRESS
When an application registers to route calls for a RouteAddress created with this
special Address, the application is implying that it wants to route calls for all
Addresses in the Provider’s domain.

Method Index

o cancelRouteCallback(RouteCallback)
An application uses this method to cancel a previous registration to route calls for
this Address.

o getActiveRouteSessions()
Returns all active route session associated with this Address.

o getRouteCallback()
Returns all registrations to route calls for this Address.

o registerRouteCallback(RouteCallback)
An application uses this method to register to route call for this Address.

Variables

o ALL_ROUTE_ADDRESS

 public static final String ALL_ROUTE_ADDRESS

When an application registers to route calls for a RouteAddress created with this

special Address, the application is implying that it wants to route calls for all
Addresses in the Provider’s domain.

Methods

o registerRouteCallback

 public abstract void registerRouteCallback(RouteCallback routeCallback) throws ResourceUnavailableEx

An application uses this method to register to route call for this Address. The
RouteCallback, passed in as a parameter, is called back when the provider wants
the application to route a call.

A Provider may support multiple registrations. Once the limit on number of
registrations is reached an exception will be thrown.

Pre−Conditions Note: routeCallback is supplied as a parameter to this method
1. this.getProvider().getState() == IN_SERVICE

Post−Conditions
1. this.getProvider().getState() == IN_SERVICE
2. this.getRouteCallback() will return the routeCallback passed in as

parameter.

Parameters:
routeCallback − The callback to be used.

Throws: ResourceUnavailableException
will be thrown when internal resources required to register a RouteCallBack
are not available.

Throws: MethodNotSupportedException
will be thrown if provider does not support this method.

o cancelRouteCallback

 public abstract void cancelRouteCallback(RouteCallback routeCallback) throws ResourceUnavailableExce

An application uses this method to cancel a previous registration to route calls for
this Address.

Pre−Conditions Note: routeCallback is supplied as a parameter to this method
1. this.getProvider().getState() == IN_SERVICE
2. this.getRouteCallback() should return the routeCallback passed in as a

parameter.
Post−Conditions

1. this.getProvider().getState() == IN_SERVICE
2. this.getRouteCallback() will no longer return the routeCallback passed in as

parameter.

Parameters:

routeCallback − The callback to be cancelled.
Throws: ResourceUnavailableException

will be thrown when internal resources required to register a RouteCallBack
are not available.

Throws: MethodNotSupportedException
will be thrown if provider does not support this method.

o getRouteCallback

 public abstract RouteCallback [] getRouteCallback() throws MethodNotSupportedException

Returns all registrations to route calls for this Address.

Returns:
An array of register callback objects.

Throws: MethodNotSupportedException
will be thrown if provider does not support this method.

o getActiveRouteSessions

 public abstract RouteSession [] getActiveRouteSessions() throws MethodNotSupportedException

Returns all active route session associated with this Address.

Returns:
An array of route sessions associated with this Address.

Throws: MethodNotSupportedException
will be thrown if provider does not support this method.

Interface javax.telephony.callcenter.RouteCallback

public interface RouteCallback

The RouteCallback interface provides a mechanism to handle routing events. The
application implements the RouteCallback interface which is called back when the
provider wants the application to route a call.

Method Index

o reRouteEvent(RouteSessionEvent)
The reRouteEvent method is called by the provider when it wants the application
to select another destination for the call.

o routeCallbackEndedEvent(RouteCallbackEndedEvent)
The routeCallbackEndedEvent method is called by the provider to inform the
application of the termination of a previous registration by the application to route
calls for a RouteAddress.

o routeEndEvent(RouteEndEvent)
The routeEndEvent method is called by the provider to inform the application of
the termination of a RouteSession.

o routeEvent(RouteEvent)
The routeEvent method is called by the provider when it wants the application to
route a call.

o routeUsedEvent(RouteUsedEvent)
The routeUsedEvent method is called by the provider to inform the application of
the actual destination of a call, that the application helped to route.

Methods

o routeEvent

 public abstract void routeEvent(RouteEvent event)

The routeEvent method is called by the provider when it wants the application to
route a call.

This corresponds to the RouteSession object transitioning to the ROUTE state.

o reRouteEvent

 public abstract void reRouteEvent(RouteSessionEvent event)

The reRouteEvent method is called by the provider when it wants the application
to select another destination for the call.

This corresponds to the RouteSession object transitioning to the RE_ROUTE state.

o routeUsedEvent

 public abstract void routeUsedEvent(RouteUsedEvent event)

The routeUsedEvent method is called by the provider to inform the application of
the actual destination of a call, that the application helped to route.

This corresponds to the RouteSession object transitioning to the ROUTE_USED
state.

o routeEndEvent

 public abstract void routeEndEvent(RouteEndEvent event)

The routeEndEvent method is called by the provider to inform the application of
the termination of a RouteSession.

This corresponds to the RouteSession object transitioning to the ROUTE_END
state.

o routeCallbackEndedEvent

 public abstract void routeCallbackEndedEvent(RouteCallbackEndedEvent event)

The routeCallbackEndedEvent method is called by the provider to inform the
application of the termination of a previous registration by the application to route
calls for a RouteAddress.

This corresponds to the RouteSession object transitioning to the
ROUTE_CALLBACK_ENDED state.

Interface javax.telephony.callcenter.RouteSession

public interface RouteSession

The RouteSession interface represents an outstanding route request.

Variable Index

o CAUSE_INVALID_DESTINATION
Cause code indicating that the provider is ending the route session because the
application included an invalid destination in the routeSelect().

o CAUSE_NO_ERROR
Cause code indicating no error.

o CAUSE_PARAMETER_NOT_SUPPORTED
Cause code indicating that the provider is ending the route session because the
application included a parameter in the routeSelect() that the provider does not
support.

o CAUSE_ROUTING_TIMER_EXPIRED
Cause code indicating a routing timer has expired.

o CAUSE_STATE_INCOMPATIBLE
Cause code indicating that the provider is ending the route session because the
Connection state is incompatible with the RouteSession.

o CAUSE_UNSPECIFIED_ERROR
Cause code indicating that the provider is ending the route session because some
unspecified erroroccurred.

o ERROR_RESOURCE_BUSY
Error code indicating why the application invoked a routeEnd, to be passed in as
parameter on routeEnd.

o ERROR_RESOURCE_OUT_OF_SERVICE
Error code indicating why the application invoked a routeEnd, to be passed in as
parameter on routeEnd.

o ERROR_UNKNOWN
Error code indicating why the application invoked a routeEnd, to be passed in as
parameter on routeEnd.

o RE_ROUTE
The RouteSession object transitions to the RE_ROUTE state when the provider
requests the application to select another route for a call.

o ROUTE
The RouteSession object transitions to the ROUTE state when the provider
requests the application to route a call.

o ROUTE_CALLBACK_ENDED

The RouteSession object transitions to the ROUTE_CALLBACK_ENDED state
when the provider informs the application of the termination of a previous
registration of a route callback.

o ROUTE_END
The RouteSession object transitions to the ROUTE_END state when the provider
informs the application of termination of a RouteSession.

o ROUTE_USED
The RouteSession object transitions to the ROUTE_USED state when the provider
informs the application of the destination of a call the application helped to route.

Method Index

o endRoute(int)
An application uses this method to end a route session.

o getCause()
Returns the cause indicating why this route session is in its current state.

o getRouteAddress()
This returns the RouteAddress that the application has registered to route calls
for.

o getState()
Returns the current state of the route session.

o selectRoute(String[])
An application uses this method to send back one or more possible destinations for
routing the call.

Variables

o ROUTE

 public static final int ROUTE

The RouteSession object transitions to the ROUTE state when the provider
requests the application to route a call.

o ROUTE_USED

 public static final int ROUTE_USED

The RouteSession object transitions to the ROUTE_USED state when the provider
informs the application of the destination of a call the application helped to route.

o ROUTE_END

 public static final int ROUTE_END

The RouteSession object transitions to the ROUTE_END state when the provider
informs the application of termination of a RouteSession.

o RE_ROUTE

 public static final int RE_ROUTE

The RouteSession object transitions to the RE_ROUTE state when the provider
requests the application to select another route for a call.

o ROUTE_CALLBACK_ENDED

 public static final int ROUTE_CALLBACK_ENDED

The RouteSession object transitions to the ROUTE_CALLBACK_ENDED state
when the provider informs the application of the termination of a previous
registration of a route callback.

o CAUSE_NO_ERROR

 public static final int CAUSE_NO_ERROR

Cause code indicating no error.

o CAUSE_ROUTING_TIMER_EXPIRED

 public static final int CAUSE_ROUTING_TIMER_EXPIRED

Cause code indicating a routing timer has expired.

o CAUSE_PARAMETER_NOT_SUPPORTED

 public static final int CAUSE_PARAMETER_NOT_SUPPORTED

Cause code indicating that the provider is ending the route session because the
application included a parameter in the routeSelect() that the provider does not
support.

o CAUSE_INVALID_DESTINATION

 public static final int CAUSE_INVALID_DESTINATION

Cause code indicating that the provider is ending the route session because the
application included an invalid destination in the routeSelect().

o CAUSE_STATE_INCOMPATIBLE

 public static final int CAUSE_STATE_INCOMPATIBLE

Cause code indicating that the provider is ending the route session because the
Connection state is incompatible with the RouteSession.

o CAUSE_UNSPECIFIED_ERROR

 public static final int CAUSE_UNSPECIFIED_ERROR

Cause code indicating that the provider is ending the route session because some
unspecified erroroccurred.

o ERROR_UNKNOWN

 public static final int ERROR_UNKNOWN

Error code indicating why the application invoked a routeEnd, to be passed in as
parameter on routeEnd. Application cannot route the call but does not want to give
a specific reason.

o ERROR_RESOURCE_BUSY

 public static final int ERROR_RESOURCE_BUSY

Error code indicating why the application invoked a routeEnd, to be passed in as
parameter on routeEnd. Application is too busy to handle routing request.

o ERROR_RESOURCE_OUT_OF_SERVICE

 public static final int ERROR_RESOURCE_OUT_OF_SERVICE

Error code indicating why the application invoked a routeEnd, to be passed in as
parameter on routeEnd. Application or database it relies on for routing is
temprarily out of service and cannot handle routing request.

Methods

o getRouteAddress

 public abstract RouteAddress getRouteAddress()

This returns the RouteAddress that the application has registered to route calls
for.

Returns:
The RouteAddress associated with this session.

o selectRoute

 public abstract void selectRoute(String routeSelected[]) throws MethodNotSupportedException

An application uses this method to send back one or more possible destinations for
routing the call. The list is in a priority order, so routing is attempted first with

the first entry, if that fails, with the next entry and so on until all entries in the
array are used up. Application can expect a RouteUsedEvent implying a successful
route.

Pre−conditions: Note: routeSelected is supplied as a parameter to this method
1. this.getRouteAddress().getProvider().getState() == IN_SERVICE
2. this.getState() must be ROUTE or RE_ROUTE.

Post−Conditions
1. this.getRouteAddress().getProvider().getState() == IN_SERVICE
2. this.getState() will be ROUTE_USED if call was routed successfully.

Parameters:
routeSelected − A list of possible destinations for the call.

Throws: MethodNotSupportedException
Routing is not supported by the implementation.

o endRoute

 public abstract void endRoute(int errorValue) throws MethodNotSupportedException

An application uses this method to end a route session.

Pre−Conditions Note: errorValue is supplied as a parameter to this method
1. this.getRouteAddress().getProvider().getState() == IN_SERVICE

Post−Conditions
1. this.getRouteAddress().getProvider().getState() == IN_SERVICE
2. this.getState() will be ROUTE_END.

Parameters:
errorValue − is used to indicate why the application is ending the route.
Valid values are ERROR_UNKNOWN, ERROR_RESOURCE_BUSY and
ERROR_RESOURCE_OUT_OF_SERVICE.

Throws: MethodNotSupportedException
The implementation does not support this method.

o getState

 public abstract int getState()

Returns the current state of the route session.

Returns:
The current state of the route session.

o getCause

 public abstract int getCause()

Returns the cause indicating why this route session is in its current state.

Returns:
The cause of the current route session state.

package javax.telephony.callcenter.capabilities

Interface Index

ACDAddressCapabilities
ACDConnectionCapabilities
ACDManagerAddressCapabilities
ACDManagerConnectionCapabilities
AgentTerminalCapabilities
CallCenterAddressCapabilities
CallCenterCallCapabilities
CallCenterProviderCapabilities
RouteAddressCapabilities

Interface
javax.telephony.callcenter.capabilities.ACDAddressCapabilities

public interface ACDAddressCapabilities
extends AddressCapabilities

The ACDAddressCapabilities interface extends the AddressCapabilities interface to add
capabilities methods for the ACDAddress interface. Applications query these methods to
find out what actions are possible on the ACDAddress interface.

Method Index

o canGetACDManagerAddress()
This method returns true if the method getACDManagerAddress on the
ACDAddress interface is supported.

o canGetLoggedOnAgents()
This method returns true if the method getLoggedOnAgents on the ACDAddress
interface is supported.

o canGetNumberQueued()
This method returns true if the method getNumberQueued on the ACDAddress
interface is supported.

o canGetOldestCallQueued()
This method returns true if the method getOldestCallQueued on the ACDAddress
interface is supported.

o canGetQueueWaitTime()
This method returns true if the method getQueueWaitTime on the ACDAddress
interface is supported.

o canGetRelativeQueueLoad()
This method returns true if the method getRelativeQueueLoad on the ACDAddress
interface is supported.

Methods

o canGetLoggedOnAgents

 public abstract boolean canGetLoggedOnAgents()

This method returns true if the method getLoggedOnAgents on the ACDAddress
interface is supported.

Returns:
True if the method getLoggedOnAgents on the ACDAddress interface is
supported.

o canGetNumberQueued

 public abstract boolean canGetNumberQueued()

This method returns true if the method getNumberQueued on the ACDAddress
interface is supported.

Returns:
True if the method getNumberQueued on the ACDAddress interface is
supported.

o canGetOldestCallQueued

 public abstract boolean canGetOldestCallQueued()

This method returns true if the method getOldestCallQueued on the ACDAddress
interface is supported.

Returns:
True if the method getOldestCallQueued on the ACDAddress interface is
supported.

o canGetRelativeQueueLoad

 public abstract boolean canGetRelativeQueueLoad()

This method returns true if the method getRelativeQueueLoad on the ACDAddress
interface is supported.

Returns:
True if the method getRelativeQueueLoad on the ACDAddress interface is
supported.

o canGetQueueWaitTime

 public abstract boolean canGetQueueWaitTime()

This method returns true if the method getQueueWaitTime on the ACDAddress
interface is supported.

Returns:
True if the method getQueueWaitTime on the ACDAddress interface is
supported.

o canGetACDManagerAddress

 public abstract boolean canGetACDManagerAddress()

This method returns true if the method getACDManagerAddress on the
ACDAddress interface is supported.

Returns:
True if the method getACDManagerAddress on the ACDAddress interface is
supported.

Interface
javax.telephony.callcenter.capabilities.ACDConnectionCapabilities

public interface ACDConnectionCapabilities
extends ConnectionCapabilities

The ACDConnectionCapabilities interface extends the ConnectionCapabilities interface
to add capabilities methods for the ACDConnection interface. Applications query these
methods to find out what actions are possible on the ACDConnection interface.

Method Index

o canGetACDManagerConnection()
This method returns true if the method getACDManagerConnection on the
ACDConnection interface is supported.

Methods

o canGetACDManagerConnection

 public abstract boolean canGetACDManagerConnection()

This method returns true if the method getACDManagerConnection on the
ACDConnection interface is supported.

Returns:
True if the method getACDManagerConnection on the ACDConnection
interface is supported.

Interface
javax.telephony.callcenter.capabilities.ACDManagerAddressCapabilities

public interface ACDManagerAddressCapabilities
extends AddressCapabilities

The ACDManagerAddressCapabilities interface extends the AddressCapabilities
interface to add capabilities methods for the ACDManagerAddress interface.
Applications query these methods to find out what actions are possible on the
ACDAManagerddress interface.

Method Index

o canGetACDAddresses()
This method returns true if the method getACDAddresses on the
ACDManagerAddress interface is supported.

Methods

o canGetACDAddresses

 public abstract boolean canGetACDAddresses()

This method returns true if the method getACDAddresses on the
ACDManagerAddress interface is supported.

Returns:
True if the method getACDAddresses on the ACDManagerAddress interface
is supported.

Interface
javax.telephony.callcenter.capabilities.ACDManagerConnectionCapabiliti

public interface ACDManagerConnectionCapabilities
extends ConnectionCapabilities

The ACDManagerConnectionCapabilities interface extends the ConnectionCapabilities
interface to add capabilities methods for the ACDManagerConnection interface.
Applications query these methods to find out what actions are possible on the
ACDManagerConnection interface.

Method Index

o canGetACDConnections()
This method returns true if the method getACDConnections on the
ACDManagerConnection interface is supported.

Methods

o canGetACDConnections

 public abstract boolean canGetACDConnections()

This method returns true if the method getACDConnections on the
ACDManagerConnection interface is supported.

Returns:
True if the method getACDConnections on the ACDManagerConnection
interface is supported.

Interface
javax.telephony.callcenter.capabilities.AgentTerminalCapabilities

public interface AgentTerminalCapabilities
extends TerminalCapabilities

The AgentTerminalCapabilities interface extends the TerminalCapabilities interface to
add capabilities methods for the AgentTerminal interface. Applications query these
methods to find out what actions are possible on the AgentTerminal interface.

Method Index

o canHandleAgents()
This method returns true if the methods addAgent, removeAgent and getAgents on
the AgentTerminal interface are supported.

Methods

o canHandleAgents

 public abstract boolean canHandleAgents()

This method returns true if the methods addAgent, removeAgent and getAgents on
the AgentTerminal interface are supported.

Returns:
True if the methods to handle agents on the AgentTerminal interface are
supported.

Interface
javax.telephony.callcenter.capabilities.CallCenterAddressCapabilities

public interface CallCenterAddressCapabilities
extends AddressCapabilities

The CallCenterAddressCapabilities interface extends the AddressCapabilities interface
to add capabilities methods for the CallCenterAddress interface. Applications query
these methods to find out what actions are possible on the CallCenterAddress interface.

Method Index

o canAddCallObserver(boolean)
This method returns true if the method addCallObserver with the remain flag on
the CallCenterAddress interface is supported.

Methods

o canAddCallObserver

 public abstract boolean canAddCallObserver(boolean remain)

This method returns true if the method addCallObserver with the remain flag on
the CallCenterAddress interface is supported.

Returns:
True if the method addCallObserver on the CallCenterAddress interface is
supported.

Interface
javax.telephony.callcenter.capabilities.CallCenterCallCapabilities

public interface CallCenterCallCapabilities
extends CallCapabilities

The CallCenterCallCapabilities interface extends the CallCapabilities interface to add
capabilities methods for the CallCenterCall interface. Applications query these methods
to find out what actions are possible on the CallCenterCall interface.

Method Index

o canConnectPredictive()
This method returns true if the method connectPredictive on the CallCenterCall
interface is supported.

o canGetTrunks()
This method returns true if the method getTrunks on the CallCenterCall interface
is supported.

o canHandleApplicationData()
This method returns true if the methods setApplicationData and
getApplicationData on the CallCenterCall interface are supported.

Methods

o canConnectPredictive

 public abstract boolean canConnectPredictive()

This method returns true if the method connectPredictive on the CallCenterCall
interface is supported.

Returns:
True if the method connectPredictive on the CallCenterCall interface is
supported.

o canHandleApplicationData

 public abstract boolean canHandleApplicationData()

This method returns true if the methods setApplicationData and

getApplicationData on the CallCenterCall interface are supported.

Returns:
True if the methods to handle ApplicationData on the CallCenterCall
interface are supported.

o canGetTrunks

 public abstract boolean canGetTrunks()

This method returns true if the method getTrunks on the CallCenterCall interface
is supported.

Returns:
True if the method getTrunks on the CallCenterCall interface is supported.

Interface
javax.telephony.callcenter.capabilities.CallCenterProviderCapabilities

public interface CallCenterProviderCapabilities
extends ProviderCapabilities

The CallCenterProviderCapabilities interface extends the ProviderCapabilities interface
to add capabilities methods for the CallCenterProvider interface. Applications query
these methods to find out what actions are possible on the CallCenterProvider interface.

Method Index

o canGetACDAddresses()
This method returns true if the method getACDAddresses on the
CallCenterProvider interface is supported.

o canGetACDManagerAddresses()
This method returns true if the method getACDManagerAddresses on the
CallCenterProvider interface is supported.

o canGetRouteableAddresses()
This method returns true if the method getRouteableAddresses on the
CallCenterProvider interface is supported.

Methods

o canGetRouteableAddresses

 public abstract boolean canGetRouteableAddresses()

This method returns true if the method getRouteableAddresses on the
CallCenterProvider interface is supported.

Returns:
True if the method addCallObserver on the CallCenterProvider interface is
supported.

o canGetACDAddresses

 public abstract boolean canGetACDAddresses()

This method returns true if the method getACDAddresses on the

CallCenterProvider interface is supported.

Returns:
True if the method getACDAddresses on the CallCenterProvider interface is
supported.

o canGetACDManagerAddresses

 public abstract boolean canGetACDManagerAddresses()

This method returns true if the method getACDManagerAddresses on the
CallCenterProvider interface is supported.

Returns:
True if the method CallCenterProvodier.getACDManagerAddresses() is
supported.

Interface
javax.telephony.callcenter.capabilities.RouteAddressCapabilities

public interface RouteAddressCapabilities
extends AddressCapabilities

The RouteAddressCapabilities interface extends the AddressCapabilities interface to
add capabilities methods for the RouteAddress interface. Applications query these
methods to find out what actions are possible on the RouteAddress interface.

Method Index

o canRouteCalls()
This method returns true if the methods registerRouteCallback,
cancelRouteCallback, getRouteCallback and getActiveRouteSessions on the
RouteAddress interface are supported.

Methods

o canRouteCalls

 public abstract boolean canRouteCalls()

This method returns true if the methods registerRouteCallback,
cancelRouteCallback, getRouteCallback and getActiveRouteSessions on the
RouteAddress interface are supported.

Returns:
True if the methods for routing on the RouteAddress interface are supported.

package javax.telephony.callcenter.events

Interface Index

ACDAddrBusyEv
ACDAddrEv
ACDAddrLoggedOffEv
ACDAddrLoggedOnEv
ACDAddrNotReadyEv
ACDAddrReadyEv
ACDAddrUnknownEv
ACDAddrWorkNotReadyEv
ACDAddrWorkReadyEv
AgentTermBusyEv
AgentTermEv
AgentTermLoggedOffEv
AgentTermLoggedOnEv
AgentTermNotReadyEv
AgentTermReadyEv
AgentTermUnknownEv
AgentTermWorkNotReadyEv
AgentTermWorkReadyEv
CallCentCallAppDataEv
CallCentCallEv
CallCentConnEv
CallCentConnInProgressEv
CallCentEv
CallCentTrunkEv
CallCentTrunkInvalidEv
CallCentTrunkValidEv
RouteCallbackEndedEvent
RouteEndEvent
RouteEvent
RouteSessionEvent
RouteUsedEvent

Interface javax.telephony.callcenter.events.ACDAddrEv

public interface ACDAddrEv
extends CallCentEv, AddrEv

ACDAddressEvent encapsulates a ACD event and is sent to ACD Address observers.

Method Index

o getAgent()
Returns the associated Agent object.

o getAgentAddress()
Returns the Agent’s Address that is associated with the given AgentTerminal.

o getAgentID()
Returns the Agent’s ID.

o getAgentTerminal()
Returns the Agent’s Terminal.

o getState()
Returns the Agent’s state.

o getTrunks()
Returns an array of all Trunks currently being used for this Call.

Methods

o getAgent

 public abstract Agent getAgent()

Returns the associated Agent object.

Returns:
The associated agent object.

o getAgentTerminal

 public abstract AgentTerminal getAgentTerminal()

Returns the Agent’s Terminal.

Returns:

The Agent’s Terminal.

o getAgentID

 public abstract String getAgentID()

Returns the Agent’s ID.

Returns:
The Agent’s ID.

o getState

 public abstract int getState()

Returns the Agent’s state.

Returns:
The Agent’s state.

o getAgentAddress

 public abstract Address getAgentAddress()

Returns the Agent’s Address that is associated with the given AgentTerminal.

Returns:
The associated Address.

o getTrunks

 public abstract CallCenterTrunk[] getTrunks()

Returns an array of all Trunks currently being used for this Call. If there are no
Trunks being used, this method returns null.

Returns:
An array of Trunks, null if there are none.

Interface javax.telephony.callcenter.events.ACDAddrBusyEv

public interface ACDAddrBusyEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to BUSY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrLoggedOffEv

public interface ACDAddrLoggedOffEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to LOG_OFF.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrLoggedOnEv

public interface ACDAddrLoggedOnEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to LOG_ON.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrNotReadyEv

public interface ACDAddrNotReadyEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to NOT_READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrReadyEv

public interface ACDAddrReadyEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrUnknownEv

public interface ACDAddrUnknownEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to UNKNOWN.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrWorkNotReadyEv

public interface ACDAddrWorkNotReadyEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to WORK_NOT_READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.ACDAddrWorkReadyEv

public interface ACDAddrWorkReadyEv
extends ACDAddrEv

This event type indicates a state transition for the Agent object to WORK_READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.callcenter.events.AgentTermEv

public interface AgentTermEv
extends CallCentEv, TermEv

AgentTerminalEvent encapsulates a ACD event and is sent to AgentTerminal observers.

Method Index

o getACDAddress()
Returns the ACDAddress the agent currently is or was logged into.

o getAgent()
Returns the associated agent object.

o getAgentAddress()
Returns the Agent’s Address that is associated with the given AgentTerminal.

o getAgentID()
Returns the Agent’s ID.

o getState()
Returns the Agent’s state.

Methods

o getAgent

 public abstract Agent getAgent()

Returns the associated agent object.

Returns:
The associated agent object.

o getACDAddress

 public abstract ACDAddress getACDAddress()

Returns the ACDAddress the agent currently is or was logged into.

Returns:
The ACDAddress currently or formerly associated with the Agent.

o getAgentID

 public abstract String getAgentID()

Returns the Agent’s ID.

Returns:
The Agent ID.

o getState

 public abstract int getState()

Returns the Agent’s state.

Returns:
The Agent’s state.

o getAgentAddress

 public abstract Address getAgentAddress()

Returns the Agent’s Address that is associated with the given AgentTerminal.

Returns:
The Address associated with the Agent’s Terminal.

Interface
javax.telephony.callcenter.events.AgentTermBusyEv

public interface AgentTermBusyEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to BUSY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermLoggedOffEv

public interface AgentTermLoggedOffEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to LOG_OFF.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermLoggedOnEv

public interface AgentTermLoggedOnEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to LOG_ON.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermNotReadyEv

public interface AgentTermNotReadyEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to NOT_READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermReadyEv

public interface AgentTermReadyEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermUnknownEv

public interface AgentTermUnknownEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to UNKNOWN.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermWorkNotReadyEv

public interface AgentTermWorkNotReadyEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to WORK_NOT_READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.AgentTermWorkReadyEv

public interface AgentTermWorkReadyEv
extends AgentTermEv

This event type indicates a state transition for the Agent object to WORK_READY.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.callcenter.events.CallCentEv

public interface CallCentEv
extends Ev

The CallCentEv interface is the base event interface for all call−center package events.
This interfaces extends the core Ev events class.

Variable Index

o CAUSE_NO_AVAILABLE_AGENTS
This cause indicates no agents were available to handle the call.

Method Index

o getCallCenterCause()
Returns the call center and core causes associated with this call center event.

Variables

o CAUSE_NO_AVAILABLE_AGENTS

 public static final int CAUSE_NO_AVAILABLE_AGENTS

This cause indicates no agents were available to handle the call.

Methods

o getCallCenterCause

 public abstract int getCallCenterCause()

Returns the call center and core causes associated with this call center event.
Every event has a cause. The various cause values are defined as public static final
variablies in this interface, with the exception of CAUSE_NORMAL and
CAUSE_UNKNOWN, which are defined in the core.

Returns:
The cause of the event.

Interface javax.telephony.callcenter.events.CallCentCallEv

public interface CallCentCallEv
extends CallCentEv, CallEv

The CallCentCallEv is the base event interface for all Call−related events in the call
center package. Each Call−related event in this package must extend this interface. This
interface extends CallCentEv, the base event interface for all call center events, and the
core’s CallEv interface, the base event interface for all Call−related events.

Method Index

o getCalledAddress()
Returns the called Address associated with this Call.

o getCallingAddress()
Returns the calling Address associated with this call.

o getCallingTerminal()
Returns the calling Terminal associated with this Call.

o getLastRedirectedAddress()
Returns the last redirected Address associated with this Call.

o getTrunks()
Returns an array of all Trunks currently being used for this Call.

Methods

o getCallingAddress

 public abstract Address getCallingAddress()

Returns the calling Address associated with this call. The calling Address is
defined as the Address which placed the telephone call.

If the calling address is unknown or not yet known, this method returns null.

Returns:
The calling Address.

o getCallingTerminal

 public abstract Terminal getCallingTerminal()

Returns the calling Terminal associated with this Call. The calling Terminal is
defined as the Terminal which placed the telephone call.

If the calling Terminal is unknown or not yet know, this method returns null.

Returns:
The calling Terminal.

o getCalledAddress

 public abstract Address getCalledAddress()

Returns the called Address associated with this Call. The called Address is defined
as the Address to which the call has been originally placed.

If the called address is unknown or not yet known, this method returns null.

Returns:
The called Address.

o getLastRedirectedAddress

 public abstract Address getLastRedirectedAddress()

Returns the last redirected Address associated with this Call. The last redirected
Address is the Address at which the current telephone call was placed immediately
before the current Address. This is common if a Call is forwarded to several
Addresses before being answered.

If the the last redirected address is unknown or not yet known, this method
returns null.

Returns:
The last redirected Address for this telephone Call.

o getTrunks

 public abstract CallCenterTrunk[] getTrunks()

Returns an array of all Trunks currently being used for this Call. If there are no
Trunks being used, this method returns null.

Returns:
An array of Trunks, null if there are none.

Interface
javax.telephony.callcenter.events.CallCentCallAppDataEv

public interface CallCentCallAppDataEv
extends CallCentCallEv

The CallCentCallAppDataEv indicates that the application data object associated the
call has changed and this event contains the new object.

Variable Index

o ID
Event id.

Method Index

o getApplicationData()
Returns the new application data for this call.

Variables

o ID

 public static final int ID

Event id.

Methods

o getApplicationData

 public abstract Object getApplicationData()

Returns the new application data for this call. This method returns null if the
application data has been cleared from the call.

Returns:
The data object, null if it has been cleared.

Interface javax.telephony.callcenter.events.CallCentConnEv

public interface CallCentConnEv
extends CallCentCallEv, ConnEv

The CallCentConnEv is the base event interface for all CallCenter Connection events.
Each Connection−related event in this package must extend this interface.

Interface
javax.telephony.callcenter.events.CallCentConnInProgressEv

public interface CallCentConnInProgressEv
extends CallCentConnEv

The CallCentConnInProgressEv indicates that the call center connection state has
transitioned to the Connection.INPROGRESS state. This method extends the
CallCentConnEv interfaces and is reported on the CallObserver interface.

Variable Index

o ID
Event id.

Variables

o ID

 public static final int ID

Event id.

Interface
javax.telephony.callcenter.events.CallCentTrunkEv

public interface CallCentTrunkEv
extends CallCentCallEv

The CallCentTrunkEv is the base event for all Trunk related events in the CallCenter
package. Each Trunk related event in this package must extend this interface. This
interface is not meant to be a public interface, it is just a building block for other event
interfaces.

The CallCentTrunkEv interface contains getTrunk(), which returns the trunk for the
event.

Method Index

o getTrunk()
Returns the Trunk object associated with this event.

Methods

o getTrunk

 public abstract CallCenterTrunk getTrunk()

Returns the Trunk object associated with this event.

Returns:
The associated Trunk.

Interface
javax.telephony.callcenter.events.CallCentTrunkInvalidEv

public interface CallCentTrunkInvalidEv
extends CallCentTrunkEv

The CallCentTrunkInvalidEv indicates that a Trunk is now in the INVALID state.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.CallCentTrunkValidEv

public interface CallCentTrunkValidEv
extends CallCentTrunkEv

The CallCentTrunkValidEv indicates that a Trunk is now in the VALID state.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcenter.events.RouteSessionEvent

public interface RouteSessionEvent

The RouteSessionEvent interface encapsulates a route session event.

Method Index

o getRouteSession()
Returns the RouteSession object to be used to handle the event.

Methods

o getRouteSession

 public abstract RouteSession getRouteSession()

Returns the RouteSession object to be used to handle the event.

Returns:
The RouteSession object.

Interface
javax.telephony.callcenter.events.RouteCallbackEndedEvent

public interface RouteCallbackEndedEvent

The RouteCallbackEndedEvent interface encapsulates a route callback ended event.

Method Index

o getRouteAddress()
Returns the RouteAddress that the route session was for.

Methods

o getRouteAddress

 public abstract RouteAddress getRouteAddress()

Returns the RouteAddress that the route session was for.

Returns:
The RouteAddress associated with the RouteSession.

Interface javax.telephony.callcenter.events.RouteEndEvent

public interface RouteEndEvent
extends RouteSessionEvent

The RouteEndEvent interface encapsulates a route end event.

The cause for the termination of the route session may be obtained via the
RouteSessionEvent.getRouteSession().getCause() method.

Interface javax.telephony.callcenter.events.RouteEvent

public interface RouteEvent
extends RouteSessionEvent

The RouteEvent interface encapsulates a routing event.

Variable Index

o SELECT_ACD
Route Selection Algorithm: Select a route to an ACDAddress.

o SELECT_EMERGENCY
Route Selection Algorithm: Select an emergency route.

o SELECT_LEAST_COST
Route Selection Algorithm: Select a least cost route.

o SELECT_NORMAL
Route Selection Algorithm: Select a normal route.

o SELECT_USER_DEFINED
Route Selection Algorithm: Select a user defined route.

Method Index

o getCallingAddress()
Returns the calling Address.

o getCallingTerminal()
Returns the calling Terminal.

o getCurrentRouteAddress()
Returns the originally requested destination for the call.

o getRouteSelectAlgorithm()
Returns the route select algorithm being used.

o getSetupInformation()
Returns the ISDN call setup message when available.

Variables

o SELECT_NORMAL

 public static final int SELECT_NORMAL

Route Selection Algorithm: Select a normal route.

o SELECT_LEAST_COST

 public static final int SELECT_LEAST_COST

Route Selection Algorithm: Select a least cost route.

o SELECT_EMERGENCY

 public static final int SELECT_EMERGENCY

Route Selection Algorithm: Select an emergency route.

o SELECT_ACD

 public static final int SELECT_ACD

Route Selection Algorithm: Select a route to an ACDAddress.

o SELECT_USER_DEFINED

 public static final int SELECT_USER_DEFINED

Route Selection Algorithm: Select a user defined route.

Methods

o getCurrentRouteAddress

 public abstract RouteAddress getCurrentRouteAddress()

Returns the originally requested destination for the call.

Returns:
The originally request destination for the call.

o getCallingAddress

 public abstract Address getCallingAddress()

Returns the calling Address.

Returns:
The calling Address.

o getCallingTerminal

 public abstract Terminal getCallingTerminal()

Returns the calling Terminal.

Returns:
The calling Terminal.

o getRouteSelectAlgorithm

 public abstract int getRouteSelectAlgorithm()

Returns the route select algorithm being used.

Returns:
The route selection algorithm being used.

o getSetupInformation

 public abstract String getSetupInformation()

Returns the ISDN call setup message when available.

Returns:
The ISDN call setup message.

Interface javax.telephony.callcenter.events.RouteUsedEvent

public interface RouteUsedEvent
extends RouteSessionEvent

The RouteUsedEvent interface encapsulates a route used event.

Method Index

o getCallingAddress()
Returns the calling Address.

o getCallingTerminal()
Returns the calling Terminal.

o getDomain()
Returns true if the call was routed out of the Provider’s domain.

o getRouteUsed()
Returns the final destination Terminal.

Methods

o getRouteUsed

 public abstract Terminal getRouteUsed()

Returns the final destination Terminal.

Returns:
The final destination Terminal.

o getCallingTerminal

 public abstract Terminal getCallingTerminal()

Returns the calling Terminal.

Returns:
The calling Terminal.

o getCallingAddress

 public abstract Address getCallingAddress()

Returns the calling Address.

Returns:
The calling Address.

o getDomain

 public abstract boolean getDomain()

Returns true if the call was routed out of the Provider’s domain.

Returns:
True if the call was routed out of the Provider’s domain.

package javax.telephony.callcontrol

Interface Index

CallControlAddress
CallControlAddressObserver
CallControlCall
CallControlCallObserver
CallControlConnection
CallControlTerminal
CallControlTerminalConnection
CallControlTerminalObserver

Class Index

CallControlForwarding

Interface javax.telephony.callcontrol.CallControlAddress

public interface CallControlAddress
extends Address

Introduction

The CallControlAddress interface extends the core Address interface. It provides
additional methods which perform more advanced features on a per−address basis.
Applications may query an Address object using the instanceof operator to see whether it
supports this interface.

Address Forwarding

This interface supports methods which permit applications to modify and query the
forwarding characteristics of an Address. The forwarding characteristics determine how
incoming telephone calls to this Address should be handled, if any special handling is
desired.

Each Address may have zero or more forwarding instructions. Each instruction describes
how the telephony hardware should handle incoming telephone calls to an Address
under different circumstances. Examples of forwarding instructions are "forward all
calls to x9999 coming into this Address" or "forward all calls to x7777 when no one
answers the call.". Each forwarding instruction is represented by an instance of the
CallControlForwarding class.

Applications assign a list of forwarding instructions to an Address via the
CallControlAddress.setForwarding() method. This method takes an array of
CallControlForwarding objects as an argument. To obtain the current forwarding
attributes, applications invoke the CallControlAddress.getForwarding() method.
To cancel all forwarding on the Address, application use
CallControlAddress.cancelForwarding()

Do Not Disturb and Message Waiting

The call control package defines additional attributes associated with Addresses. Two of
these are the do not disturb and message waiting properties.

The do not disturb attribute indicates to the telephony hardware that this Address does
not want to be bothered with incoming telephone calls. That is, if this feature is activate,
the underlying telephone hardware will not alert this address to incoming telephone

calls. Applications use the CallControlAddress.setDoNotDisturb() method to
activate or deactivate this feature and the
CallControlAddress.getDoNotDisturb() method to return the current state of this
attribute.

Note that the CallControlTerminal interface also carries the do not disturb attribute.
The attributes associated with each are maintained independently. [XXX MUST
CLARIFY]

The message waiting attributes indicates whether there are messages waiting for a
human user of the Address. These messages may either be maintained by an application
or some telephony hardware. Applications inform the telephony hardware of the
message waiting status, and typically the hardware displays a visible alert (e.g. an LED)
to users indicating there are messages waiting to be heard. Applications use the
CallControlAddress.setMessageWaiting() method to activate or deactivate this
features and the CallControlAddress.getMessageWaiting() method to return the
current state of this attribute.

Observers and Events

Applications receive events related to this interface via the JTAPI core’s
AddressObserver.addressChangedEvent() . However, applications must implement
the CallControlAddressObserver to signal to the implementation that it also wants
call control package events for the Address. The CallControlAddressObserver
contains no additional methods.

The following events are delivered to the application which are associated with this
interface:

CallCtlAddrDoNotDisturbEv Indicates the Do Not Disturb characteristics of this
Address has changed. CallCtlAddrForwardEv Indicates the forwarding characteristics
of this Address has changed. CallCtlAddrMessageWaitingEv Indicates the message
waiting characteristics of this Address has changed.

See Also:
CallControlTerminal, CallControlForwarding, CallControlAddressObserver,
CallCtlAddrDoNotDisturbEv, CallCtlAddrForwardEv,
CallCtlAddrMessageWaitingEv

Method Index

o cancelForwarding()
Cancels all of the forwarding instructions on this Address.

o getDoNotDisturb()
Returns true if the do−not−disturb feature is on, false otherwise.

o getForwarding()
Returns an array of forwarding instructions currently set for this telephone
Address.

o getMessageWaiting()
Returns true if message waiting is turned on, false otherwise.

o setDoNotDisturb(boolean)
Specifies whether the do not disturb feature should be turned on for this Address.

o setForwarding(CallControlForwarding[])
Sets the forwarding characteristics for this Address.

o setMessageWaiting(boolean)
Specifies whether the message waiting feature should be turned on for this
Address.

Methods

o setForwarding

 public abstract void setForwarding(CallControlForwarding instructions[]) throws MethodNotSupportedEx

Sets the forwarding characteristics for this Address. This forwarding command
cancels all previous forwarding instructions. This method takes an array of
CallControlForwarding objects. Each object describes a different rule for
different types of forwarding. This method blocks until all forwarding instructions
have been set or until an error occurs.

A CallCtlAddrForwardEv event is delivered to applications when the forwarding
characteristics of an Address changed.

Pre−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE
2. address.getForwarding() == instructions
3. CallCtlAddrForwardEv delivered to the application

Parameters:
instructions − An array of address forwarding instructions

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
The Provider is not in the Provider.IN_SERVICE state.

Throws: InvalidArgumentException
An invalid set of forwarding instructions were given as a parameter.

See Also:
CallCtlAddrForwardEv

o getForwarding

 public abstract CallControlForwarding [] getForwarding() throws MethodNotSupportedException

Returns an array of forwarding instructions currently set for this telephone
Address. If there are no instructions, this method returns null.

Returns:
An array of address forwarding instructions, null if there are none.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

o cancelForwarding

 public abstract void cancelForwarding() throws MethodNotSupportedException, InvalidStateException

Cancels all of the forwarding instructions on this Address. When this method
completes, the CallControlAddress.getForwarding() method will return
null. This method blocks until all forwarding instructions have been cancelled or
until an error occurs.

A CallCtlAddrForwardEv event is delivered to applications when the forwarding
characteristics of an Address changed.

Pre−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE
2. address.getForwarding == null
3. CallCtlAddrForwardEv delivered to the application

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
The Provider is not in the Provider.IN_SERVICE state..

See Also:
CallCtlAddrForwardEv

o getDoNotDisturb

 public abstract boolean getDoNotDisturb() throws MethodNotSupportedException, InvalidStateException

Returns true if the do−not−disturb feature is on, false otherwise. The Provider
must be in the Provider.IN_SERVICE state in order for this method to be
successfully invoked.

Pre−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Returns:
True if do not disturb is on, false if it is off.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
This Provider is not in the Provider.IN_SERVICE state.

o setDoNotDisturb

 public abstract void setDoNotDisturb(boolean enable) throws MethodNotSupportedException, InvalidStat

Specifies whether the do not disturb feature should be turned on for this Address.
This feature only affects whether or not calls will be accepted at this address. The
setting of this feature does not affect the do not disturb feature associated with a
Terminal. If the first argument, enable, is true, do not disturb is turned on. If
enable is false, do not disturb is turned off.

A CallCtlAddrDoNotDisturbEv event is delivered to applications when the do
not disturb characteristic of the Address changes.

Pre−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE
2. address.getDoNotDisturb() == enable
3. CallCtlAddrDoNotDisturbEv is delivered to the application

Parameters:
enable − True to turn do not disturb on, false to turn message waiting off.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
The Provider is not in the Provider.IN_SERVICE state.

See Also:
CallCtlAddrDoNotDisturbEv

o getMessageWaiting

 public abstract boolean getMessageWaiting() throws MethodNotSupportedException, InvalidStateExceptio

Returns true if message waiting is turned on, false otherwise. The Provider must
be in the Provider.IN_SERVICE state in order for this method to be successfully
invoked.

Pre−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Returns:
True if message waiting is on, false if it is off.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
The Provider is not in the Provider.IN_SERVICE state.

o setMessageWaiting

 public abstract void setMessageWaiting(boolean enable) throws MethodNotSupportedException, InvalidSt

Specifies whether the message waiting feature should be turned on for this
Address. If the first argument, enable, is true, message waiting is turned on. If
enable is false, message waiting is turned off.

A CallCtlAddrMessageWaitingEv is delivered to applications when the
message waiting characteristic of an Address changes.

Pre−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (address.getProvider()).getState() == Provider.IN_SERVICE
2. address.getMessageWaiting() == enable
3. CallCtlAddrMessageWaitingEv is delivered to the application

Parameters:
enable − True to turn message waiting on, false to turn message waiting off.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
The Provider is not in the Provider.IN_SERVICE state.

See Also:
CallCtlAddrMessageWaitingEv

Interface
javax.telephony.callcontrol.CallControlAddressObserver

public interface CallControlAddressObserver
extends AddressObserver

The CallControlAddressObserver interface reports all events for the
CallControlAddress object. Applications implement this interface to receive
CallControlAddress−related events. All events are reported via the
AddressObserver.addressChangedEvent() method. This interface, therefore,
allows applications to signal to the implementation that they are interested in
CallControlAddress−related events. This interface defines no additional methods.

All events must extend the CallCtlAddrEv event interface, which in turn, extends the
core’s AddrEv interface.

The following are those events which are associated with this interface:

CallCtlAddrDoNotDisturbEv Indicates the Do Not Disturb characteristics of this
Address has changed. CallCtlAddrForwardEv Indicates the forwarding characteristics
of this Address has changed. CallCtlAddrMessageWaitingEv Indicates the message
waiting characteristics of this Address has changed.

See Also:
AddressObserver, AddrEv, CallControlAddress, CallCtlAddrEv,
CallCtlAddrDoNotDisturbEv, CallCtlAddrForwardEv,
CallCtlAddrMessageWaitingEv

Interface javax.telephony.callcontrol.CallControlCall

public interface CallControlCall
extends Call

Introduction

The CallControlCall interface extends the core package Call interface. This
interface provides additional methods for the Call object.

Additional Call Information

This interface supports methods which return additional information regarding the
telephone call. Specifically, it returns the calling address, calling terminal, called
address, and last redirected address information.

The calling address information, as returned by the
CallControlCall.getCallingAddress() method is the Address which originally
placed the telephone call. The calling terminal information, as returned by the
CallControlCall.getCallingTerminal() method is the Terminal which originally
placed the telephone call. The called Address, as returned by the
CallControlCall.getCalledAddress() method is the Address to which the
telephone call was originally placed. The last redirected address, as returned by the
CallControlCall.getLastRedirectedAddress() method is the Address to which
this call was placed before the current destination Address. For example, if a telephone
call was forwarded from one Address to another, then the first Address is the last
redirected address for this telephone call.

Each of these methods returned null if their values are unknown at the present time.
During the course of a telephone call, an implementation may learn this additional
information, and return different values for some or all of these methods as a result.

Conferencing Telephone Calls

The conferencing feature supported by this interface permits two telephone calls to be
"merged". That is, the two telephone calls are merged into a single telephone call with
the union of all of the participants of the two calls being placed on the single telephone
call.

Applications invoke the CallControlCall.conference() method to perform the
conferencing feature. This method is given the "second" telephone call as an argument.

All participants are moved from the second telephone call to the call object on which the
method is invoked. The second call moved into the Call.INVALID state as a result.

In order for the conferencing feature to happen, there must be a common participant to
both telephone calls, as represented by a single Terminal and two TerminalConnections,
one on each of the two Calls. These two TerminalConnections are known as the
conference controllers. In the real−world, one of the two telephone calls must be on hold
with respect to the controlling Terminal, and hence, the TerminalConnection on the
second Call must be in the CallControlTerminalConnection.HELD state. The two
conference controlling TerminalConnections are merged into one as a result of this
method.

Applications may control which TerminalConnection acts as the conference controller via
the CallControlCall.setConferenceController() method. The
CallControlCall.getConferenceController() method returns the current
conference controller, null if there is none. If no conference controller is set, the
implementation chooses a suitable TerminalConnection when the conferencing feature is
invoked.

Transferring Telephone Calls

The transfer feature supported by this interface permits one telephone call to be "moved"
to another telephone call. That is, all of the parties from one telephone call are moved to
another telephone call, except for the transferring party which drops off from the
telephone call.

Applications invoke the CallControlCall.transfer() method to perform the
transfer feature. There are two overloaded versions of this method. The first method
takes a second telephone call as an argument. This method acts similarly to
CallControlCall.conference() , except the two TerminalConnections on each
telephone call with a common Terminal are removed from both telephone calls. The
second version takes a string telephone address as an argument. This method removes
the transfer controller participant while placing the telephone call to the designated
address. This latter version of the transfer feature is often known as a single step
transfer.

In order for the transfer feature to happen, there must be a participant which acts as the
transfer controller. The transfer controller is a TerminalConnection around which the
transfer is placed. In the first version of the CallControlCall.transfer() method,
the transfer controller must be present on each of the two telephone calls and share a
common Terminal. In the second version, the transfer controller only applies to the Call
object on which the method is invoked (since there is no second Call involved). In both
cases, the transfer controller participant is no longer part of any telephone call once the
transfer feature is complete.

Applications may control which TerminalConnection acts as the transfer controller via
the CallControlCall.setTransferController() method. The
CallControlCall.getTransferController() method returns the current transfer

controller, null if there is none. If no transfer controller is set, the implementation
chooses a suitable TerminalConnection when the conferencing feature is invoked.

Consultation Calls

Consultation Calls are special types of telephone calls created (often temporarily) for a
specific purpose. Consultation calls are created if a user wants to "consult" with another
party briefly while currently on a telephone call, or are created for the purpose of
conferencing or transferring with a current telephone call. Consequently, consultation
calls are always created with respect to another existing telephone call, hence the
consultation feature is available via this interface.

Applications invoke the CallControlCall.consult() method to perform the
consultation feature. There are two overloaded versions of this method. The first method
takes a TerminalConnection and a string telephone address as arguments. It creates a
new Call object, and places a telephone call to the designated telephone address. The
originating party is designated by the TerminalConnection. The second version of this
method only takes a TerminalConnection as an argument, and permits applications to
use the CallControlConnection.addToAddress() method to dial the destination
address string.

Additional CallControlCall Methods

The CallControlCall interface provides additional features for the Call object. The
CallControlCall.addParty() method adds a single party to the telephone given
some telephone address string. The CallControlCall.drop() disconnects all parties
from the telephone calls and moves it into the Call.INVALID state. The
CallControlCall.offHook() method takes an originating Address and Terminal pair
"off hook" and permits applications to dial destination address digits one−by−one.

Observers and Events

All events pertaining to the CallControlCall interface are reported via the
CallObserver.callChangedEvent() method. The application observer object must
also implement the CallControlCallObserver interface to express interest in the call
control package events. Applications received events pertaining to the
CallControlConnection and CallControlTerminalConnection interfaces via this
observer as well.

All CallControlCall−related events must extend the CallCtlCallEv interface. There
are no specific events pertaining to this interface, however.

See Also:
Call, CallObserver, CallControlCallObserver, CallCtlCallEv

Method Index

o addParty(String)
Adds an additional party to an existing telephone Call.

o conference(Call)
Merges two Calls together, resulting in the union of the participants of both calls
being placed on a single Call.

o consult(TerminalConnection)
This overloaded version of consult() is similar to the other version of consult,
except it does not take a destination string address as an argument.

o consult(TerminalConnection, String)
Creates a consultation call associated with this Call object.

o drop()
Drops the entire Call.

o getCalledAddress()
Returns the called Address associated with this Call.

o getCallingAddress()
Returns the calling Address associated with this call.

o getCallingTerminal()
Returns the calling Terminal associated with this Call.

o getConferenceController()
Returns the TerminalConnection which currently acts as the conference controller.

o getConferenceEnable()
Return true if conferencing is enabled, false otherwise.

o getLastRedirectedAddress()
Returns the last redirected Address associated with this Call.

o getTransferController()
Returns the TerminalConnection which currently acts as the transfer controller.

o getTransferEnable()
Return true if transferring is enabled, false otherwise.

o offHook(Address, Terminal)
Takes the originating end of a telephone call off−hook.

o setConferenceController(TerminalConnection)
Sets the TerminalConnection which acts as the conference controller for the Call.

o setConferenceEnable(boolean)
Controls whether the Call is permitted or able to perform the conferencing feature.

o setTransferController(TerminalConnection)
Sets the TerminalConnection which acts as the transfer controller for the Call.

o setTransferEnable(boolean)
Controls whether the Call is permitted or able to perform the transferring feature.

o transfer(Call)
This method moves all participants from one telephone call to another, with the
exception of a selected common participant.

o transfer(String)
This overloaded version of this method transfer all partipants currently on this
telephone Call to another telephone address.

Methods

o getCallingAddress

 public abstract Address getCallingAddress()

Returns the calling Address associated with this call. The calling Address is
defined as the Address which placed the telephone call.

If the calling address is unknown or not yet known, this method returns null.

Returns:
The calling Address.

o getCallingTerminal

 public abstract Terminal getCallingTerminal()

Returns the calling Terminal associated with this Call. The calling Terminal is
defined as the Terminal which placed the telephone call.

If the calling Terminal is unknown or not yet known, this method returns null.

Returns:
The calling Terminal.

o getCalledAddress

 public abstract Address getCalledAddress()

Returns the called Address associated with this Call. The called Address is defined
as the Address to which the call has been originally placed.

If the called address is unknown or not yet known, this method returns null.

Returns:
The called Address.

o getLastRedirectedAddress

 public abstract Address getLastRedirectedAddress()

Returns the last redirected Address associated with this Call. The last redirected
Address is the Address at which the current telephone call was placed immediately
before the current Address. This is common if a Call is forwarded to several
Addresses before being answered.

If the the last redirected address is unknown or not yet known, this method

returns null.

Returns:
The last redirected Address for this telephone Call.

o addParty

 public abstract Connection addParty(String newParty) throws InvalidStateException, InvalidPartyExcep

Adds an additional party to an existing telephone Call. This is sometimes called a
"single−step conference" because a party is conferenced into a telephone call
directly. The telephone address string provided as the argument must be complete
and valid.

States of the Existing Connections

The Call must have at least two Connections which are in the
CallControlConnection.ESTABLISHED state. An additional restriction requires
that at most one other Connection may be in either the
CallControlConnection.QUEUED , CallControlConnection.OFFERING , or
CallControlConnection.ALERTING state.

On some platforms, the telephony hardware imposes restrictions on the number of
Connections in a particular state. For instance, it is common to restrict the
number of "alerting" Connections to at most one. As a result, this method requires
that at most one other Connections is in the "queued", "offering", or "alerting"
state. (Note that the first two states correspond to the core Connection "in
progress" state). Although some systems may not enforce this requirement, for
consistency, JTAPI specifies implementations must uphold the conservative
requirement.

The New Connection

This method creates an returned a new Connection object representing the new
party. This Connection must at least be in the CallControlConnection.IDLE
state. Its state may have progressed beyond "idle" before this method returns, and
should be reflected by an event. This new Connection will progress as any normal
destination Connection on a telephone call. Typical scenarios for this Connection
are described by the Call.connect() method.

Pre−conditions:
1. (call.getProvider()).getState() == Provider.IN_SERVICE
2. call.getState() == Call.ACTIVE
3. Let Connection c[] = call.getConnections();
4. c.length >= 2
5. For two c[i], c[i].getCallControlState() ==

CallControlConnection.ESTABLISHED

6. There exists at most one c[i], such that c[i].getCallControlState() ==
CallControlConnection.QUEUED, CallControlConnection.OFFERING, or
CallControlConnection.ALERTING

Post−conditions:
1. Let connection be the Connection created and returned.
2. (call.getProvider()).getState() == Provider.IN_SERVICE
3. call.getState() == Call.ACTIVE
4. connection.getCallControlState() == CallControlConnection.IDLE
5. ConnCreatedEv is delivered to the application

Parameters:
newParty − The telephone number address of the party to be added.

Returns:
The new Connection associated with the added party.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: InvalidPartyException
The new party to be added to the call is invalid.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o drop

 public abstract void drop() throws InvalidStateException, MethodNotSupportedException, PrivilegeViol

Drops the entire Call. This method is equivalent to using the
Connection.disconnect() method on each Connections which is part of the
Call. Typically, each Connection on the telephone call will move into the
CallControlConnection.DISCONNECTED state, each TerminalConnection will
move into the CallControlTerminalConnection.DROPPED state, and the Call
will move into the core Call.INVALID state.

There are some Connections which the application does not possess the proper
authority to disconnect. In this case, this method performs no action on these
Connection. These Connections may disconnect naturally as a result of
disconnecting other Connections, however. This method returns when it can
successfully disconnect as many methods as it can. The application is notified via
event whether the entire call was successfully dropped or not.

Pre−conditions:
1. (call.getProvider()).getState() == Provider.IN_SERVICE
2. call.getState() == CallACTIVE

Post−conditions:

1. (call.getProvider()).getState() == Provider.IN_SERVICE
2. Let Connection c[] = call.getConnections() before the invocation
3. If c[i].getCallControlState == CallControlConnection.DISCONNECTED, for

all i, then call.getState() == Call.INVALID
4. CallCtlConnDisconnectedEv is delivered to the application for all

disconnected Connections
5. CallCtlTermConnDroppedEv is delivered to the application for all dropped

TerminalConnections
6. CallInvalidEv is delivered to the application if all Connections were

disconnected.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method
and it can drop none of the Connections.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o offHook

 public abstract Connection offHook(Address origaddress,
 Terminal origterminal) throws InvalidStateException, MethodNotSup

Takes the originating end of a telephone call off−hook. This method permits
applications to simply take the originating terminal of a telephone call off−hook, so
that users may manually dial telephone number digits or applications may supply
digits with the CallControlConnection.addToAddress() method. This is in
contrast to the Call.connect() method which requires the complete destination
address string.

This method takes the originating Address and Terminal as arguments. This Call
must be in the Call.IDLE state prior to the invocation of this method. This
method creates and returns a Connection to the originating Address in the
CallControlConnection.INITIATED state. This method also creates a
TerminalConnection in the CallControlTerminalConnection.TALKING state
and associated with the new Connection and originating Terminal.

Pre−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Call.IDLE

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. Let connection be the created and returned Connection
3. Let terminalconnection be the created TerminalConnection

4. connection.getCallControlState() == CallControlConnection.INITIATED
5. Let TerminalConnection tc[] = c.getTerminalConnections()
6. tc.length == 1
7. tc[0] == terminalconnection
8. tc[0].getCallControlState() == CallControlTerminalConnection.TALKING
9. tc[0] element of origterminal.getTerminalConnections()

10. connection element of origaddress.getConnections()
11. connection element of this.getConnections()

Parameters:
origaddress − The originating Address object.
origterminal − The originating Terminal object.

Returns:
The Connection associated with the originating end of the telephone call.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method
and it can drop none of the Connections.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o conference

 public abstract void conference(Call otherCall) throws InvalidStateException, InvalidArgumentExcepti

Merges two Calls together, resulting in the union of the participants of both calls
being placed on a single Call. This method takes a Call as an argument, referred to
hereafter as the "second" Call. All of the participants from the second call are
moved to the Call on which this method is invoked.

The Conference Controller

In order for the conferencing feature to happen, there must be a common
participant to both telephone calls, as represented by a single Terminal and two
TerminalConnections, one on each of the two Calls. These two
TerminalConnections are known as the conference controllers. In the real−world,
one of the two telephone calls must be on hold with respect to the controlling
Terminal, and hence, the TerminalConnection on the second Call must be in
CallControlTerminalConnection.HELD The two conference controlling
TerminalConnections are merged into one as a result of this method.

Applications may control which TerminalConnection acts as the conference
controller via the CallControlCall.setConferenceController() method.

The CallControlCall.getConferenceController() method returns the
current conference controller, null if there is none. If no conference controller is
set, the implementation chooses a suitable TerminalConnection when the
conferencing feature is invoked.

The Telephone Call Argument

All of the participants from the second telephone Call, passed as the argument to
this method, are "moved" to the Call on which this method was invoked. That is,
new Connections and TerminalConnections are created on this Call which those
found on the second Call. Those Connections and TerminalConnections on the
second call are removed from the Call and the Call moves into the Call.INVALID
state.

The conference controller TerminalConnections are merged into one on this Call.
That is, the existing TerminalConnection controller on this Call is left unchanged,
while the TerminalConnection on the second Call is removed from that Call.

Other Shared Participants

There may exist Address and Terminals which are part of both telephone call in
addition to the designated conference controller. In these instances, those
participants which are shared between both Calls are merged into one. That is, the
Connections and TerminalConnection on this Call with the same Address and
Terminals, respectively, as the second Call are left unchanged. The corresponding
Connections and TerminalConnections on the second Call are removed from that
Call.

Pre−conditions:
1. Let tc1 = conference controller on this call
2. Let connection1 = tc1.getConnections()
3. Let terminal1 = tc1.getTerminal()
4. Let tc2 = conference controller on second call (otherCall argument)
5. Let terminal2 = tc2.getTerminal()
6. (call.getProvider()).getState() == Provider.IN_SERVICE
7. call.getState() == Call.ACTIVE
8. tc1 element of call.getConnections().getTerminalConnections()
9. tc1 element of connection1.getTerminalConnections()

10. tc2.getConnections().getCall() == otherCall
11. terminal1 == terminal2
12. tc1 element of terminal1.getTerminalConnections()
13. tc2 element of terminal2.getTerminalConnections()
14. tc1.getCallControlState() == CallControlTerminalConnection.TALKING
15. tc2.getCallControlState() == CallControlTerminalConnection.HELD

Post−conditions: REDO!
1. (call.getProvider()).getState() == Provider.IN_SERVICE
2. call.getState() == CallACTIVE

3. new(c) element of call.getConnections()
4. new(c).getState() == c.getState()
5. new(tc) element of (call.getConnections()).getTerminalConnections()
6. new(tc).getState() == tc.getState()
7. c.getState() == DISCONNECTED
8. tc.getState() == DROPPED
9. otherCall.getState() == INVALID

Parameters:
otherCall − The second Call which to merge with this Call object.

Throws: InvalidArgumentException
The Call object provided is not valid for the conference

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o transfer

 public abstract void transfer(Call otherCall) throws InvalidStateException, InvalidArgumentException

This method moves all participants from one telephone call to another, with the
exception of a selected common participant. This method takes a Call as an
argument, referred to hereafter as the "second" Call. All of the participants, with
the exception for the selected common participant, from the second call are moved
to the Call on which this method is invoked.

The Transfer Controller

In order for the transfer feature to happen, there must be a participant which acts
as the transfer controller. The transfer controller is a TerminalConnection around
which the transfer is placed. This transfer controller must be present on each of
the two telephone calls and share a common Terminal. The transfer controller
participant is no longer part of any Call once this transfer feature is complete. The
transfer controllers on each of the two Calls must be in either of the
CallControlTerminalConnection.TALKING or
CallControlTerminalConnection.HELD state.

Applications may control which TerminalConnection acts as the transfer controller
via the CallControlCall.setTransferController() method. The
CallControlCall.getTransferController() method returns the current
transfer controller, null if there is none. If no transfer controller is set, the

implementation chooses a suitable TerminalConnection when the transfer feature
is invoked.

The Telephone Call Argument

All of the participants from the second telephone Call, passed as the argument to
this method, are "moved" to the Call on which this method was invoked, which the
exception of the transfer controller. That is, new Connections and
TerminalConnections are created on this Call which those found on the second
Call. Those Connections and TerminalConnections on the second call are removed
from the Call and the Call moves into the Call.INVALID state.

The transfer controller TerminalConnections are dropped from both Calls. They
both move into the CallControlTerminalConnection.DROPPED state

Other Shared Participants

There may exist Address and Terminals which are part of both telephone call in
addition to the designated transfer controller. In these instances, those
participants which are shared between both Calls are merged into one. That is, the
Connections and TerminalConnection on this Call with the same Address and
Terminals, respectively, as the second Call are left unchanged. The corresponding
Connections and TerminalConnections on the second Call are removed from that
Call.

Pre−conditions: REDO!
1. (call.getProvider()).getState() == IN_SERVICE
2. call.getState() == ACTIVE
3. otherCall.getState() == ACTIVE
4. termconn element of (call.getConnections()).getTerminalConnections()
5. termconn.getState() == TALKING or HELD
6. scndtermconn element of

(otherCall.getConnections()).getTerminalConnections()
7. scndtermconn.getState() == TALKING or HELD

Post−conditions: REDO!
1. (call.getProvider()).getState() == IN_SERVICE
2. call.getState() == ACTIVE
3. termconn.getState() == DROPPED
4. (termconn.getConnection()).getTerminalConnections is of length 1, then

(termconn.getConnection()).getState() == DISCONNECTED
5. scndtermconn.getState() == DROPPED
6. For all connections in otherCall.getConnections(),call.getConnections() has

an element in the same state and the same Address reference.
7. For all terminalconnection in

(otherCall.getConnections()).getTerminalConnections(), this call object has
the same number of TerminalConnections minus scndtermconn in the same
state and associated with the same Connection and Terminal.

8. For all connections in otherCall.getConnections(), connections.getState() ==
DISCONNECTED

9. For all terminalconnections in connections.getTerminalConnections(),
terminalconnections.getState() == DROPPED

10. otherCall.getState() == INVALID

Parameters:
otherCall − The other Call which to transfer to this Call.

Throws: InvalidArgumentException
The TerminalConnection controlling the transfer is not valid or does not
exists or the other telephone call is not valid.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: InvalidPartyException
The other telephone call given as the argument is not a valid telephone call
to conference with.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o transfer

 public abstract Connection transfer(String address) throws InvalidArgumentException, InvalidStateExc

This overloaded version of this method transfer all partipants currently on this
telephone Call to another telephone address. This is often called a "single−step
transfer" before the transfer feature places another telephone call and performs
the transfer at one time. The telephone address string given as the argument to
this method must be valid and complete.

The Transfer Controller

The transfer controller for this version of this method represents the participant
on this Call around which the transfer is taking place and who drops of the
telephone call once the transfer feature is invoked. The transfer controller is a
TerminalConnection which must be in the
CallControlTerminalConnection.TALKING state.

Applications may control which TerminalConnection acts as the transfer controller
via the CallControlCall.setTransferController() method. The
CallControlCall.getTransferController() method returns the current
transfer controller, null if there is none. If no transfer controller is set, the
implementation chooses a suitable TerminalConnection when the transfer feature

is invoked.

When the transfer feature is invoked, the transfer controller moves into the
CallControlTerminalConnection.DROPPED state. If it is the only
TerminalConnection associated with its Connection, then its Connection moves
into the CallControlConnection.DISCONNECTED state as well.

The New Connection

This create creates and returned a new Connection representing the party to
which the telephone call was transfered. Note that this Connections may be null
in the case the call has been transferred outside of the Provider’s domain and can
no longer be tracked. This Connections must at least be in the
CallControlConnection.IDLE state. Its state may have progressed beyond
"idle" before this method returns, and should be reflected by an event. This new
Connection will progress as any normal destination Connection on a telephone call.
Typical scenarios for this Connection are described by the Call.connect()
method.

Pre−conditions:
1. Let tc be the transfer controller
2. (this.getProvider()).getState() == Provider.IN_SERVICE
3. this.getState() == Call.ACTIVE
4. tc element of (this.getConnections()).getTerminalConnections()
5. tc.getCallControlState() == CallControlTerminalConnection.TALKING

Post−conditions:
1. Let newconnection be the Connection created and returned
2. Let tc be the transfer controller
3. Let connection == tc.getConnection()
4. (this.getProvider()).getState() == Provider.IN_SERVICE
5. this.getState() == Call.ACTIVE
6. tc.getCallControlState() == CallControlTerminalConnection.DROPPED
7. If connection.getTerminalConnections().length == 1, then

connection.getCallControlState() ==
CallControlConnection.DISCONNECTED

8. newconnection is an element of this.getConnections(), if not null.
9. newconnection.getCallControlState() at least CallControlConnection.IDLE, if

not null.

Parameters:
address − The destination address where the Call is being transferred.

Returns:
The new Connection associated with the destination or null.

Throws: InvalidArgumentException
The TerminalConnection provided as controlling the transfer is not valid or
part of this telephone Call.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for

this method.
Throws: InvalidPartyException

The new party to transfer to is invalid.
Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource necessary for the successful invocation of this method is
not available.

o setConferenceController

 public abstract void setConferenceController(TerminalConnection tc) throws InvalidArgumentException,

Sets the TerminalConnection which acts as the conference controller for the Call.
The conference controller represents the participant in the telephone around which
a conference takes place.

Typically, when two Calls are conferenced together, a single participant is part of
both telephone calls and around which the conference takes place. This participant
is represented by a TerminalConnection on each Call, each of which shared the
same associated Terminal object.

If the designated TerminalConnection is not part of this telephone call, an
exception is thrown. If the TerminalConnection leaves the telephone call in the
future, the implementation resets the conference controller to null .

Pre−conditions:
1. Let connections[] = this.getConnections()
2. (this.getProvider()).getState() == Provider.IN_SERVICE
3. this.getState() == Call.ACTIVE
4. tc element of connections[i].getTerminalConnections() for all i
5. tc.getCallControlState() != CallControlTerminalConnection.DROPPED

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Call.ACTIVE
3. Let connections[] = this.getConnections()
4. tc element of connections[i].getTerminalConnections() for all i
5. tc.getCallControlState() != CallControlTerminalConnection.DROPPED
6. tc == this.getConferenceController()

Parameters:
tc − The TerminalConnection to use as the conference controller

Throws: InvalidArgumentException
The TerminalConnection object provided is not associated with this Call
object.

Throws: InvalidStateException

The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o getConferenceController

 public abstract TerminalConnection getConferenceController()

Returns the TerminalConnection which currently acts as the conference controller.
The conference controller represents the participant in the telephone around which
a conference takes place.

When a Call is initially created, the conference controller is set to null . This
method returns non−null only if the application has previously set the conference
controller. If the current conference controller leaves the telephone call, the
conference controller is reset to null .

Pre−conditions:
1. (this.getProvider()).getState() == ProviderIN_SERVICE
2. this.getState() != Call.INVALID

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. call.getState() != Call.INVALID
3. Let tc = this.getConferenceController()
4. Let connections[] = this.getConnections()
5. tc element of connections[i].getTerminalConnections() for all i, if tc is not

null
6. tc.getCallControlState() != CallControlTerminalConnection.DROPPED, if tc

is not null

Returns:
The current TerminalConnection acting as the conference controller, null if
one is not set.

o setTransferController

 public abstract void setTransferController(TerminalConnection tc) throws InvalidArgumentException, I

Sets the TerminalConnection which acts as the transfer controller for the Call. The
transfer controller represents the participant in the telephone around which a
transfer takes place.

If the designated TerminalConnection is not part of this telephone call, an
exception is thrown. If the TerminalConnection leaves the telephone call in the

future, the implementation resets the transfer controller to null .

Pre−conditions:
1. Let connections[] = this.getConnections()
2. (this.getProvider()).getState() == Provider.IN_SERVICE
3. this.getState() == Call.ACTIVE
4. tc element of connections[i].getTerminalConnections() for all i
5. tc.getCallControlState() != CallControlTerminalConnection.DROPPED

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Call.ACTIVE
3. Let connections[] = this.getConnections()
4. tc element of connections[i].getTerminalConnections() for all i
5. tc.getCallControlState() != CallControlTerminalConnection.DROPPED
6. tc == this.getTransferController()

Parameters:
tc − The TerminalConnection to use as the transfer controller

Throws: InvalidArgumentException
The TerminalConnection object provided is not associated with this Call
object.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o getTransferController

 public abstract TerminalConnection getTransferController()

Returns the TerminalConnection which currently acts as the transfer controller.
The transfer controller represents the participant in the telephone around which a
transfer takes place.

When a Call is initially created, the transfer controller is set to null . This method
returns non−null only if the application has previously set the transfer controller.
If the current transfer controller leaves the telephone call, the transfer controller
is reset to null .

Pre−conditions:
1. (this.getProvider()).getState() == ProviderIN_SERVICE
2. this.getState() != Call.INVALID

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE

2. call.getState() != Call.INVALID
3. Let tc = this.getTransferController()
4. Let connections[] = this.getConnections()
5. tc element of connections[i].getTerminalConnections() for all i, if tc is not

null
6. tc.getCallControlState() != CallControlTerminalConnection.DROPPED, if tc

is not null

Returns:
The current TerminalConnection acting as the transfer controller, null if one
is not set.

o setConferenceEnable

 public abstract void setConferenceEnable(boolean enable) throws InvalidArgumentException, InvalidSta

Controls whether the Call is permitted or able to perform the conferencing feature.
The boolean argument provided indicates whether conferencing should be turned
on (true) or off (false). This method throws an exception if the boolean argument is
true and the implementation does not support the conferencing feature. This
method must be invoked when the Call is in the Call.IDLE state.

Pre−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == CallIDLE

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Call.IDLE
3. enable = this.getConferenceEnable();

Parameters:
enable − True turns conferencing on, false turns conferencing off.

Throws: InvalidArgumentException
The Connection object provided is not associated with this Address object.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

o getConferenceEnable

 public abstract boolean getConferenceEnable()

Return true if conferencing is enabled, false otherwise. Applications may use this
method initially to obtain the default value set by the implementation and may

attempt to change this value using the
CallControlCall.setConferenceEnable() method.

Returns:
True if conferencing is enabled, false otherwise.

o setTransferEnable

 public abstract void setTransferEnable(boolean enable) throws InvalidArgumentException, InvalidState

Controls whether the Call is permitted or able to perform the transferring feature.
The boolean argument provided indicates whether transferring should be turned
on (true) or off (false). This method throws an exception if the boolean argument is
true and the implementation does not support the transferring feature. This
method must be invoked when the Call is in the Call.IDLE state.

Pre−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == CallIDLE

Post−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. this.getState() == Call.IDLE
3. enable = this.getConferenceEnable();

Parameters:
enable − True turns transferring on, false turns transferring off.

Throws: InvalidArgumentException
The Connection object provided is not associated with this Address object.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

o getTransferEnable

 public abstract boolean getTransferEnable()

Return true if transferring is enabled, false otherwise. Applications may use this
method initially to obtain the default value set by the implementation and may
attempt to change this value using the
CallControlCall.setTransferEnable() method.

Returns:
True if transferring is enabled, false otherwise.

o consult

 public abstract Connection[] consult(TerminalConnection termconn,
 String address) throws InvalidStateException, InvalidArgumentEx

Creates a consultation call associated with this Call object. A consultation call is a
new telephone call which is associated with a particular existing Call and often
created for a particular purpose. For example, the consultation call may be used
simply to "consult" with another party or to conference or transfer with its
associated Call.

The object Begins a consultation Call with an ACTIVE Call. This Call must be in
the IDLE state, created by Provider.createCall(). A consultation Call is a new
telephone Call placed to a telephony number address and is associated with the
ACTIVE Call implied by the specified TerminalConnection parameter. The
purpose of creating a consultation call is to either simply consult with another
party or to eventually either conference in or transfer to the existing party. The
creation of the new Call behaves in a similar manner as Call.connect(), however
the consult() method establishes a special association between the new Call and
the ACTIVE Call. The consult() method exists because it is often a switch feature
and establishes the special association between the current telephone Call and the
consultation Call. The telephone number address provided must be valid and
complete.

As mentioned above, the purpose of creating a consulation Call is often to perform
a transfer() or conference() on these two Calls. Applications must specify their
purpose by first telling the switch whether they intend to perform a conference() or
transfer() or both using the setConferenceEnable() and setTransferEnable()
methods on this object.

The originator of this new consultation call is given by a TerminalConnection
which must be part of an ACTIVE Call object and must be in the TALKING state.
The destination address for this new call is given by the second argument.
Therefore, consult() is similar to the Call.connect() method in that the originating
Terminal is termconn.getTerminal() and the origination Address is
(termconn.getConnection()).getAddress().

This method places termconn in the HELD state and makes a call using "this"
Call. The Call will end up having two connections, one each for the originating side
and the destination side. Both of these Connections will be in the IDLE state.
These Connections are returned by the consult() method, analogous to
Call.connect(). The Provider must also be IN_SERVICE. The pre−conditions of this
method are given below:

1. call.getProvider().getState() == IN_SERVICE
2. call.getState() == IDLE
3. termconn.getState() == TALKING
4. termconn.getCall().getState() == ACTIVE

The post−conditions for this method are as follows.

1. call.getProvider().getState() == IN_SERVICE
2. call.getState() == ACTIVE
3. termconn.getState() == HELD
4. termconn.getCall().getState() == ACTIVE
5. Let c = Call.getConnections() such that c.length == 2
6. c[0].getState == IDLE
7. c[1].getState == IDLE

An application can expect that this Call object will exhibit the same Connection
and TerminalConnection state transition scenarios as Calls placed using
Call.connect() and as described in the documentation for that method.

Parameters:
termconn − The controlling TerminalConnection for the consultation call.
address − The destination telephone number address.

Returns:
The Connections in the Call object.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
unavailable.

Throws: PrivilegeViolationException
The application does not have the proper authority to place a consultation
telephone call.

Throws: InvalidArgumentException
An argument provided is not valid either by not providing enough
information for consult() or is inconsistent with another argument.

Throws: InvalidStateException
Some object required by this method is not is a valid state as designated by
the pre−conditions for this method.

Throws: MethodNotSupportedException
The implementation does not support this method.

o consult

 public abstract Connection consult(TerminalConnection termconn) throws InvalidStateException, Invali

This overloaded version of consult() is similar to the other version of consult,
except it does not take a destination string address as an argument. Instead, it will
create one Connection in the Call in the CallControlConnection.INITIATED state.
Applications may use the CallControlConnection.addToAddress() method to dial
the destination digits.

This method places termconn in the HELD state and takes the Call off−hook.

Pre−conditions:
1. call.getProvider().getState() == IN_SERVICE

2. call.getState() == IDLE
3. termconn.getState() == TALKING
4. termconn.getCall().getState() == ACTIVE

Post−conditions:
1. call.getProvider().getState() == IN_SERVICE
2. call.getState() == ACTIVE
3. termconn.getState() == HELD
4. termconn.getCall().getState() == ACTIVE
5. Let c = Call.getConnections() such that c.length == 1
6. c[0].getState == INITIATED

An application can expect that the Call object will exhibit the same Connection
and TerminalConnection state transition scenarios as Calls placed using
CallControlCall.offHook() and as described in the documentation for that method.

Parameters:
termconn − The controlling TerminalConnection for the consultation call.

Returns:
The INITIATED Connection in the Call object.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
unavailable.

Throws: PrivilegeViolationException
The application does not have the proper authority to place a consultation
telephone call.

Throws: InvalidArgumentException
An argument provided is not valid either by not providing enough
information for consult() or is inconsistent with another argument.

Throws: InvalidStateException
Some object required by this method is not is a valid state as designated by
the pre−conditions for this method.

Throws: MethodNotSupportedException
The implementation does not support this method.

Interface
javax.telephony.callcontrol.CallControlCallObserver

public interface CallControlCallObserver
extends CallObserver

The CallControlCallObserver interface reports all events for the CallControlCall
interface. It also reports events for the CallControlConnection and the
CallControlTerminalConnection interfaces. Applications implement this interface
to receive these events. All events are reported via the
CallObserver.callChangedEvent() method. This interface, therefore, allows
applications to signal to the implementation that they are interested in
CallControlCall−related events. This interface defines no additional methods.

All events must extend the CallCtlCallEv event interface, which in turn, extends the
core’s CallEv interface.

The following are those events reported on this interface. CallCtlConnOfferedEv
Indicates the Connection has moved into the CallControlConnection.OFFERING
state. CallCtlConnQueuedEv Indicates the Connection has moved into the
CallControlConnection.QUEUED state. CallCtlConnAlertingEv Indicates the
Connection has moved into the CallControlConnection.ALERTING state.
CallCtlConnInitiatedEv Indicates the Connection has moved into the
CallControlConnection.INITIATED state. CallCtlConnDialingEv Indicates the
Connection has moved into the CallControlConnection.DIALING state.
CallCtlConnNetworkReachedEv Indicates the Connection has moved into the
CallControlConnection.NETWORK_REACHED state.
CallCtlConnNetworkAlertingEv Indicates the Connection has moved into the
CallControlConnection.NETWORK_ALERTING state. CallCtlConnEstablishedEv
Indicates the Connection has moved into the CallControlConnection.ESTABLISHED
state. CallCtlConnDisconnectedEv Indicates the Connection has moved into the
CallControlConnection.DISCONNECTED state. CallCtlConnFailedEv Indicates
the Connection has moved into the CallControlConnection.FAILED state.
CallCtlConnUnknownEv Indicates the Connection has moved into the
CallControlConnection.UNKNOWN state. CallCtlTermConnBridgedEv Indicates
the TerminalConnection has moved into the
CallControlTerminalConnection.BRIDGED state. CallCtlTermConnDroppedEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.DROPPED state. CallCtlTermConnHeldEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.HELD state. CallCtlTermConnInUseEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.INUSE state. CallCtlTermConnRingingEv

Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.RINGING state. CallCtlTermConnTalkingEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.TALKING state. CallCtlTermConnUnknownEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.UNKNOWN state.

See Also:
CallObserver, CallEv, Connection, TerminalConnection, CallCtlCallEv,
CallCtlConnEv, CallCtlConnAlertingEv, CallCtlConnDialingEv,
CallCtlConnDisconnectedEv, CallCtlConnEstablishedEv, CallCtlConnFailedEv,
CallCtlConnInitiatedEv, CallCtlConnNetworkAlertingEv,
CallCtlConnNetworkReachedEv, CallCtlConnOfferedEv, CallCtlConnQueuedEv,
CallCtlConnUnknownEv, CallCtlTermConnEv, CallCtlTermConnRingingEv,
CallCtlTermConnTalkingEv, CallCtlTermConnHeldEv,
CallCtlTermConnBridgedEv, CallCtlTermConnInUseEv,
CallCtlTermConnDroppedEv, CallCtlTermConnUnknownEv

Interface javax.telephony.callcontrol.CallControlConnection

public interface CallControlConnection
extends Connection

Introduction

The CallControlConnection interface extends the core Connection interface and
provides additional functionality and greater detail about the Connection’s state.
Applications may query a Connection object using the instanceof operator to see whether
it supports this interface.

CallControlConnection State

This interface defines a state for the Connection which provides greater detail beyond
the state defined in the core Connection interface. The state, as defined by this
interface is related to the state defined in the core package in certain specific ways, as
defined below. Applications may obtain the state of the Connection object as defined by
this interface via the getCallControlState() method defined on this interface. This
method returns one of the integer constants defined in this interface.

Below is a description of each CallControlConnection state in real−world terms.
These real−world descriptions have no bearing on the specifications of methods, they
only serve to provide a more intuitive understanding of what is going on. Several
methods in this specification state pre−conditions based upon the state of the
Connection. Some of these state are identical to those defined in the core package.

CallControlConnection.IDLE This state is defined similarly here as it is in the core
package. It is the initial call control package state for all new Connection objects which
implement the CallControlConnection interface. Connection objects typically do not
stay in this state for long, quickly transitioning to another state.
CallControlConnection.OFFERING This state indicates than an incoming call is
being offered to the Address associated with the Connection object. Typically,
applications must either accept or reject this offered call before the called party is
alerted to the incoming telephone call. CallControlConnection.QUEUED This state
indicates that a Connection is queued at the particular Address associated with the
Connection object. For example, incoming telephone calls may queue at an Address if the
Address is busy and the feature is available on the telephone hardware.
CallControlConnection.NETWORK_REACHED This state indicates that an outgoing
telephone call has reached the network. Applications may not receive further events
about this leg of the telephone call, depending upon the ability of the telephone network
to provide additional progress information. Applications must decide whether to treat

this as a connected telephone call. CallControlConnection.NETWORK_ALERTING This
state indicates that an outgoing telephone call is alerting at the destination end, which
was previously only known to have reached the network. Typically, Connections
transition into this state from the CallControlConnection.NETWORK_REACHED state.
This state results from additional progress information being sent from the telephone
network. CallControlConnection.ALERTING This state has the same definition as in
the core package. It implies that the Address is being notified of an incoming call.
CallControlConnection.INITIATED This state indicates the originating end of a
telephone call has begun the process of placing a telephone call, but the dialing of the
destination telephone address has not yet begun. Typically, a telephone associated with
the Address has gone "off−hook". CallControlConnection.DIALING This state
indicates the originating end of a telephone call has being the process of dialing a
destination telephone address, but has not yet completed.
CallControlConnection.ESTABLISHED This state is similar to that of
Connection.CONNECTED . It indicates that the endpoint has reached its final, active
state in the telephone call. CallControlConnection.DISCONNECTED This state has
the same definition as in the core package. It implies the Connection object is no longer
part of the telephone call. CallControlConnection.FAILED This state has the same
definition as in the core package. It indicates that a particular leg of a telephone call has
failed for some reason, perhaps because the party was busy.
CallControlConnection.UNKNOWN This state has the same definition as in the core
package. It indicates the implementation is unable to determine the current call control
package state of the Connection object. Typically, methods are invalid on this object
when it is in this state.

State Transitions

Similar to the core package Connection state transition diagram, the call control package
state of the Connection object as defined by this interface must transition according to
particular rules. These rules are illustrated in the finite state diagram below. The
implementation must guarantee that the call control package Connection object state
must abide by this transition diagram.

Note there is a general left−to−right progression of the state transitions. The asterisk
next to a state transition, as in the core package, implies a transition to/from another
other state, except where noted.

[IMAGE]

Core vs. CallControl Package States

There is a strong relationship between the call control package states and the core
package states defined for the Connection. If an implementation supports the call control
package, it must ensure this relationship is properly maintained.

Since the states defined in the CallControlConnection interface provide more details
to the states defined in the Connection interface, each state defined in the core package

corresponds to a state defined in the call control package. Or conversely, each call control
package Connection state corresponds to exactly one core package Connection state. This
arrangement permits applications to view either the core package Connection state
and/or the call control package Connection state and still see a consistent view.

The following table outlines the relationship between the core package Connection states
and the call control package Connection states.

If the call control package state is...then the core package state must be...
CallControlConnection.IDLEConnection.IDLE
CallControlConnection.QUEUEDConnection.INPROGRESS
CallControlConnection.OFFERINGConnection.INPROGRESS
CallControlConnection.ALERTINGConnection.ALERTING
CallControlConnection.INITIATEDConnection.CONNECTED
CallControlConnection.DIALINGConnection.CONNECTED
CallControlConnection.NETWORK_REACHEDConnection.CONNECTED
CallControlConnection.NETWORK_ALERTINGConnection.CONNECTED
CallControlConnection.ESTABLISHEDConnection.CONNECTED
CallControlConnection.DISCONNECTEDConnection.DISCONNECTED
CallControlConnection.FAILEDConnection.FAILED
CallControlConnection.UNKNOWNConnection.UNKNOWN

Observers and Events

All events pertaining to the CallControlConnection interface are reported via the
CallObserver.callChangedEvent() method. The application observer object must
also implement the CallControlCallObserver interface to express interest in the call
control package events. Applications receive Connection−related events in the call
control package when the call control state changes.

The following Connection−related events are defined in the call control package. Each of
these events extends the CallCtlConnEv interface (which, in turn, extends the
CallCtlCallEv interface).

CallCtlConnOfferedEv Indicates the Connection has moved into the
CallControlConnection.OFFERING state. CallCtlConnQueuedEv Indicates the
Connection has moved into the CallControlConnection.QUEUED state.
CallCtlConnAlertingEv Indicates the Connection has moved into the
CallControlConnection.ALERTING state. CallCtlConnInitiatedEv Indicates the
Connection has moved into the CallControlConnection.INITIATED state.
CallCtlConnDialingEv Indicates the Connection has moved into the
CallControlConnection.DIALING state. CallCtlConnNetworkReachedEv
Indicates the Connection has moved into the
CallControlConnection.NETWORK_REACHED state.
CallCtlConnNetworkAlertingEv Indicates the Connection has moved into the
CallControlConnection.NETWORK_ALERTING state. CallCtlConnEstablishedEv
Indicates the Connection has moved into the CallControlConnection.ESTABLISHED
state. CallCtlConnDisconnectedEv Indicates the Connection has moved into the

CallControlConnection.DISCONNECTED state. CallCtlConnFailedEv Indicates
the Connection has moved into the CallControlConnection.FAILED state.
CallCtlConnUnknownEv Indicates the Connection has moved into the
CallControlConnection.UNKNOWN state.

See Also:
Connection, CallObserver, CallControlCallObserver, CallCtlCallEv,
CallCtlConnEv, CallCtlConnAlertingEv, CallCtlConnDialingEv,
CallCtlConnDisconnectedEv, CallCtlConnEstablishedEv, CallCtlConnFailedEv,
CallCtlConnInitiatedEv, CallCtlConnNetworkAlertingEv,
CallCtlConnNetworkReachedEv, CallCtlConnOfferedEv, CallCtlConnQueuedEv,
CallCtlConnUnknownEv

Variable Index

o ALERTING
The CallControlConnection.ALERTING state has the same definition as in the
core package.

o DIALING
The CallControlConnection.DIALING state indicates the originating end of a
telephone call has being the process of dialing a destination telephone address, but
has not yet completed.

o DISCONNECTED
The CallControlConnection.DISCONNECTED state has the same definition as
in the core package.

o ESTABLISHED
The CallControlConnection.ESTABLISHED state is similar to that of
Connection.CONNECTED .

o FAILED
The CallControlConnection.FAILED state has the same definition as in the
core package.

o IDLE
The CallControlConnection.IDLE state is defined similarly here as it is in the
core package.

o INITIATED
The CallControlConnection.INITIATED state indicates the originating end of
a telephone call has begun the process of placing a telephone call, but the dialing of
the destination telephone address has not yet begun.

o NETWORK_ALERTING
The CallControlConnection.NETWORK_ALERTING state indicates that an
outgoing telephone call is alerting at the destination end, which was previously
only known to have reached the network.

o NETWORK_REACHED
The CallControlConnection.NETWORK_REACHED state indicates that an
outgoing telephone call has reached the network.

o OFFERING

The CallControlConnection.OFFERING state indicates than an incoming call is
being offered to the Address associated with the Connection object.

o QUEUED
The CallControlConnection.QUEUED state indicates that a Connection is
queued at the particular Address associated with the Connection object.

o UNKNOWN
The CallControlConnection.UNKNOWN state has the same definition as in the
core package.

Method Index

o accept()
Accepts an incoming telephone call to an Address.

o addToAddress(String)
Appends additional address information onto an existing Connection.

o getCallControlState()
Returns the current call control state of the Connection.

o park(String)
Parks a Connection at another telephone address.

o redirect(String)
Redirects an incoming telephone call to an Address to another telephone address.

o reject()
Rejects an incoming telephone call to an Address.

Variables

o IDLE

 public static final int IDLE

The CallControlConnection.IDLE state is defined similarly here as it is in the
core package. It is the initial call control package state for all new Connection
objects which implement the CallControlConnection interface. Connection
objects typically do not stay in this state for long, quickly transitioning to another
state.

o OFFERING

 public static final int OFFERING

The CallControlConnection.OFFERING state indicates than an incoming call is
being offered to the Address associated with the Connection object. Typically,
applications must either accept or reject this offered call before the called party is
alerted to the incoming telephone call.

o QUEUED

 public static final int QUEUED

The CallControlConnection.QUEUED state indicates that a Connection is
queued at the particular Address associated with the Connection object. For
example, incoming telephone calls may queue at an Address if the Address is busy
and the feature is available on the telephone hardware.

o ALERTING

 public static final int ALERTING

The CallControlConnection.ALERTING state has the same definition as in the
core package. It implies that the Address is being notified of an incoming call.

o INITIATED

 public static final int INITIATED

The CallControlConnection.INITIATED state indicates the originating end of
a telephone call has begun the process of placing a telephone call, but the dialing of
the destination telephone address has not yet begun. Typically, a telephone
associated with the Address has gone "off−hook".

o DIALING

 public static final int DIALING

The CallControlConnection.DIALING state indicates the originating end of a
telephone call has being the process of dialing a destination telephone address, but
has not yet completed.

o NETWORK_REACHED

 public static final int NETWORK_REACHED

The CallControlConnection.NETWORK_REACHED state indicates that an
outgoing telephone call has reached the network. Applications may not receive
further events about this leg of the telephone call, depending upon the ability of
the telephone network to provide additional progress information. Applications
must decide whether to treat this as a connected telephone call.

o NETWORK_ALERTING

 public static final int NETWORK_ALERTING

The CallControlConnection.NETWORK_ALERTING state indicates that an
outgoing telephone call is alerting at the destination end, which was previously
only known to have reached the network. Typically, Connections transition into
this state from the CallControlConnection.NETWORK_REACHED state. This

state results from additional progress information being sent from the telephone
network.

o ESTABLISHED

 public static final int ESTABLISHED

The CallControlConnection.ESTABLISHED state is similar to that of
Connection.CONNECTED . It indicates that the endpoint has reached its final,
active state in the telephone call.

o DISCONNECTED

 public static final int DISCONNECTED

The CallControlConnection.DISCONNECTED state has the same definition as
in the core package. It implies the Connection object is no longer part of the
telephone call.

o FAILED

 public static final int FAILED

The CallControlConnection.FAILED state has the same definition as in the
core package. It indicates that a particular leg of a telephone call has failed for
some reason, perhaps because the party was busy.

o UNKNOWN

 public static final int UNKNOWN

The CallControlConnection.UNKNOWN state has the same definition as in the
core package. It indicates the implementation is unable to determine the current
call control package state of the Connection object. Typically, methods are invalid
on this object when it is in this state.

Methods

o getCallControlState

 public abstract int getCallControlState()

Returns the current call control state of the Connection. The return value will be
one of states defined above.

Returns:
The current call control state of the Connection.

o accept

 public abstract void accept() throws InvalidStateException, MethodNotSupportedException, PrivilegeVi

Accepts an incoming telephone call to an Address. Telephone calls into an Address
are first offered to that address for acceptance before the standard notion of
"alerting" takes place. This method is valid on a Connection in the
CallControlConnection.OFFERING state. If successful, this method moves the
Connection into the call control state of CallControlConnection.ALERTING .
This method waits until the telephone call has been accepted or an error has
occurred.

Pre−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.OFFERING

Post−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.ALERTING
3. CallCtlConnAlertingEv is delivered to the application

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o reject

 public abstract void reject() throws InvalidStateException, MethodNotSupportedException, PrivilegeVi

Rejects an incoming telephone call to an Address. Telephone calls into an Address
are first offered to that address for acceptance before the standard notion of
"alerting" takes place. This method is valid on a Connection in the
CallControlConnection.OFFERING state. If successful, this method moves the
Connection into the call control state of
CallControlConnection.DISCONNECTED . This method waits until the
telephone call has been rejected or an error has occurred.

Pre−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.OFFERING

Post−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.DISCONNECTED

3. CallCtlConnDisconnectedEv is delivered to the application

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o redirect

 public abstract Connection redirect(String destinationAddress) throws InvalidStateException, Invalid

Redirects an incoming telephone call to an Address to another telephone address.
This method is very similar to the transfer feature, however applications may
invoke this method before first answering the telephone call. This method redirects
the telephone call to another telephone address string provided as the argument to
this method. This telephone address string must be valid and complete.

The call control state of this Connection must either be the
CallControlConnection.OFFERING or the
CallControlConnection.ALERTING state. If successful, this method moves the
Connection to the CallControlConnection.DISCONNECTED state. Additionally,
any TerminalConnections associated with this Connection will move to the
CallControlTerminalConnection.DROPPED state.

A new Connection is created corresponding to the new destination leg of the
telephone call. This new Connection is returned by this method and must at least
be in the CallControlConnection.IDLE state. This Connection behaves
similarly to the destination Connection as described in Call.connect() and
undergoes similar possible state changes and scenarios.

Pre−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.OFFERING or

CallControlConnection.ALERTING
3. destinationAddress must be a valid and complete telephone address.

Post−conditions:
1. newconnection is the new Connection created and returned
2. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
3. this.getCallControlState() == CallControlConnection.DISCONNECTED.
4. newconnection.getCallControlState() at least CallControlConnection.IDLE
5. Let TerminalConnection tc[] = this.getTerminalConnections()
6. tc[i].getCallControlState() == CallControlTerminalConnection.DROPPED,

for all i.
7. CallCtlConnDisconnected is delivered to the application
8. CallCtlTermConnDroppedEv is deliver to the application for all

TerminalConnections associated with this Connection
9. ConnCreatedEv is delivered to the application.

Parameters:
desintationAddress − The Connection is rerouted to this address

Returns:
The new Connection associated with the Address object of the new address.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: InvalidPartyException
The party to which this call is redirected is not valid.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o addToAddress

 public abstract void addToAddress(String additionalAddress) throws InvalidStateException, MethodNotS

Appends additional address information onto an existing Connection. This method
is used when part of a telephone address string has been dialed, and additional
addressing information is needed in order to complete the dialing process and
place the telephone call.

The call control package state of this Connection must either be
CallControlConnection.DIALING or CallControlConnection.INITIATED .
If successful, the Connection moves into one of two states. If the information
provided in this method completes the addressing information to place the
telephone call, as determined by the telephony hardware, this Connection moves
into the CallControlConnection.ESTABLISHED state and the telephone call is
placed. If additional addressing information is still required once this method
completes, the Connection moves into the CallControlConnection.DIALING
state if not already there.

Pre−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.DIALING or

CallControlConnection.INITIATED.
Post−conditions:

1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.DIALING if the

addressing information was not enough to complete
3. this.getCallControlState() == CallControlConnection.ESTABLISHED if the

addressing information was sufficient to complete
4. CallCtlConnDialingEv is delivered to the application if the addressing

information is not complete
5. CallCtlConnEstablishedEv is delivered to the application if the addressing

information is complete

Parameters:
additionalAddress − The additional addressing information.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

o park

 public abstract Connection park(String destinationAddress) throws InvalidStateException, MethodNotSu

Parks a Connection at another telephone address. This method is similar to the
transfer feature, except the Connection at the new destination Address is in a
special queued state. Parking a Connection at another telephone address drops the
Connection from the telephone call and creates a new Connection at the specified
destination address in the CallControlCOnnection.QUEUED state.

The new destination telephone address string is given as an argument to this
method and must be a valid and complete telephone address. The
CallControlTerminal.pickup() method permits applications to "unpark" the
new Connection. The new Connection is returned by this method.

The call control package state of the Connection must be
CallControlConnection.ESTABLISHED state. If this method is successful, this
Connection moves to the CallControlConnection.DISCONNECTED state. All of
its associated TerminalConnections move to the
CallControlTerminalConnection.DROPPED state.

Pre−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlConnection.ESTABLISHED
3. destinationAddress must be a valid and complete telephone address.

Post−conditions:
1. ((this.getCall()).getProvider()).getState() == Provider.IN_SERVICE

2. newconnection.getCallControlState() == CallControlConnection.QUEUED
3. this.getCallControlState() == CallControlConnection.DISCONNECTED
4. Let TerminalConnection tc[] = this.getTerminalConnections()
5. tc[i].getCallControlState() == CallControlTerminalConnection.DROPPED,

for all i
6. CallCtlConnQueuedEv is delivered to the application
7. CallCtlConnDisconnected is delivered to the application
8. CallCtlTermConnDroppedEv is deliver to the application for all

TerminalConnections associated with this Connection

Parameters:
destinationAddress − The telephone address string at which this connection
is to be parked.

Returns:
The new Connection which is parked at the new address.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: InvalidPartyException
The party to which to party the Connection is invalid.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

Interface javax.telephony.callcontrol.CallControlTerminal

public interface CallControlTerminal
extends Terminal

Introduction

The CallControlTerminal interface extends the core Terminal interface. It provides
additional methods which perform more advanced features on a per−terminal basis.
Applications may query a Terminal object using the instanceof operator to see whether it
supports this interface.

Do Not Disturb

The call control package defines an additional attribute associated with Terminals: the
do not disturb property. The do not disturb attribute indicates to the telephony
hardware that this Terminal does not want to be bothered with incoming telephone calls.
That is, if this feature is activate, the underlying telephone hardware will not alert this
terminal to incoming telephone calls. Applications use the
CallControlTerminal.setDoNotDisturb() method to activate or deactivate this
feature and the CallControlTerminal.getDoNotDisturb() method to return the
current state of this attribute.

Note that the CallControlAddress interface also carries the do not disturb attribute.
The attributes associated with each are maintained independently. [XXX MUST
CLARIFY]

Picking Up Telephone Calls

Observers and Events

Applications receive events related to this interface via the JTAPI core’s
TerminalObserver.terminalChangedEvent() . However, applications must
implement the CallControlTerminalObserver to signal to the implementation that
it also wants call control package events for the Terminal. The
CallControlTerminalObserver contains no additional methods.

The following events are delivered to the application which are associated with this
interface:

CallCtlTermDoNotDisturbEv Indicates the Do Not Disturb characteristics of this

Terminal has changed.

See Also:
CallControlAddress, CallControlTerminalObserver, CallCtlTermDoNotDisturbEv

Method Index

o getDoNotDisturb()
Returns true if the do−not−disturb feature is on, false otherwise.

o pickup(Address, Address)
pickup() is analogous to TerminalConnection.answer().

o pickup(Connection, Address)
This method "picks up" a telephone call at this Terminal.

o pickup(TerminalConnection, Address)
pickup() is analogous to TerminalConnection.answer().

o pickupFromGroup(Address)
pickupFromGroup() is analogous to TerminalConnection.answer().

o pickupFromGroup(String, Address)
pickupFromGroup() is analogous to TerminalConnection.answer().

o setDoNotDisturb(boolean)
Specifies whether the do not disturb feature should be turned on for this Terminal.

Methods

o getDoNotDisturb

 public abstract boolean getDoNotDisturb() throws MethodNotSupportedException, InvalidStateException

Returns true if the do−not−disturb feature is on, false otherwise. The Provider
must be in the Provider.IN_SERVICE state in order for this method to be
successfully invoked.

Pre−conditions:
1. (terminal.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (terminal.getProvider()).getState() == Provider.IN_SERVICE

Returns:
True if do not disturb is on, false if it is off.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
This Provider is not in the Provider.IN_SERVICE state.

o setDoNotDisturb

 public abstract void setDoNotDisturb(boolean enable) throws MethodNotSupportedException, InvalidStat

Specifies whether the do not disturb feature should be turned on for this Terminal.
This feature only affects whether or not calls will be accepted at this terminal. The
setting of this feature does not affect the do not disturb feature associated with a
Terminal. If the first argument, enable, is true, do not disturb is turned on. If
enable is false, do not disturb is turned off.

A CallCtlTermDoNotDisturbEv event is delivered to applications when the do
not disturb characteristic of the Terminal changes.

Pre−conditions:
1. (terminal.getProvider()).getState() == Provider.IN_SERVICE

Post−conditions:
1. (terminal.getProvider()).getState() == Provider.IN_SERVICE
2. terminal.getDoNotDisturb() == enable
3. CallCtlTermDoNotDisturbEv is delivered to the application

Parameters:
enable − True to turn do not disturb on, false to turn message waiting off.

Throws: MethodNotSupportedException
This method is not supported by the given implementation.

Throws: InvalidStateException
The Provider is not in the Provider.IN_SERVICE state.

See Also:
CallCtlTermDoNotDisturbEv

o pickup

 public abstract TerminalConnection pickup(Connection pickupConnection,
 Address terminalAddress) throws InvalidArgumentException,

This method "picks up" a telephone call at this Terminal. Picking up a telephone
call is analogous to answering a telephone call at this Terminal (i.e.
TerminalConnection.answer()), except the telephone call typically is not
ringing at this Terminal. For example, this method is used to answer a "queued"
call or a which is ringing at another Terminal across the room.

This version of this method takes a Connection and an Address as arguments. The
Connection argument represents the destination end of the telephone call to be
picked up. This Connection must be in either the
CallControlConnection.QUEUED state or the
CallControlConnection.ALERTING state. The Address argument chooses the
Address associated with this Terminal on which to pick up the telephone call. A
new TerminalConnectoin is create and returned which is in the
CallControlTerminalConnection.TALKING state and associated with this
Terminal.

The Address and Connection Arguments

The relationship between the Address and Connection arguments affects the
resulting behavior of this method. There are two different situations: if the given
Connection is associated with the given Address, and if the given Connection is not
associated with the given Address (i.e. via the Connection.getAddress()
method).

If the given Connection is associated with the given Address, this implies that the
Connection was in the CallControlConnection.QUEUED state, or the Terminal
did not ring for some reason even though the Connection is in the
CallControlConnection.ALERTING state. In this case, this method moves the
Connection given as the argument to the
CallControlConnection.ESTABLISHED state and the new TerminalConnection
created is associated with this Connection argument.

If the given Connection is not associated with the given Address, this implies that
the call is alerting at an entirely different endpoint from this Terminal. This
scenario permits applications to pick up a telephone call which is ringing across
the room. In this case, this method moves the Connection argument to the
CallControlConnection.DISCONNECTED state and creates a new Connection on
the Call associated with the Address argument in the
CallControlConnection.ESTABLISHED state. The new TerminalConnection
create is associated with this new Connection.

Pre−conditions:
1. (this.getProvider()).getState() == Provider.IN_SERVICE
2. (pickupConnection.getCall()).getState() == Call.ACTIVE
3. pickupConnection.getCallControlState() ==

CallControlConnection.QUEUED or CallControlConnection.ALERTING
4. terminaladdress element of this.getAddresses()

Post−conditions:
1. Let address1 = pickupConnection.getAddress()
2. Let tc be the new TerminalConnection created
3. tc.getCallControlState() == CallControlTerminalConnection.TALKING
4. if address1 == terminaladdress, pickupConnection.getCallControlState() ==

CallControlConnection.CONNECTED
5. if address1 != terminaladdress, let connection1 be the new Connection

created
6. connection1.getCallControlState() ==

CallControlConnection.ESTABLISHED
7. If address1 == terminaladdress, pickupConnection = tc.getConnection()
8. If address1 != terminaladdress, connection1 = tc.getConnection()
9. CallCtlTermConnTalkingEv is delivered to the application

10. If address1 != terminaladdress, CallCtlConnDisconnectedEv is delivered to
the application

11. CallCtlConnEstablishedEv is delivered to the application

Parameters:
pickupConnection − The Connection to be picked.
terminalAddress − The Address associated with the Terminal.

Returns:
s The new TerminalConnection associated with the Terminal.

Throws: InvalidArgumentException
One of the arguments provided is not valid.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource neccessary for the successful invocation of this method
is not available.

o pickup

 public abstract TerminalConnection pickup(TerminalConnection pickTermConn,
 Address terminalAddress) throws InvalidArgumentException,

pickup() is analogous to TerminalConnection.answer(). The difference is that for
answer(), the Terminal that "answers" the Call is the one specified by the
TerminalConnection object. For pickup(), "this" Terminal is the one answering the
Call. pickup() picks the call from the specified TerminalConnection and pulls it to
"this" Terminal using the specified Address. Picking up a call changes the state of
the Connection that contains the specified TerminalConnection from QUEUED or
ALERTING to DISCONNECTED (if the Address specified is different than the
Address of the Connection) or CONNECTED (if the Address specified is that same
as the Address of the Connection). If the Addresses ARE different, a new
Connection (to the specified Address) is added to the Call in the CONNECTED
state. The TerminalConnections from the original Connection are placed into the
DISCONNECTED state. The proper TerminalConnections in the new Connection
are created, including the one to "this" Terminal. That TerminalConnection will be
in the ACTIVE state and is returned by pickup().

Parameters:
pickTermConn − The TerminalConnection to be picked.
terminalAddress − The Address associated with the Terminal.

Returns:
s The new TerminalConnection associated with the Terminal.

Throws: InvalidArgumentException
One of the arguments provided is not valid.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException

This method is not supported by the implementation.
Throws: PrivilegeViolationException

The application does not have the proper authority to invoke this method.
Throws: ResourceUnavailableException

An internal resource neccessary for the successful invocation of this method
is not available.

o pickup

 public abstract TerminalConnection pickup(Address pickAddress,
 Address terminalAddress) throws InvalidArgumentException,

pickup() is analogous to TerminalConnection.answer(). The difference is that for
answer(), the Terminal that "answers" the Call is the one specified by the
TerminalConnection object. For pickup(), "this" Terminal is the one answering the
Call. pickup() picks a call from the specified Address and pulls it to "this" Terminal
using the specified Address. There must be at least one Connection at the Address
that is QUEUED or ALERTING. If there are multiple Connections in those states,
then the implementation will choose one of those Connections (to pick a specific
Connection, use the pickup(Connection, Address) form of pickup()). Picking up a
call changes the state of the chosen Connection from QUEUED or ALERTING to
DISCONNECTED (if the Address specified is different than the Address of the
Connection) or CONNECTED (if the Address specified is that same as the Address
of the Connection). If the Addresses ARE different, a new Connection (to the
specified Address) is added to the Call in the CONNECTED state. The
TerminalConnections from the original Connection are placed into the
DISCONNECTED state. The proper TerminalConnections in the new Connection
are created, including the one to "this" Terminal. That TerminalConnection will be
in the ACTIVE state and is returned by pickup().

Parameters:
pickAddress − The Address to be picked.
terminalAddress − The Address associated with the Terminal.

Returns:
s The new TerminalConnection associated with the Terminal.

Throws: InvalidArgumentException
One of the arguments provided is not valid.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource neccessary for the successful invocation of this method
is not available.

o pickupFromGroup

 public abstract TerminalConnection pickupFromGroup(String pickupGroup,
 Address terminalAddress) throws InvalidArgumentEx

pickupFromGroup() is analogous to TerminalConnection.answer(). The difference
is that for answer(), the Terminal that "answers" the Call is the one specified by
the TerminalConnection object. For pickupFromGroup(), "this" Terminal is the one
answering the Call. pickupFromGroup() picks a call from the specified pickup
group and pulls it to "this" Terminal using the specified Address. There must be at
least one Connection at the set of Addresses in the pickup group that is QUEUED
or ALERTING. If there are multiple Connections in those states, then the
implementation will choose one of those Connections (to pick a specific Connection,
use pickup(Connection, Address)). Picking up a call changes the state of the chosen
Connection from QUEUED or ALERTING to DISCONNECTED (if the Address
specified is different than the Address of the Connection) or CONNECTED (if the
Address specified is that same as the Address of the Connection). If the Addresses
ARE different, a new Connection (to the specified Address) is added to the Call in
the CONNECTED state. The TerminalConnections from the original Connection
are placed into the DISCONNECTED state. The proper TerminalConnections in
the new Connection are created, including the one to "this" Terminal. That
TerminalConnection will be in the ACTIVE state and is returned by
pickupFromGroup().

Parameters:
pickupGroup − The pickup group to be picked.
terminalAddress − The Address associated with the Terminal.

Returns:
s The new TerminalConnection associated with the Terminal.

Throws: InvalidArgumentException
One of the arguments provided is not valid.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource neccessary for the successful invocation of this method
is not available.

o pickupFromGroup

 public abstract TerminalConnection pickupFromGroup(Address terminalAddress) throws InvalidArgumentEx

pickupFromGroup() is analogous to TerminalConnection.answer(). The difference
is that for answer(), the Terminal that "answers" the Call is the one specified by
the TerminalConnection object. For pickupFromGroup(), "this" Terminal is the one
answering the Call. pickupFromGroup() picks a call from a pickup group that the

specified Address is in and pulls it to "this" Terminal using that Address. There
must be at least one Connection at the set of Addresses in the pickup group that is
QUEUED or ALERTING. If there are multiple Connections in those states, then
the implementation will choose one of those Connections (to pick a specific
Connection, use pickup(Connection, Address)). Picking up a call changes the state
of the chosen Connection from QUEUED or ALERTING to DISCONNECTED (if
the Address specified is different than the Address of the Connection) or
CONNECTED (if the Address specified is that same as the Address of the
Connection). If the Addresses ARE different, a new Connection (to the specified
Address) is added to the Call in the CONNECTED state. The
TerminalConnections from the original Connection are placed into the
DISCONNECTED state. The proper TerminalConnections in the new Connection
are created, including the one to "this" Terminal. That TerminalConnection will be
in the ACTIVE state and is returned by pickupFromGroup().

Parameters:
terminalAddress − The Address associated with the Terminal.

Returns:
s The new TerminalConnection associated with the Terminal.

Throws: InvalidArgumentException
One of the arguments provided is not valid.

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource neccessary for the successful invocation of this method
is not available.

Interface
javax.telephony.callcontrol.CallControlTerminalConnection

public interface CallControlTerminalConnection
extends TerminalConnection

Introduction

The CallControlTerminalConnection interface extends the core
TerminalConnection interface and provides additional functionality and greater detail
about the TerminalConnection’s state. Applications may query a TerminalConnection
object using the instanceof operator to see whether it supports this interface.

CallControlTerminalConnection State

This interface defines a state for the TerminalConnection which provides greater detail
beyond the state defined in the core TerminalConnection interface. The state, as
defined by this interface is related to the state defined in the core package in certain
specific ways, as defined below. Applications may obtain the state of the
TerminalConnection object as defined by this interface via the
getCallControlState() method defined on this interface. This method returns one of
the integer constants defined in this interface.

Below is a description of each CallControlTerminalConnection state in real−world
terms. These real−world descriptions have no bearing on the specifications of methods,
they only serve to provide a more intuitive understanding of what is going on. Several
methods in this specification state pre−conditions based upon the state of the
TerminalConnection. Some of these state are identical to those defined in the core
package.

CallControlTerminalConnection.IDLE This state has the same definition as in the
core package. It is the initial call control package state for all new TerminalConnection
objects which implement the CallControlTerminalConnection interface.
TerminalConnection objects typically do not stay in this state for long, quickly
transitioning to another state. CallControlTerminalConnection.RINGING This
state has the same definition as in the core package. It indicates that the associated
Terminal is ringing, indicating that the Terminal has an incoming Call.
CallControlTerminalConnection.TALKING This state indicates that the Terminal
is actively part of a telephone call, is typically "off−hook", and the party is
communicating on the telephone call. CallControlTerminalConnection.HELD This
state indicates that a Terminal is part of a telephone call, but is on hold. Other
Terminals which are on the same telephone Call and associated with the same

Connection may or may not also be in this state.
CallControlTerminalConnection.BRIDGED This state indicates that a Terminal is
currently bridged into a telephone call. A Terminal may typically join a telephone call
when it is bridged. A bridged Terminal is part of the telephone call, in that a resource is
occupied on that Terminal, however it is not active on the telephone call.
CallControlTerminalConnection.INUSE This state indicates that a Terminal is
part of a telephone call, but is not active. It may not join this phone call, however the
resource on the Terminal is currently in use. This state is similar to the
CallControlTerminalConnection.BRIDGED state however, the Terminal may not
join the call. CallControlTerminalConnection.DROPPED This state has the same
definition as in the core package. It indicates that a particular Terminal has
permanently left the telephone call. CallControlTerminalConnection.UNKNOWN
This state has the same definition as in the core package. It indicates that the
implementation is unable to determine the state of the TerminalConnection.
TerminalConnections may transition into and out of this state at any time.

State Transitions

Similar to the core package TerminalConnection state transition diagram, the call
control package state of the Connection object as defined by this interface must
transition according to particular rules. These rules are illustrated in the finite state
diagram below. The implementation must guarantee that the call control package
TerminalConnection object state must abide by this transition diagram.

The asterisk next to a state transition, as in the core package, implies a transition
to/from another other state as designated by the direction of the transition arrow.

[IMAGE]

Core vs. CallControl Package States

There is a strong relationship between the call control package states and the core
package states defined for the TerminalConnection. If an implementation supports the
call control package, it must ensure this relationship is properly maintained.

Since the states defined in the CallControlTerminalConnection interface provide
more details to the states defined in the TerminalConnection interface, each state
defined in the core package corresponds to a state defined in the call control package. Or
conversely, each call control package TerminalConnection state corresponds to exactly
one core package TerminalConnection state. This arrangement permits applications to
view either the core package TerminalConnection state and/or the call control package
TerminalConnection state and still see a consistent view.

The following table outlines the relationship between the core package
TerminalConnection states and the call control package TerminalConnection states.

If the call control package state is...then the core package state must be...

CallControlTerminalConnection.IDLE TerminalConnection.IDLE
CallControlTerminalConnection.RINGINGTerminalConnection.RINGING
CallControlTerminalConnection.TALKINGTerminalConnection.ACTIVE
CallControlTerminalConnection.HELDTerminalConnection.ACTIVE
CallControlTerminalConnection.INUSETerminalConnection.PASSIVE
CallControlTerminalConnection.BRIDGEDTerminalConnection.PASSIVE
CallControlTerminalConnection.DROPPEDTerminalConnection.DROPPED
CallControlTerminalConnection.UNKNOWNTerminalConnection.UNKNOWN

Observers and Events

All events pertaining to the CallControlTerminalConnection interface are reported
via the CallObserver.callChangedEvent() method. The application observer object
must also implement the CallControlCallObserver interface to express interest in
the call control package events. Applications receive TerminalConnection−related events
in the call control package when the call control state changes.

The following TerminalConnection−related events are defined in the call control
package. Each of these events extends the CallCtlTermConnEv interface (which, in
turn, extends the CallCtlCallEv interface).

CallCtlTermConnBridgedEv Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.BRIDGED state. CallCtlTermConnDroppedEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.DROPPED state. CallCtlTermConnHeldEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.HELD state. CallCtlTermConnInUseEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.INUSE state. CallCtlTermConnRingingEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.RINGING state. CallCtlTermConnTalkingEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.TALKING state. CallCtlTermConnUnknownEv
Indicates the TerminalConnection has moved into the
CallControlTerminalConnection.UNKNOWN state.

See Also:
TerminalConnection, CallObserver, CallControlCallObserver, CallCtlCallEv,
CallCtlTermConnEv, CallCtlTermConnRingingEv, CallCtlTermConnTalkingEv,
CallCtlTermConnHeldEv, CallCtlTermConnBridgedEv,
CallCtlTermConnInUseEv, CallCtlTermConnDroppedEv,
CallCtlTermConnUnknownEv

Variable Index

o BRIDGED
The CallControlTerminalConnection.BRIDGED state indicates that a
Terminal is currently bridged into a telephone call.

o DROPPED
The CallControlTerminalConnection.DROPPED state has the same definition
as in the core package.

o HELD
The CallControlTerminalConnection.HELD state indicates that a Terminal is
part of a telephone call, but is on hold.

o IDLE
The CallControlTerminalConnection.IDLE state has the same definition as
in the core package.

o INUSE
The CallControlTerminalConnection.INUSE state indicates that a Terminal
is part of a telephone call, but is not active.

o RINGING
The CallControlTerminalConnection.RINGING state has the same definition
as in the core package.

o TALKING
The CallControlTerminalConnection.TALKING state that the Terminal is
actively part of a telephone call, is typically "off−hook", and the party is
communicating on the telephone call.

o UNKNOWN
The CallControlTerminalConnection.UNKNOWN state has the same definition
as in the core package.

Method Index

o getCallControlState()
Returns the call control state of the TerminalConnection object.

o hold()
Places a TerminalConnection on hold with respect to the telephone call of which it
is a part.

o join()
Makes a currently bridged TerminalConnection active on a telephone call.

o leave()
Makes a currently active TerminalConnection bridged on a telephone call.

o unhold()
Takes a TerminalConnection off hold with respect to the telephone call of which it
is a part.

Variables

o IDLE

 public static final int IDLE

The CallControlTerminalConnection.IDLE state has the same definition as
in the core package. It is the initial call control package state for all new
TerminalConnection objects which implement the
CallControlTerminalConnection interface. TerminalConnection objects
typically do not stay in this state for long, quickly transitioning to another state.

o RINGING

 public static final int RINGING

The CallControlTerminalConnection.RINGING state has the same definition
as in the core package. It indicates that the associated Terminal is ringing,
indicating that the Terminal has an incoming Call.

o TALKING

 public static final int TALKING

The CallControlTerminalConnection.TALKING state that the Terminal is
actively part of a telephone call, is typically "off−hook", and the party is
communicating on the telephone call.

o HELD

 public static final int HELD

The CallControlTerminalConnection.HELD state indicates that a Terminal is
part of a telephone call, but is on hold. Other Terminals which are on the same
telephone Call and associated with the same Connection may or may not also be in
this state.

o BRIDGED

 public static final int BRIDGED

The CallControlTerminalConnection.BRIDGED state indicates that a
Terminal is currently bridged into a telephone call. A Terminal may typically join
a telephone call when it is bridged. A bridged Terminal is part of the telephone
call, in that a resource is occupied on that Terminal, however it is not active on the
telephone call.

o INUSE

 public static final int INUSE

The CallControlTerminalConnection.INUSE state indicates that a Terminal
is part of a telephone call, but is not active. It may not join this phone call,

however the resource on the Terminal is currently in use. This state is similar to
the CallControlTerminalConnection.BRIDGED state however, the Terminal
may not join the call.

o DROPPED

 public static final int DROPPED

The CallControlTerminalConnection.DROPPED state has the same definition
as in the core package. It indicates that a particular Terminal has permanently
left the telephone call.

o UNKNOWN

 public static final int UNKNOWN

The CallControlTerminalConnection.UNKNOWN state has the same definition
as in the core package. It indicates that the implementation is unable to determine
the state of the TerminalConnection. TerminalConnections may transition into
and out of this state at any time.

Methods

o getCallControlState

 public abstract int getCallControlState()

Returns the call control state of the TerminalConnection object.

Returns:
The current state of the TerminalConnection object.

o hold

 public abstract void hold() throws InvalidStateException, MethodNotSupportedException, PrivilegeViol

Places a TerminalConnection on hold with respect to the telephone call of which it
is a part. Many Terminals may be on the same telephone call and associated with
the same Connection. Any one of them may go "on hold" at any time, provided they
are active in the telephone call. The TerminalConnection must be in the
CallControlTerminalConnection.TALKING state. This method returns when
the TerminalConnection has moved to the
CallControlTerminalConnection.HELD state, or until an error occurs and an
exception is thrown.

Pre−conditions:
1. (this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.TALKING

Post−conditions:
1. (terminal.getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.HELD
3. CallCtlTermConnHeldEv is delivered to the application

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

See Also:
CallCtlTermConnHeldEv

o unhold

 public abstract void unhold() throws InvalidStateException, MethodNotSupportedException, PrivilegeVi

Takes a TerminalConnection off hold with respect to the telephone call of which it
is a part. Many Terminals may be on the same telephone call and associated with
the same Connection. Any one of them may go "on hold" at any time, provided they
are active in the telephone call. The TerminalConnection must be in the
CallControlTerminalConnection.HELD state. This method returns
successfully when the TerminalConnection moves into the
CallControlTerminalConnection.TALKING state or until an error occurs and
an exception is thrown.

Pre−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.HELD

Post−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.TALKING
3. CallCtlTermConnTalkingEv is delivered to the application

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

See Also:
CallCtlTermConnTalkingEv

o join

 public abstract void join() throws InvalidStateException, MethodNotSupportedException, PrivilegeViol

Makes a currently bridged TerminalConnection active on a telephone call.
Bridging situations exists when another Terminal which shares an Address with
this Terminal, is active on a telephone call. The call control package state of the
TerminalConnection must be CallControlTerminalConnection.BRIDGED .
This method returns when the Terminal has been made active on this telephone
call and the call control package state of the TerminalConnection is
CallControlTerminalConnection.TALKING or until an error occurs and an
exception is thrown.

Pre−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.BRIDGED

Post−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.TALKING
3. CallCtlTermConnTalkingEv is delivered to the application

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

See Also:
CallCtlTermConnTalkingEv

o leave

 public abstract void leave() throws InvalidStateException, MethodNotSupportedException, PrivilegeVio

Makes a currently active TerminalConnection bridged on a telephone call.
Bridging situations exists when another Terminal which shares an Address with
this Terminal, is active on a telephone call. The TerminalConnection must be in
the CallControlTerminalConnection.TALKING state.

There are two possible outcomes of this method depending upon whether this is
the only remaining active TerminalConnection on the call. If there are other active

TerminalConnections, then this TerminalConnection moves into the
CallControlTerminalConnection.BRIDGED state and this method returns. If
there are no other active TerminalConnections, then this TerminalConnection
moves into the CallControlTerminalConnection.DROPPED state and its
associated Connection moves into the CallControlConnection.DISCONNECTED
state, i.e. the entire endpoint leaves the telephone call. This method waits until
one of these two outcomes occur or until an error occurs and an exception is
thrown.

Pre−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. this.getCallControlState() == CallControlTerminalConnection.TALKING

Post−conditions:
1. ((this.getTerminal()).getProvider()).getState() == Provider.IN_SERVICE
2. Let Terminal terminal = this.getTerminal()
3. Let TerminalConnection tc[] = terminal.getTerminalConnections()
4. If no other tc[i].getCallControlState(), for all other i, is

CallControlTerminalConnection.TALKING or
CallControlTerminalConnection.HELD, then this was the only remaining
active TerminalConnection associated with the Connection

5. If this was the only remaining active TerminalConnection, then
this.getCallControlState() == CallControlTerminalConnection.DROPPED.

6. If this was the only remaining active TerminalConnection, then
(this.getConnection()).getCallControlState() ==
CallControlConnection.DISCONNECTED

7. If this was the only remaining active TerminalConnection, then
tc[i].getCallControlState() == CallControlTerminalConnecton.DROPPED, for
all other i.

8. If this was not the only remaining active TerminalConnection, then
this.getCallControlState() == CallControlTerminalConnection.BRIDGED

9. If this was the only remaining active TerminalConnection, then
CallCtlTermConnDroppedEv is delivered to the application

10. If this was the only remaining active TerminalConnection, then
CallCtlConnDisconnectedEv is delivered to the application

11. If this was the only remaining active TerminalConnection, then
CallCtlTermConnDroppedEv is delivered for all other TerminalConnections

12. If this is not the only remaining active TerminalConnection, then
CallCtlTermConnBridgedEv is delivered to the application

Throws: InvalidStateException
The state of some object is not valid as designated by the pre−conditions for
this method.

Throws: MethodNotSupportedException
This method is not supported by the implementation.

Throws: PrivilegeViolationException
The application does not have the proper authority to invoke this method.

Throws: ResourceUnavailableException
An internal resource necessary for the successful invocation of this method is
not available.

See Also:
CallCtlTermConnBridgedEv, CallCtlTermConnDroppedEv,
CallCtlConnDisconnectedEv

Interface
javax.telephony.callcontrol.CallControlTerminalObserver

public interface CallControlTerminalObserver
extends TerminalObserver

The CallControlTerminalObserver interface reports all events for the
CallControlTerminal object. Applications implement this interface to receive
CallControlTerminal−related events. All events are reported via the
TerminalObserver.terminalChangedEvent() method. This interface, therefore,
allows applications to signal to the implementation that they are interested in
CallControlTerminal− related events. This interface defines no additional methods.

All events must extend the CallCtlTermEv event interface, which in turn, extends the
core’s TermEv interface.

The following are those events which are associated with this interface:

CallCtlTermDoNotDisturbEv Indicates the Do Not Disturb characteristics of this
Terminal has changed.

See Also:
TerminalObserver, TermEv, CallControlTerminal, CallCtlTermEv,
CallCtlTermDoNotDisturbEv

Class javax.telephony.callcontrol.CallControlForwarding

java.lang.Object
 |
 +−−−−javax.telephony.callcontrol.CallControlForwarding

public class CallControlForwarding
extends Object

The CallControlForwarding class represents a forwarding instruction .
This instruction tells how the switch should forward incoming
telephone call to a specific address. There are several attributes
to a forwarding instruction.

The first attribute is it type . The forwarding instruction’s type
tells the switch when the forward the call. There are currently
three types of instructions: telling the switch to always forwarding
incoming calls, telling the switch to forward incoming calls when
the address is busy, and telling the switch to forward incoming
calls when no one answers.

The second attribute of a forwarding instruction is its filter . The
filter indicates which type of incoming calls should this forwarding
instruction apply. This forwarding instruction can apply to all
calls, to external calls only, to internal calls only, or to a
specific calling address.

Variable Index

o ALL_CALLS
Forwarding filter: apply instruction to all incoming calls.

o EXTERNAL_CALLS
Forwarding filter: apply instruction to calls originating from
outside the provider domain.

o FORWARD_ON_BUSY
Forwarding type: forward calls on busy.

o FORWARD_ON_NOANSWER
Forwarding type: forward calls on no answer.

o FORWARD_UNCONDITIONALLY
Forwarding type: forward calls unconditionally.

o INTERNAL_CALLS
Forwarding filter: apply instruction to calls originating from
the provider domain.

o SPECIFIC_ADDRESS
Forwarding filter: apply instruction to calls originating from a
specific address.

Constructor Index

o CallControlForwarding (String)
This constructor is the default constructor, which only takes
the address to apply this forwarding instruction.

o CallControlForwarding (String, int)
This constructor takes the address to apply this forwarding
instruction and the type of fowarding for all incoming calls.

o CallControlForwarding (String, int, boolean)
This constructor takes the address to aplly this forwarding
instruction, the type of forwarding desired for this address,
and a boolean flag indicating whether this instruction should
apply to internal (true) or external (false) calls.

o CallControlForwarding (String, int, String)
This constructor takes an address to apply the forwarding
instruction for a specific incoming telephone call, identified
by a string address.

Method Index

o getDestinationAddress ()
Returns the destination address of this forwarding instruction.

o getFilter ()
Returns the filter of this forwarding instruction.

o getSpecificCaller ()
If the filter for this forwarding instruction is
SPECIFIC_ADDRESS, then this method returns that calling address
to which this filter applies.

o getType ()
Returns the type of this forwarding instruction, either
unconditionally, upon no answer, or upon busy.

Variables

o ALL_CALLS

 public static final int ALL_CALLS

Forwarding filter: apply instruction to all incoming calls.

o INTERNAL_CALLS

 public static final int INTERNAL_CALLS

Forwarding filter: apply instruction to calls originating from the provider domain.

o EXTERNAL_CALLS

 public static final int EXTERNAL_CALLS

Forwarding filter: apply instruction to calls originating from outside the provider
domain.

o SPECIFIC_ADDRESS

 public static final int SPECIFIC_ADDRESS

Forwarding filter: apply instruction to calls originating from a specific address.

o FORWARD_UNCONDITIONALLY

 public static final int FORWARD_UNCONDITIONALLY

Forwarding type: forward calls unconditionally.

o FORWARD_ON_BUSY

 public static final int FORWARD_ON_BUSY

Forwarding type: forward calls on busy.

o FORWARD_ON_NOANSWER

 public static final int FORWARD_ON_NOANSWER

Forwarding type: forward calls on no answer.

Constructors

o CallControlForwarding

 public CallControlForwarding(String destAddress)

This constructor is the default constructor, which only takes the address to apply
this forwarding instruction. The forwarding instruction forwards all calls
unconditionally.

o CallControlForwarding

 public CallControlForwarding(String destAddress,
 int type)

This constructor takes the address to apply this forwarding instruction and the
type of fowarding for all incoming calls.

o CallControlForwarding

 public CallControlForwarding(String destAddress,
 int type,
 boolean internalCalls)

This constructor takes the address to aplly this forwarding instruction, the type of
forwarding desired for this address, and a boolean flag indicating whether this
instruction should apply to internal (true) or external (false) calls.

o CallControlForwarding

 public CallControlForwarding(String destAddress,
 int type,
 String caller)

This constructor takes an address to apply the forwarding instruction for a specific
incoming telephone call, identified by a string address. It also takes the type of
forwarding desired for this specific address.

Methods

o getDestinationAddress

 public String getDestinationAddress()

Returns the destination address of this forwarding instruction.

Returns:
The destination address of this forwarding instruction.

o getType

 public int getType()

Returns the type of this forwarding instruction, either unconditionally, upon no
answer, or upon busy.

Returns:
The type of this forwarding instruction.

o getFilter

 public int getFilter()

Returns the filter of this forwarding instruction. The filter indicates which calls
should triger this forwarding instruction. Filters include: applying this instruction
to all calls, to only internal calls, to only external call, or for calls from a specific
address.

Returns:
The filter for this forwarding instruction.

o getSpecificCaller

 public String getSpecificCaller()

If the filter for this forwarding instruction is SPECIFIC_ADDRESS, then this
method returns that calling address to which this filter applies. If the filter is
something other than SPECIFIC_ADDRESS, this method returns null.

Returns:
The specific address for this forwarding instruction.

package javax.telephony.callcontrol.capabilities

Interface Index

CallControlAddressCapabilities
CallControlCallCapabilities
CallControlConnectionCapabilities
CallControlTerminalCapabilities
CallControlTerminalConnectionCapabilities

Interface
javax.telephony.callcontrol.capabilities.CallControlAddressCapabilities

public interface CallControlAddressCapabilities
extends AddressCapabilities

The CallControlAddressCapabilities interface extends the AddressCapabilities interface.
This interface provides methods to reflect the capabilities of the CallControlAddress
interface methods. Applications query the object returned from the
getAddressCapabilities() methods to see whether it implements this interface for both
the static and dynamic capabilities for the CallControlAddress object.

See Also:
AddressCapabilities

Method Index

o canCancelForwarding()
Returns true if the application can invoke the
CallControlAddress.cancelForwarding() method.

o canGetDoNotDisturb()
Returns true if the application can invoke the
CallControlAddress.getDoNotDisturb() method.

o canGetForwarding()
Returns true if the application can invoke the CallControlAddress.getForwarding()
method.

o canGetMessageWaiting()
Returns true if the application can invoke the
CallControlAddress.getMessageWaiting() method.

o canSetDoNotDisturb()
Returns true if the application can invoke the
CallControlAddress.setDoNotDisturb() method.

o canSetForwarding()
Returns true if the application can invoke the CallControlAddress.setForwarding()
method.

o canSetMessageWaiting()
Returns true if the application can invoke the
CallControlAddress.setMessageWaiting() method.

Methods

o canSetForwarding

 public abstract boolean canSetForwarding()

Returns true if the application can invoke the CallControlAddress.setForwarding()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlAddress.setForwarding()
method, false otherwise.

o canGetForwarding

 public abstract boolean canGetForwarding()

Returns true if the application can invoke the CallControlAddress.getForwarding()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlAddress.getForwarding()
method, false otherwise.

o canCancelForwarding

 public abstract boolean canCancelForwarding()

Returns true if the application can invoke the
CallControlAddress.cancelForwarding() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlAddress.cancelForwarding() method, false otherwise.

o canGetDoNotDisturb

 public abstract boolean canGetDoNotDisturb()

Returns true if the application can invoke the
CallControlAddress.getDoNotDisturb() method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlAddress.getDoNotDisturb()
method, false otherwise.

o canSetDoNotDisturb

 public abstract boolean canSetDoNotDisturb()

Returns true if the application can invoke the
CallControlAddress.setDoNotDisturb() method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlAddress.setDoNotDisturb()
method, false otherwise.

o canGetMessageWaiting

 public abstract boolean canGetMessageWaiting()

Returns true if the application can invoke the
CallControlAddress.getMessageWaiting() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlAddress.getMessageWaiting() method, false otherwise.

o canSetMessageWaiting

 public abstract boolean canSetMessageWaiting()

Returns true if the application can invoke the
CallControlAddress.setMessageWaiting() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlAddress.setMessageWaiting() method, false otherwise.

Interface
javax.telephony.callcontrol.capabilities.CallControlCallCapabilities

public interface CallControlCallCapabilities
extends CallCapabilities

The CallControlCallCapabilities interface extends the CallCapabilities interface. This
interface provides methods to reflect the capabilities of the CallControlCall interface
methods. Applications query the object returned from the getCallCapabilities() methods
to see whether it implements this interface for both the static and dynamic capabilities
for the CallControlCall object.

See Also:
CallCapabilities

Method Index

o canAddParty()
Returns true if the application can invoke the CallControlCall.addParty() method.

o canConference()
Returns true if the application can invoke the CallControlCall.conference()
method.

o canConsult()
Returns true if the application can invoke the CallControlCall.consult() method.

o canDrop()
Returns true if the application can invoke the CallControlCall.drop() method.

o canOffHook()
o canSetConferenceController()
o canSetConferenceEnable()

Returns true if the application can invoke the
CallControlCall.canSetConferenceEnable() method.

o canSetTransferController()
o canSetTransferEnable()

Returns true if the application can invoke the CallControlCall.setTransferEnable()
method.

o canTransfer()
Returns true if the application can invoke the CallControlCall.transfer() method.

Methods

o canDrop

 public abstract boolean canDrop()

Returns true if the application can invoke the CallControlCall.drop() method.
Returns false otherwise.

Returns:
True if the application can invoke the CallControlCall.drop() method, false
otherwise.

o canOffHook

 public abstract boolean canOffHook()

o canSetConferenceController

 public abstract boolean canSetConferenceController()

o canSetTransferController

 public abstract boolean canSetTransferController()

o canSetTransferEnable

 public abstract boolean canSetTransferEnable()

Returns true if the application can invoke the CallControlCall.setTransferEnable()
method. Returns false otherwise. The outcome of this capability is independent of
whether applications can invoke the transfer() method. Applications both may not
be able to turn transfering off it is on, and may not be able to turn transfering on if
it is off.

Returns:
True if the application can invoke the CallControlCall.setTransferEnable()
method, false otherwise.

o canSetConferenceEnable

 public abstract boolean canSetConferenceEnable()

Returns true if the application can invoke the
CallControlCall.canSetConferenceEnable() method. Returns false otherwise. The
outcome of this capability is independent of whether applications can invoke the
conference() method. Applications both may not be able to turn conferencing off if
it is on, and may not be able to turn conferencing on if it is off.

Returns:
True if the application can invoke the CallControlCall.setConferenceEnable()
method, false otherwise.

o canTransfer

 public abstract boolean canTransfer()

Returns true if the application can invoke the CallControlCall.transfer() method.
Returns false otherwise.

Returns:
True if the application can invoke the CallControlCall.transfer() method,
false otherwise.

o canConference

 public abstract boolean canConference()

Returns true if the application can invoke the CallControlCall.conference()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlCall.conference() method,
false otherwise.

o canAddParty

 public abstract boolean canAddParty()

Returns true if the application can invoke the CallControlCall.addParty() method.
Returns false otherwise.

Returns:
True if the application can invoke the CallControlCall.addParty() method,
false otherwise.

o canConsult

 public abstract boolean canConsult()

Returns true if the application can invoke the CallControlCall.consult() method.
Returns false otherwise.

Returns:
True if the application can invoke the CallControlCall.consult() method, false
otherwise.

Interface
javax.telephony.callcontrol.capabilities.CallControlConnectionCapabilitie

public interface CallControlConnectionCapabilities
extends ConnectionCapabilities

The CallControlConnectionCapabilities interface extends the ConnectionCapabilities
interface. This interface provides methods to reflect the capabilities of the
CallControlConnection interface methods. Applications query the object returned from
the getConnectionCapabilities() methods to see whether it implements this interface for
both the static and dynamic capabilities for the CallControlConnection object.

See Also:
ConnectionCapabilities

Method Index

o canAccept()
Returns true if the application can invoke the CallControlConnection.accept()
method.

o canAddToAddress()
Returns true if the application can invoke the
CallControlConnection.addToAddress() method.

o canPark()
Returns true if the application can invoke the CallControlConnection.park()
method.

o canRedirect()
Returns true if the application can invoke the CallControlConnection.redirect()
method.

o canReject()
Returns true if the application can invoke the CallControlConnection.reject()
method.

Methods

o canRedirect

 public abstract boolean canRedirect()

Returns true if the application can invoke the CallControlConnection.redirect()

method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlConnection.redirect()
method, false otherwise.

o canAddToAddress

 public abstract boolean canAddToAddress()

Returns true if the application can invoke the
CallControlConnection.addToAddress() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlConnection.addToAddress() method, false otherwise.

o canAccept

 public abstract boolean canAccept()

Returns true if the application can invoke the CallControlConnection.accept()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlConnection.accept()
method, false otherwise.

o canReject

 public abstract boolean canReject()

Returns true if the application can invoke the CallControlConnection.reject()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlConnection.reject()
method, false otherwise.

o canPark

 public abstract boolean canPark()

Returns true if the application can invoke the CallControlConnection.park()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlConnection.park() method,

false otherwise.

Interface
javax.telephony.callcontrol.capabilities.CallControlTerminalCapabilities

public interface CallControlTerminalCapabilities
extends TerminalCapabilities

The CallControlTerminalCapabilities interface extends the TerminalCapabilities
interface. This interface provides methods to reflect the capabilities of the
CallControlTerminal interface methods. Applications query the object returned from the
getTerminalCapabilities() methods to see whether it implements this interface for both
the static and dynamic capabilities for the CallControlTerminal object.

See Also:
TerminalCapabilities

Method Index

o canGetDoNotDisturb()
Returns true if the application can invoke the
CallControlTerminal.getDoNotDisturb() method.

o canPickup()
Returns true if the application can invoke the CallControlTerminal.pickup()
method.

o canPickupFromGroup()
Returns true if the application can invoke the
CallControlTerminal.pickupFromGroup() method.

o canSetDoNotDisturb()
Returns true if the application can invoke the
CallControlTerminal.setDoNotDisturb() method.

Methods

o canGetDoNotDisturb

 public abstract boolean canGetDoNotDisturb()

Returns true if the application can invoke the
CallControlTerminal.getDoNotDisturb() method. Returns false otherwise.

Returns:

True if the application can invoke the
CallControlTerminal.getDoNotDisturb() method, false otherwise.

o canSetDoNotDisturb

 public abstract boolean canSetDoNotDisturb()

Returns true if the application can invoke the
CallControlTerminal.setDoNotDisturb() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlTerminal.setDoNotDisturb() method, false otherwise.

o canPickup

 public abstract boolean canPickup()

Returns true if the application can invoke the CallControlTerminal.pickup()
method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlTerminal.pickup() method,
false otherwise.

o canPickupFromGroup

 public abstract boolean canPickupFromGroup()

Returns true if the application can invoke the
CallControlTerminal.pickupFromGroup() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlTerminal.pickupFromGroup() method, false otherwise.

Interface
javax.telephony.callcontrol.capabilities.CallControlTerminalConnectionCa

public interface CallControlTerminalConnectionCapabilities
extends TerminalConnectionCapabilities

The CallControlTerminalConnectionCapabilities interface extends the
TerminalConnectionCapabilities interface. This interface provides methods to reflect the
capabilities of the CallControlTerminalConnection interface methods. Applications
query the object returned from the getTerminalConnectionCapabilities() methods to see
whether it implements this interface for both the static and dynamic capabilities for the
CallControlTerminalConnection object.

See Also:
TerminalConnectionCapabilities

Method Index

o canHold()
Returns true if the application can invoke the
CallControlTerminalConnection.hold() method.

o canJoin()
Returns true if the application can invoke the
CallControlTerminalConnection.join() method.

o canLeave()
Returns true if the application can invoke the
CallControlTerminalConnection.leave() method.

o canUnhold()
Returns true if the application can invoke the
CallControlTerminalConnection.unhold() method.

Methods

o canHold

 public abstract boolean canHold()

Returns true if the application can invoke the
CallControlTerminalConnection.hold() method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlTerminalConnection.hold()
method, false otherwise.

o canUnhold

 public abstract boolean canUnhold()

Returns true if the application can invoke the
CallControlTerminalConnection.unhold() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlTerminalConnection.unhold() method, false otherwise.

o canJoin

 public abstract boolean canJoin()

Returns true if the application can invoke the
CallControlTerminalConnection.join() method. Returns false otherwise.

Returns:
True if the application can invoke the CallControlTerminalConnection.join()
method, false otherwise.

o canLeave

 public abstract boolean canLeave()

Returns true if the application can invoke the
CallControlTerminalConnection.leave() method. Returns false otherwise.

Returns:
True if the application can invoke the
CallControlTerminalConnection.leave() method, false otherwise.

package javax.telephony.callcontrol.events

Interface Index

CallCtlAddrDoNotDisturbEv
CallCtlAddrEv
CallCtlAddrForwardEv
CallCtlAddrMessageWaitingEv
CallCtlCallEv
CallCtlConnAlertingEv
CallCtlConnDialingEv
CallCtlConnDisconnectedEv
CallCtlConnEstablishedEv
CallCtlConnEv
CallCtlConnFailedEv
CallCtlConnInitiatedEv
CallCtlConnNetworkAlertingEv
CallCtlConnNetworkReachedEv
CallCtlConnOfferedEv
CallCtlConnQueuedEv
CallCtlConnUnknownEv
CallCtlEv
CallCtlTermConnBridgedEv
CallCtlTermConnDroppedEv
CallCtlTermConnEv
CallCtlTermConnHeldEv
CallCtlTermConnInUseEv
CallCtlTermConnRingingEv
CallCtlTermConnTalkingEv
CallCtlTermConnUnknownEv
CallCtlTermDoNotDisturbEv
CallCtlTermEv

Interface javax.telephony.callcontrol.events.CallCtlEv

public interface CallCtlEv
extends Ev

The CallCtlEv is the base event for all events in the CallControl package. Each event in
this package must extend this interface. This interface is not meant to be a public
interface, it is just a building block for other event interfaces.

The CallCtlEv interface contains getCallControlCause(), which returns the reason for
the event.

Variable Index

o CAUSE_ALTERNATE
Cause code indicating a call was put on hold and another retrieved in an atomic
operation, typical on single line phones.

o CAUSE_BUSY
Cause code indicating a call encountered a busy endpoint.

o CAUSE_CALL_BACK
Cause code indicating event is related to the CallBack feature.

o CAUSE_CALL_NOT_ANSWERED
Cause code indicating call was not answered before a timer elapsed.

o CAUSE_CALL_PICKUP
Cause code indicating call was redirected by a Call Pickup feature.

o CAUSE_CONFERENCE
Cause code indicating event is related to the Conference feature.

o CAUSE_DO_NOT_DISTURB
Cause code indicating event is related to the Do Not Disturb feature.

o CAUSE_PARK
Cause code indicating event is related to the Park feature.

o CAUSE_REDIRECTED
Cause code indicating event is related to the Redirected feature.

o CAUSE_REORDER_TONE
Cause code indicating call encountered reorder tone

o CAUSE_TRANSFER
Cause code indicating event is related to the Tranfer feature.

o CAUSE_TRUNKS_BUSY
Cause code indicating call encountered a busy trunk

o CAUSE_UNHOLD
Cause code indicating event is related to the Unhold feature.

Method Index

o getCallControlCause()
Returns the call control and core causes associated with this event.

Variables

o CAUSE_ALTERNATE

 public static final int CAUSE_ALTERNATE

Cause code indicating a call was put on hold and another retrieved in an atomic
operation, typical on single line phones.

o CAUSE_BUSY

 public static final int CAUSE_BUSY

Cause code indicating a call encountered a busy endpoint.

o CAUSE_CALL_BACK

 public static final int CAUSE_CALL_BACK

Cause code indicating event is related to the CallBack feature.

o CAUSE_CALL_NOT_ANSWERED

 public static final int CAUSE_CALL_NOT_ANSWERED

Cause code indicating call was not answered before a timer elapsed.

o CAUSE_CALL_PICKUP

 public static final int CAUSE_CALL_PICKUP

Cause code indicating call was redirected by a Call Pickup feature.

o CAUSE_CONFERENCE

 public static final int CAUSE_CONFERENCE

Cause code indicating event is related to the Conference feature.

o CAUSE_DO_NOT_DISTURB

 public static final int CAUSE_DO_NOT_DISTURB

Cause code indicating event is related to the Do Not Disturb feature.

o CAUSE_PARK

 public static final int CAUSE_PARK

Cause code indicating event is related to the Park feature.

o CAUSE_REDIRECTED

 public static final int CAUSE_REDIRECTED

Cause code indicating event is related to the Redirected feature.

o CAUSE_REORDER_TONE

 public static final int CAUSE_REORDER_TONE

Cause code indicating call encountered reorder tone

o CAUSE_TRANSFER

 public static final int CAUSE_TRANSFER

Cause code indicating event is related to the Tranfer feature.

o CAUSE_TRUNKS_BUSY

 public static final int CAUSE_TRUNKS_BUSY

Cause code indicating call encountered a busy trunk

o CAUSE_UNHOLD

 public static final int CAUSE_UNHOLD

Cause code indicating event is related to the Unhold feature.

Methods

o getCallControlCause

 public abstract int getCallControlCause()

Returns the call control and core causes associated with this event. Every event
has a cause. The various cause values are defined as public static final variablies
in this interface, with the exception of CAUSE_NORMAL and
CAUSE_UNKNOWN, which are defined in the core.

Returns:
s The cause of the event.

Interface javax.telephony.callcontrol.events.CallCtlAddrEv

public interface CallCtlAddrEv
extends CallCtlEv, AddrEv

Interface
javax.telephony.callcontrol.events.CallCtlAddrDoNotDisturbEv

public interface CallCtlAddrDoNotDisturbEv
extends CallCtlAddrEv

The call control address do−not−distrub attribute has changed.

Variable Index

o ID
Event id

Method Index

o getDoNotDisturbState()
The new do not disturb state (true or false)

Variables

o ID

 public static final int ID

Event id

Methods

o getDoNotDisturbState

 public abstract boolean getDoNotDisturbState()

The new do not disturb state (true or false)

Interface
javax.telephony.callcontrol.events.CallCtlAddrForwardEv

public interface CallCtlAddrForwardEv
extends CallCtlAddrEv

The call control address forwarding state has changed.

Variable Index

o ID
Event id

Method Index

o getForwarding()
Get the new forwarding state of the address.

Variables

o ID

 public static final int ID

Event id

Methods

o getForwarding

 public abstract CallControlForwarding[] getForwarding()

Get the new forwarding state of the address.

Interface
javax.telephony.callcontrol.events.CallCtlAddrMessageWaitingEv

public interface CallCtlAddrMessageWaitingEv
extends CallCtlAddrEv

The call control address message−waiting attribute has changed.

Variable Index

o ID
Event id

Method Index

o getMessageWaitingState()
The new message waiting state (true or false).

Variables

o ID

 public static final int ID

Event id

Methods

o getMessageWaitingState

 public abstract boolean getMessageWaitingState()

The new message waiting state (true or false).

Interface javax.telephony.callcontrol.events.CallCtlCallEv

public interface CallCtlCallEv
extends CallCtlEv, CallEv

Method Index

o getCalledAddress()
Returns the called Address associated with this Call.

o getCallingAddress()
Returns the calling Address associated with this call.

o getCallingTerminal()
Returns the calling Terminal associated with this Call.

o getLastRedirectedAddress()
Returns the last redirected Address associated with this Call.

Methods

o getCallingAddress

 public abstract Address getCallingAddress()

Returns the calling Address associated with this call. The calling Address is
defined as the Address which placed the telephone call.

If the calling address is unknown or not yet known, this method returns null.

Returns:
The calling Address.

o getCallingTerminal

 public abstract Terminal getCallingTerminal()

Returns the calling Terminal associated with this Call. The calling Terminal is
defined as the Terminal which placed the telephone call.

If the calling Terminal is unknown or not yet know, this method returns null.

Returns:

The calling Terminal.

o getCalledAddress

 public abstract Address getCalledAddress()

Returns the called Address associated with this Call. The called Address is defined
as the Address to which the call has been originally placed.

If the called address is unknown or not yet known, this method returns null.

Returns:
s The called Address.

o getLastRedirectedAddress

 public abstract Address getLastRedirectedAddress()

Returns the last redirected Address associated with this Call. The last redirected
Address is the Address at which the current telephone call was placed immediately
before the current Address. This is common if a Call is forwarded to several
Addresses before being answered.

If the the last redirected address is unknown or not yet known, this method
returns null.

Returns:
s The last redirected Address for this telephone Call.

Interface javax.telephony.callcontrol.events.CallCtlConnEv

public interface CallCtlConnEv
extends CallCtlCallEv, ConnEv

Interface
javax.telephony.callcontrol.events.CallCtlConnAlertingEv

public interface CallCtlConnAlertingEv
extends CallCtlConnEv

The CallCtlConnAlertingEv indicates that a Connection is now in the
CallControlConnection.ALERTING state. This event is reported through the
CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnDialingEv

public interface CallCtlConnDialingEv
extends CallCtlConnEv

The CallCtlConnDialingEv indicates that a Connection is now in the
CallControlConnection.DIALING state. This event interfaces extends both the
ConnectionEvent and CallControlCallEvent interfaces and is reported through the
CallObserver interface.

This event interface has methods to return the string of digits dialed so far.

Variable Index

o ID
Event id

Method Index

o getDigits()
Returns the digits that have already been dialed.

Variables

o ID

 public static final int ID

Event id

Methods

o getDigits

 public abstract String getDigits()

Returns the digits that have already been dialed.

Returns:
s The digits that have already been dialed.

Interface
javax.telephony.callcontrol.events.CallCtlConnDisconnectedEv

public interface CallCtlConnDisconnectedEv
extends CallCtlConnEv

The CallCtlConnDisconnectedEv interface indicates that the Connection is now in the
CallControlConnection.FAILED state. This event interface extends the
ConnectionDisconnectedEvent and is reported on the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnEstablishedEv

public interface CallCtlConnEstablishedEv
extends CallCtlConnEv

The CallCtlConnEstablishedEv indicates that a Connection is now in the
CallControlConnection.ESTABLISHED state. This event interfaces extends both the
ConnectionEvent and CallControlCallEvent interfaces and is reported through the
CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnFailedEv

public interface CallCtlConnFailedEv
extends CallCtlConnEv

The CallCtlConnFailedEv interface indicates that the Connection is now in the
CallControlConnection.FAILED state. This event interface extends the
ConnectionFailedEvent and is reported on the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnInitiatedEv

public interface CallCtlConnInitiatedEv
extends CallCtlConnEv

The CallCtlConnInitiatedEv indicates that a Connection is now in the
CallControlConnection.INITIATED state. This event interfaces extends both the
ConnectionEvent and CallControlCallEvent interfaces and is reported through the
CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnNetworkAlertingEv

public interface CallCtlConnNetworkAlertingEv
extends CallCtlConnEv

The CallCtlConnNetworkAlertingEv indicates that a Connection is now in the
CallControlConnection.NETWORK_ALERTING state. This event interfaces extends
both the ConnectionEvent and CallControlCallEvent interfaces and is reported through
the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnNetworkReachedEv

public interface CallCtlConnNetworkReachedEv
extends CallCtlConnEv

The CallCtlConnNetworkReachedEv indicates that a Connection is now in the
CallControlConnection.NETWORK_REACHED state. This event interfaces extends both
the ConnectionEvent and CallControlCallEvent interfaces and is reported through the
CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnOfferedEv

public interface CallCtlConnOfferedEv
extends CallCtlConnEv

The CallCtlConnOfferedEv indicates that the call control connection state has
transitioned to the CallControlConnection.OFFERED state. This event interface extends
the CallControlCallEvent and ConnectionEvent interfaces and is reported on the
CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlConnQueuedEv

public interface CallCtlConnQueuedEv
extends CallCtlConnEv

The CallCtlConnQueuedEv indicates that the call control connection state has
transitioned to the CallControlConnection.QUEUED state. This method extends the
CallControlCallEvent and ConnEv interfaces and is reported on the CallObserver
interface.

Variable Index

o ID
Event id

Method Index

o getNumberInQueue()
Indicates how many connections are queued at this connection’s Address.

Variables

o ID

 public static final int ID

Event id

Methods

o getNumberInQueue

 public abstract int getNumberInQueue()

Indicates how many connections are queued at this connection’s Address.

Interface
javax.telephony.callcontrol.events.CallCtlConnUnknownEv

public interface CallCtlConnUnknownEv
extends CallCtlConnEv

The CallCtlConnUnknownEv interface indicates that the Connection is now in the
CallControlConnection.UNKNOWN state. The CallCtlConnUnknownEv interface does
not contribute any methods to the event. This event extends the CallControlCallEvent
and the ConnectionEvent and is reported on the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnEv

public interface CallCtlTermConnEv
extends CallCtlCallEv, TermConnEv

Interface
javax.telephony.callcontrol.events.CallCtlTermConnBridgedEv

public interface CallCtlTermConnBridgedEv
extends CallCtlTermConnEv

The CallCtlTermConnBridgedEv interface indicates that the TerminalConnection state
has moved to the CallControlTerminalConnection.BRIDGED state. This interface
extends the CallControlCallEvent and TermConnEv interface and is reported through
the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnDroppedEv

public interface CallCtlTermConnDroppedEv
extends CallCtlTermConnEv

The CallCtlTermConnDroppedEv interface indicates that the TerminalConnection state
has moved to the CallControlTerminalConnection.DROPPED state. This interface
extends the TerminalConnectionDroppedEvent interface and is reported through the
CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnHeldEv

public interface CallCtlTermConnHeldEv
extends CallCtlTermConnEv

The CallCtlTermConnHeldEv interface indicates that the TerminalConnection state has
moved to the CallControlTerminalConnection.HELD state. This interface extends the
CallControlCallEvent and TerminalConnectionEvent interface and is reported through
the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnInUseEv

public interface CallCtlTermConnInUseEv
extends CallCtlTermConnEv

The CallCtlTermConnInUseEv interface indicates that the TerminalConnection state
has moved to the CallControlTerminalConnection.INUSE state. This interface extends
the CallCtlCallEv and TermConnEv interface and is reported through the CallObserver
interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnRingingEv

public interface CallCtlTermConnRingingEv
extends CallCtlTermConnEv

The CallCtlTermConnRingingEv interface indicates that the TerminalConnection state
has moved to the CallControlTerminalConnection.RINGING state. This interface
extends the TerminalConnectionRingingEvent and is reported through the CallObserver
interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnTalkingEv

public interface CallCtlTermConnTalkingEv
extends CallCtlTermConnEv

The CallCtlTermConnTalkingEv interface indicates that the TerminalConnection state
has moved to the CallControlTerminalConnection.TALKING state. This interface
extends the CallControlCallEvent and TerminalConnectionEvent interface and is
reported through the CallObserver interface.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.callcontrol.events.CallCtlTermConnUnknownEv

public interface CallCtlTermConnUnknownEv
extends CallCtlTermConnEv

The CallCtlTermConnUnknownEv interface indicates that the
CallControlTerminalConnection is now in the UNKNOWN state. The
CallCtlTermConnUnknownEv interface does not contribute any methods to the event.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.callcontrol.events.CallCtlTermEv

public interface CallCtlTermEv
extends CallCtlEv, TermEv

Interface
javax.telephony.callcontrol.events.CallCtlTermDoNotDisturbEv

public interface CallCtlTermDoNotDisturbEv
extends CallCtlTermEv

The call control terminal do−not−distrub attribute has changed.

Variable Index

o ID
Event id

Method Index

o getDoNotDisturbState()
The new do not disturb state (true or false)

Variables

o ID

 public static final int ID

Event id

Methods

o getDoNotDisturbState

 public abstract boolean getDoNotDisturbState()

The new do not disturb state (true or false)

package javax.telephony.capabilities

Interface Index

AddressCapabilities
CallCapabilities
ConnectionCapabilities
ProviderCapabilities
TerminalCapabilities
TerminalConnectionCapabilities

Interface javax.telephony.capabilities.AddressCapabilities

public interface AddressCapabilities

The AddressCapabilities interface represents the initial capabilities interface for the
Address. This interface supports basic queries for the core package.

Applications obtain the static Address capabilities via the
Provider.getAddressCapabilities() method, and the dynamic
capabilities via the Address.getCapabilities() method. This
interface is used to represent both static and dynamic capabilities.

Any package which extends the core Address interface should also
extend this interface to provide additional capability queries for
that particular package.

See Also:
Provider, Address

Method Index

o isObservable ()
Returns true if this Address can be observed, false otherwise.

Methods

o isObservable

 public abstract boolean isObservable()

Returns true if this Address can be observed, false otherwise.

Returns:
True if this Address can be observed, false otherwise.

Interface javax.telephony.capabilities.CallCapabilities

public interface CallCapabilities

The CallCapabilities interface represents the initial capabilities interface for the
Call. This interface supports basic queries for the core package.

Applications obtain the static Call capabilities via the
Provider.getCallCapabilities() method, and the dynamic capabilities
via the Call.getCapabilities() method. This interface is used to
represent both static and dynamic capabilities.

Any package which extends the core Call interface should also extend
this interface to provide additional capability queries for that
particular package.

See Also:
Provider, Call

Method Index

o canConnect ()
Returns true if the application can invoke Call.connect(), false
otherwise.

o isObservable ()
Returns true if this Call can be observed, false otherwise.

Methods

o canConnect

 public abstract boolean canConnect()

Returns true if the application can invoke Call.connect() , false otherwise.

Returns:
True if the application can perform a connect, false otherwise.

o isObservable

 public abstract boolean isObservable()

Returns true if this Call can be observed, false otherwise.

Returns:
True if this Call can be observed, false otherwise.

Interface
javax.telephony.capabilities.ConnectionCapabilities

public interface ConnectionCapabilities

The ConnectionCapabilities interface represents the initial capabilities interface for
the Connection. This interface supports basic queries for the core package.

Applications obtain the static Connection capabilities via the
Provider.getConnectionCapabilities() method, and the dynamic
capabilities via the Connection.getCapabilities() method. This
interface is used to represent both static and dynamic capabilities.

Any package which extends the core Connection interface should also
extend this interface to provide additional capability queries for
that particular package.

See Also:
Provider, Connection

Method Index

o canDisconnect ()
Returns true if the application can invoke
Connection.disconnect()perform a disconnect(), false otherwise.

Methods

o canDisconnect

 public abstract boolean canDisconnect()

Returns true if the application can invoke Connection.disconnect() perform a
disconnect(), false otherwise.

Returns:
True if the application can disconnect, false otherwise.

Interface javax.telephony.capabilities.ProviderCapabilities

public interface ProviderCapabilities

The ProviderCapabilities interface represents the initial capabilities interface for
the Provider. This interface supports basic queries for the core package.

Applications obtain the static Provider capabilities via the
Provider.getProviderCapabilities() method, and the dynamic
capabilities via the Provider.getCapabilities() method. This
interface is used to represent both static and dynamic capabilities.

Any package which extends the core Provider interface should also
extend this interface to provide additional capability queries for
that particular package.

See Also:
Provider

Method Index

o isObservable ()
Returns true if this Provider can be observed, false otherwise.

Methods

o isObservable

 public abstract boolean isObservable()

Returns true if this Provider can be observed, false otherwise.

Returns:
True if this Provider can be observed, false otherwise.

Interface javax.telephony.capabilities.TerminalCapabilities

public interface TerminalCapabilities

The TerminalCapabilities interface represents the initial capabilities interface for
the Terminal. This interface supports basic queries for the core package.

Applications obtain the static Terminal capabilities via the
Provider.getTerminalCapabilities() method, and the dynamic
capabilities via the Terminal.getCapabilities() method. This
interface is used to represent both static and dynamic capabilities.

Any package which extends the core Terminal interface should also
extend this interface to provide additional capability queries for
that particular package.

See Also:
Provider, Terminal

Method Index

o isObservable ()
Returns true if this Terminal is observable, false otherwise.

Methods

o isObservable

 public abstract boolean isObservable()

Returns true if this Terminal is observable, false otherwise.

Returns:
True if this Terminal is observable, false otherwise.

Interface
javax.telephony.capabilities.TerminalConnectionCapabilities

public interface TerminalConnectionCapabilities

The TerminalConnectionCapabilities interface represents the initial capabilities
interface for the TerminalConnection. This interface supports basic queries for the core
package.

Applications obtain the static TerminalConnection capabilities via the
Provider.getTerminalConnectionCapabilities() method, and the dynamic
capabilities via the TerminalConnection.getCapabilities() method.
This interface is used to represent both static and dynamic
capabilities.

Any package which extends the core TerminalConnection interface
should also extend this interface to provide additional capability
queries for that particular package.

See Also:
Provider, TerminalConnection

Method Index

o canAnswer ()
Returns true if the application can invoke
TerminalConnection.answer(), false otherwise.

Methods

o canAnswer

 public abstract boolean canAnswer()

Returns true if the application can invoke TerminalConnection.answer(), false
otherwise.

Returns:
True if the application can answer, false otherwise.

package javax.telephony.events

Interface Index

AddrEv
AddrObservationEndedEv
CallActiveEv
CallEv
CallInvalidEv
CallObservationEndedEv
ConnAlertingEv
ConnConnectedEv
ConnCreatedEv
ConnDisconnectedEv
ConnEv
ConnFailedEv
ConnInProgressEv
ConnUnknownEv
Ev
ProvEv
ProvInServiceEv
ProvObservationEndedEv
ProvOutOfServiceEv
ProvShutdownEv
TermConnActiveEv
TermConnCreatedEv
TermConnDroppedEv
TermConnEv
TermConnPassiveEv
TermConnRingingEv
TermConnUnknownEv
TermEv
TermObservationEndedEv

Interface javax.telephony.events.Ev

public interface Ev

Introduction

The Ev interface is the parent of all JTAPI event interfaces. All JTAPI event interfaces
extend this interface, either directly or indirectly. Event interfaces within each JTAPI
package are organized in a hierarchical fashion. The architecture of the core package
event hierarchy is described later.

The JTAPI event system notifies applications when changes in various JTAPI object
occur. Each individual change in an object is represented by an event sent to the
appropriate observer. Because several changes may happen to an object at once, events
are delivered as a batch. A batch of events represents a series of events and changes to
the call model which happened exactly at the same time. For this reason, events are
delivered to observers as arrays.

Event IDs

Each event carries a corresponding identification integer. The Ev.getID() method
returns this identification number for each event. The actual event identification integer
is defined in each of the specific event interfaces. Each event interface must carry a
unique id.

Cause Codes

Each events carries a cause or a reason why the event happened. The Ev.getCause()
method returns this cause value. The different types of cause values are also defined in
this interface.

Core Package Event Hierarchy

The core package defines a hierarchy of event interfaces. The base of this hierarchy is
the Ev interface. Directly extending this interface are those events interfaces for each
object which supports an observer: ProvEv , CallEv , AddrEv , and TermEv .

Since Connection and TerminalConnection events are reported via the CallObserver
interface, the ConnEv and TermConnEv interfaces extends the CallEv interface.

The following diagram illustrates the complete core package event structure.

[IMAGE]

Meta Codes

The Ev.getMetaCode() method returns the meta code for the event. Events are
grouped together using meta codes to provide a higher−level description of an update to
the call model. Since events represent singular changes in one particular object in the
call model, it may be difficult for the application to infer a higher−level interpretation of
several of these singular events. Meta codes exist on events to assist the application in
this regard.

Events which belong to the same higher−level action and contain the same meta code
are reported consecutively in an event batch sent to an observer. In fact, multiple meta
code grouping of events may exist in a single event batch. In that case, the
Ev.isNewMetaEvent() method is used to indicate the beginning of a new meta code
event grouping. This method also indicates whether a meta code grouping exists across
event batch boundaries. That is, events belonging to the same meta code grouping may
be delivered in two contiguous event batches.

There are five types of meta codes which pertain to individual calls, and two which
pertain to a mutli−call action, and two miscellaneous meta codes. The five meta codes
which pertain to individual calls are:

Ev.META_CALL_STARTING Indicates that a new active call has been presented to the
application, either by an application creating a call and performing an action on it, or by
an incoming call to an object being observed by the application.
Ev.META_CALL_PROGRESS Indicates that the objects belonging to a call have
changed state, with the exception of Connections moving to
Connection.DISCONNECTED . For example, when a remote party answers a telephone
call and the corresponding Connection moves into the Connection.CONNECTED state,
this is the meta code associated with the resulting batch of events.
Ev.META_CALL_ADDING_PARTY Indicates that a party has been added to the call. A
"party" corresponds to a Connection being added. Note that if a TerminalConnection is
added, it carries a meta code of Ev.META_CALL_PROGRESS.
Ev.META_CALL_REMOVING_PARTY Indicates that a party (i.e. Connection) has been
removed from the call by moving into the Connection.DISCONNECTED state.
Ev.META_CALL_ENDING Indicates that an entire telephone call has ended, which
implies the call has moved into the Call.INVALID state and all of its Connections have
moved into the Connection.DISCONNECTED state.
The two meta codes pertaining to a mutli−call actions are as follows:
Ev.META_CALL_MERGING Indicates that a party has moved from one call to another
as part of the two calls merging. A common example is when two telephone calls are
conferenced. Ev.META_CALL_TRANSFERRING Indicates that a party has moved from
one call to another as part of one call being transferred to another. The differs from
Ev.META_CALL_MERGING because a common party leaves both calls.
The two miscellaneous meta codes are as follows: Ev.META_SNAPSHOT Indicates that
the sequence of events are part of a "snapshot" given to the application to bring it
up−to−date with the current state of the call model. Ev.META_UNKNOWN Indicates

that the meta code is unknown for the event.

Variable Index

o CAUSE_CALL_CANCELLED
Cause code indicating the user has terminated call without going on−hook.

o CAUSE_DEST_NOT_OBTAINABLE
Cause code indicating the destination is not available.

o CAUSE_INCOMPATIBLE_DESTINATION
Cause code indicating that a call has encountered an incompatible destination.

o CAUSE_LOCKOUT
Cause code indicating that a call encountered inter−digit timeout while dialing.

o CAUSE_NETWORK_CONGESTION
Cause code indicating call encountered network congestion.

o CAUSE_NETWORK_NOT_OBTAINABLE
Cause code indicating call could not reach a destination network.

o CAUSE_NEW_CALL
Cause code indicating that a new call.

o CAUSE_NORMAL
Cause code indicating normal operation

o CAUSE_RESOURCES_NOT_AVAILABLE
Cause code indicating resources were not available.

o CAUSE_SNAPSHOT
Cause code indicating that the event is part of a snapshot of the current state of
the call.

o CAUSE_UNKNOWN
Cause code indicating the cause was unknown

o META_CALL_ADDITIONAL_PARTY
Meta code description for the addition of a party to call.

o META_CALL_ENDING
Meta code description for the entire call ending.

o META_CALL_MERGING
Meta code description for an action of merging two calls.

o META_CALL_PROGRESS
Meta code description for the progress of a call.

o META_CALL_REMOVING_PARTY
Meta code description for a party leaving the call.

o META_CALL_STARTING
Meta code description for the initiation or starting of a call.

o META_CALL_TRANSFERRING
Meta code description for an action of transferring one call to another.

o META_SNAPSHOT
Meta code description for a snapshot of events.

o META_UNKNOWN
Meta code is unknown.

Method Index

o getCause()
Returns the cause associated with this event.

o getID()
Returns the id of event.

o getMetaCode()
Returns the meta code associated with this event.

o getObserved()
Returns the object that is being observed.

o isNewMetaEvent()
Returns true when this event is the start of a meta code group.

Variables

o CAUSE_NORMAL

 public static final int CAUSE_NORMAL

Cause code indicating normal operation

o CAUSE_UNKNOWN

 public static final int CAUSE_UNKNOWN

Cause code indicating the cause was unknown

o CAUSE_CALL_CANCELLED

 public static final int CAUSE_CALL_CANCELLED

Cause code indicating the user has terminated call without going on−hook.

o CAUSE_DEST_NOT_OBTAINABLE

 public static final int CAUSE_DEST_NOT_OBTAINABLE

Cause code indicating the destination is not available.

o CAUSE_INCOMPATIBLE_DESTINATION

 public static final int CAUSE_INCOMPATIBLE_DESTINATION

Cause code indicating that a call has encountered an incompatible destination.

o CAUSE_LOCKOUT

 public static final int CAUSE_LOCKOUT

Cause code indicating that a call encountered inter−digit timeout while dialing.

o CAUSE_NEW_CALL

 public static final int CAUSE_NEW_CALL

Cause code indicating that a new call.

o CAUSE_RESOURCES_NOT_AVAILABLE

 public static final int CAUSE_RESOURCES_NOT_AVAILABLE

Cause code indicating resources were not available.

o CAUSE_NETWORK_CONGESTION

 public static final int CAUSE_NETWORK_CONGESTION

Cause code indicating call encountered network congestion.

o CAUSE_NETWORK_NOT_OBTAINABLE

 public static final int CAUSE_NETWORK_NOT_OBTAINABLE

Cause code indicating call could not reach a destination network.

o CAUSE_SNAPSHOT

 public static final int CAUSE_SNAPSHOT

Cause code indicating that the event is part of a snapshot of the current state of
the call.

o META_CALL_STARTING

 public static final int META_CALL_STARTING

Meta code description for the initiation or starting of a call. This implies that the
call is a new call and in the active state with at least one Connection added to it.

o META_CALL_PROGRESS

 public static final int META_CALL_PROGRESS

Meta code description for the progress of a call. This indicates an update in state of
certain objects in the call, or the addition of TerminalConnections (but not
Connections).

o META_CALL_ADDITIONAL_PARTY

 public static final int META_CALL_ADDITIONAL_PARTY

Meta code description for the addition of a party to call. This includes adding a
connection to the call.

o META_CALL_REMOVING_PARTY

 public static final int META_CALL_REMOVING_PARTY

Meta code description for a party leaving the call. This includes exactly one
Connection moving to the Connection.DISCONNECTED state.

o META_CALL_ENDING

 public static final int META_CALL_ENDING

Meta code description for the entire call ending. This includes the call going to
Call.INVALID , all of the Connections moving to the
Connection.DISCONNECTED state.

o META_CALL_MERGING

 public static final int META_CALL_MERGING

Meta code description for an action of merging two calls. This involves the removal
of one party from one call and the addition of the same party to another call.

o META_CALL_TRANSFERRING

 public static final int META_CALL_TRANSFERRING

Meta code description for an action of transferring one call to another. This
involves the removal of parties from one call and the addition to another call, and
the common party dropping off completely.

o META_SNAPSHOT

 public static final int META_SNAPSHOT

Meta code description for a snapshot of events.

o META_UNKNOWN

 public static final int META_UNKNOWN

Meta code is unknown.

Methods

o getCause

 public abstract int getCause()

Returns the cause associated with this event. Every event has a cause. The various
cause values are defined as public static final variables in this interface.

Returns:
The cause of the event.

o getMetaCode

 public abstract int getMetaCode()

Returns the meta code associated with this event. The meta code provides a
higher−level description of the event.

Returns:
The meta code for this event.

o isNewMetaEvent

 public abstract boolean isNewMetaEvent()

Returns true when this event is the start of a meta code group. This method is
used to distinguish two contiguous groups of events bearing the same meta code.

Returns:
True if this event represents a new meta code grouping, false otherwise.

o getID

 public abstract int getID()

Returns the id of event. Every event has an id. The defined id of each event
matches the object type of each event. The defined id allows applications to switch
on event id rather than having to use multiple "if instanceof" statements.

Returns:
The id of the event.

o getObserved

 public abstract Object getObserved()

Returns the object that is being observed.

Returns:
The object that is being observed.

Interface javax.telephony.events.AddrEv

public interface AddrEv
extends Ev

The AddrEv interface is the base interface for all Address− related events. All events
which pertain to the Address object must extend this interface. Events which extend this
interface are reported via the AddressObserver interface.

The only event defined in the core package for the Address is the
AddrObservationEndedEv .

The AddrEv.getAddress() method on this interface returns the Address associated
with the Address event.

See Also:
AddrObservationEndedEv, Ev, AddressObserver, Address

Method Index

o getAddress()
Returns the Address associated with this Address event.

Methods

o getAddress

 public abstract Address getAddress()

Returns the Address associated with this Address event.

Returns:
The Address associated with this event.

Interface javax.telephony.events.AddrObservationEndedEv

public interface AddrObservationEndedEv
extends AddrEv

The AddrObservationEndedEv event indicates that the application will
no longer receive Address events on the instance of the
AddressObserver. This interface extends the AddrEv interface and is
reported on the AddressObserver interface.

See Also:
AddrEv , AddressObserver

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.CallEv

public interface CallEv
extends Ev

The CallEv interface is the base interface for all Call−related events. All events which
pertain to the Call object must extend this interface. Events which extend this interface
are reported via the CallObserver interface.

The core package defines events which are reported when the Call changes state. These
events are: CallActiveEv and CallInvalidEv . Also, the core package defines the
CallObservationEndedEv event which is sent when the Call becomes unobservable.

The ConnEv and TermConnEv events extend this interface. This reflects the fact that all
Connection and TerminalConnection events are reported via the CallObserver
interface.

The CallEv.getCall() method on this interface returns the Call associated with the
Call event.

See Also:
CallActiveEv, CallInvalidEv, CallObservationEndedEv, Ev, ConnEv, TermConnEv
, CallObserver, Call

Method Index

o getCall()
Returns the Call object associated with this Call event.

Methods

o getCall

 public abstract Call getCall()

Returns the Call object associated with this Call event.

Returns:
The Call associated with this event.

Interface javax.telephony.events.CallActiveEv

public interface CallActiveEv
extends CallEv

The CallActiveEv interface indicates that the state of the Call object has changed to
Call.ACTIVE . This interface extends the CallEv interface and is reported via the
CallObserver interface.

See Also:
Call, CallObserver, CallEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.CallInvalidEv

public interface CallInvalidEv
extends CallEv

The CallInvalidEv interface indicates that the state of the Call object has changed to
Call.INVALID . This interface extends the CallEv interface and is reported via the
CallObserver interface.

See Also:
Call, CallObserver, CallEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.CallObservationEndedEv

public interface CallObservationEndedEv
extends CallEv

The CallObservationEndedEv event indicates that the application will
no longer receive Call events on the instance of the CallObserver
This interface extends the CallEv interface and is reported on the
CallObserver interface.

See Also:
CallEv , CallObserver

Variable Index

o ID
Event id

Method Index

o getObserved ()

Variables

o ID

 public static final int ID

Event id

Methods

o getObserved

 public abstract Object getObserved()

Interface javax.telephony.events.ConnEv

public interface ConnEv
extends CallEv

The ConnEv interface is the base event interface for all Connection−related events. All
events which pertain to the Connection object must extend this interface. This interface
extends the CallEv interface and therefore is reported via the CallObserver interface.

The core package defines events which are reported when the Connection changes state.
These events are: ConnInProgressEv , ConnAlertingEv , ConnConnectedEv ,
ConnDisconnectedEv , ConnFailedEv , and ConnUnknownEv. Also, the
ConnCreatedEv is sent when a new Connection is created.

The ConnEv.getConnection() method on this interface returns the Connection
associated with this Connection event.

See Also:
Connection, CallObserver, CallEv, ConnCreatedEv, ConnInProgressEv,
ConnAlertingEv, ConnConnectedEv, ConnDisconnectedEv, ConnFailedEv,
ConnUnknownEv

Method Index

o getConnection()
Returns the Connection associated with this Connection event.

Methods

o getConnection

 public abstract Connection getConnection()

Returns the Connection associated with this Connection event.

Returns:
The Connection associated with this event.

Interface javax.telephony.events.ConnAlertingEv

public interface ConnAlertingEv
extends ConnEv

The ConnAlertingEv interface indicates that the state of the Connection object has
changed to Connection.ALERTING . This interface extends the ConnEv interface and is
reported via the CallObserver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ConnConnectedEv

public interface ConnConnectedEv
extends ConnEv

The ConnConnectedEv interface indicates that the state of the Connection object has
changed to Connection.CONNECTED . This interface extends the ConnEv interface and
is reported via the CallObserver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ConnCreatedEv

public interface ConnCreatedEv
extends ConnEv

The ConnUnknownEv interface indicates that a new Connection object has been created.
This interface extends the ConnEv interface and is reported via the CallObserver
interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ConnDisconnectedEv

public interface ConnDisconnectedEv
extends ConnEv

The ConnDisconnectedEv interface indicates that the state of the Connection object
has changed to Connection.DISCONNECTED . This interface extends the ConnEv
interface and is reported via the CallObserver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ConnFailedEv

public interface ConnFailedEv
extends ConnEv

The ConnFailedEv interface indicates that the state of the Connection object has
changed to Connection.FAILED . This interface extends the ConnEv interface and is
reported via the CallObserver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ConnInProgressEv

public interface ConnInProgressEv
extends ConnEv

The ConnInProgressEv interface indicates that the state of the Connection object has
changed to Connection.IN_PROGRESS . This interface extends the ConnEv interface
and is reported via the CallObserver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ConnUnknownEv

public interface ConnUnknownEv
extends ConnEv

The ConnUnknownEv interface indicates that the state of the Connection object has
changed to Connection.UNKNOWN . This interface extends the ConnEv interface and is
reported via the CallObserver interface.

See Also:
Connection, CallObserver, ConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermConnEv

public interface TermConnEv
extends CallEv

The TermConnEv interface is the base event interface for all
TerminalConnection−related events. All events which pertain to the
TerminalConnection object must extend this interface. This interface extends the
CallEv interface and therefore is reported via the CallObserver interface.

The core package defines events which are reported when the TerminalConnection
changes state. These events are: TermConnRingingEv , TermConnActiveEv ,
TermConnPassiveEv , TermConnDroppedEv , and TermConnUnknownEv . Also, a
TermConnCreatedEv is sent when a new TerminalConnection is created.

The TermConnEv.getTerminalConnection() method on this interface returns the
TerminalConnection associated with this TerminalConnection event.

See Also:
TerminalConnection, CallObserver, CallEv, TermConnEv, TermConnRingingEv,
TermConnActiveEv, TermConnPassiveEv, TermConnDroppedEv,
TermConnUnknownEv

Method Index

o getTerminalConnection()
Returns the TerminalConnection associated with this event.

Methods

o getTerminalConnection

 public abstract TerminalConnection getTerminalConnection()

Returns the TerminalConnection associated with this event.

Returns:
The TerminalConnection associated with this event.

Interface javax.telephony.events.TermConnActiveEv

public interface TermConnActiveEv
extends TermConnEv

The TermConnActiveEv interface indicates that the state of the TerminalConnection
object has changed to TerminalConnection.ACTIVE . This interface extends the
TermConnEv interface and is reported via the CallObserver interface.

See Also:
TerminalConnection, CallObserver, TermConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermConnCreatedEv

public interface TermConnCreatedEv
extends TermConnEv

The TermConnDroppedEv interface indicates that a new TerminalConnection object has
been created. This interface extends the TermConnEv interface and is reported via the
CallObserver interface.

See Also:
TerminalConnection, CallObserver, TermConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermConnDroppedEv

public interface TermConnDroppedEv
extends TermConnEv

The TermConnDroppedEv interface indicates that the state of the TerminalConnection
object has changed to TerminalConnection.DROPPED . This interface extends the
TermConnEv interface and is reported via the CallObserver interface.

See Also:
TerminalConnection, CallObserver, TermConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermConnPassiveEv

public interface TermConnPassiveEv
extends TermConnEv

The TermConnPassiveEv interface indicates that the state of the TerminalConnection
object has changed to TerminalConnection.PASSIVE . This interface extends the
TermConnEv interface and is reported via the CallObserver interface.

See Also:
TerminalConnection, CallObserver, TermConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermConnRingingEv

public interface TermConnRingingEv
extends TermConnEv

The TermConnRingingEv interface indicates that the state of the TerminalConnection
object has changed to TerminalConnection.RINGING . This interface extends the
TermConnEv interface and is reported via the CallObserver interface.

See Also:
TerminalConnection, CallObserver, TermConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermConnUnknownEv

public interface TermConnUnknownEv
extends TermConnEv

The TermConnUnknownEv interface indicates that the state of the TerminalConnection
object has changed to TerminalConnection.UNKNOWN . This interface extends the
TermConnEv interface and is reported via the CallObserver interface.

See Also:
TerminalConnection, CallObserver, TermConnEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ProvEv

public interface ProvEv
extends Ev

The ProvEv interface is the base interface for all Provider− related events. All events
which pertain to the Provider object must extend this interface. Events which extend
this interface are reported via the ProviderObserver interface.

The core package defines events which are reported when the Provider changes state.
These events are: ProvInServiceEv , ProvOutOfServiceEv , and ProvShutdownEv .
Also, the core package defines the ProvObservationEndedEv event which is sent when
the Provider becomes unobservable.

The ProvEv.getProvider() method on this interface returns the Provider associated
with the Provider event.

See Also:
ProvInServiceEv, ProvOutOfServiceEv, ProvShutdownEv,
ProvObservationEndedEv, Ev, ProviderObserver, Provider

Method Index

o getProvider()
Returns the Provider associated with this Provider event.

Methods

o getProvider

 public abstract Provider getProvider()

Returns the Provider associated with this Provider event.

Returns:
The Provider associated with this event.

Interface javax.telephony.events.ProvInServiceEv

public interface ProvInServiceEv
extends ProvEv

The ProvInServiceEv interface indicates that the state of the Provider object has
changed to Provider.IN_SERVICE . This interface extends the ProvEv interface and is
reported via the ProviderObserver interface.

See Also:
Provider, ProviderObserver, ProvEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ProvObservationEndedEv

public interface ProvObservationEndedEv
extends ProvEv

The ProvObservationEndedEv event indicates that the application will
no longer receive Provider events on the instance of the
ProviderObserver. This interface extends the ProvEv interface and is
reported on the ProviderObserver interface.

See Also:
ProvEv , ProviderObserver

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ProvOutOfServiceEv

public interface ProvOutOfServiceEv
extends ProvEv

The ProvOutOfServiceEv interface indicates that the state of the Provider object has
changed to Provider.OUT_OF_SERVICE . This interface extends the ProvEv interface
and is reported via the ProviderObserver interface.

See Also:
Provider, ProviderObserver, ProvEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.ProvShutdownEv

public interface ProvShutdownEv
extends ProvEv

The ProvShutdownEv interface indicates that the state of the Provider object has
changed to Provider.SHUTDOWN . This interface extends the ProvEv interface and is
reported via the ProviderObserver interface.

See Also:
Provider, ProviderObserver, ProvEv

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface javax.telephony.events.TermEv

public interface TermEv
extends Ev

The TermEv interface is the base interface for all Terminal− related events. All events
which pertain to the Terminal object must extend this interface. Events which extend
this interface are reported via the TerminalObserver interface.

The only event defined in the core package for the Terminal is the
TermObservationEndedEv .

The TermEv.getTerminal() method on this interface returns the Terminal associated
with the Terminal event.

See Also:
TermObservationEndedEv, Ev, TerminalObserver, Terminal

Method Index

o getTerminal()
Returns the Terminal associated with this Terminal event.

Methods

o getTerminal

 public abstract Terminal getTerminal()

Returns the Terminal associated with this Terminal event.

Returns:
The Terminal associated with this event.

Interface javax.telephony.events.TermObservationEndedEv

public interface TermObservationEndedEv
extends TermEv

The TermObservationEndedEv event indicates that the application will
no longer receive Terminal events on the instance of the
TerminalObserver This interface extends the TermEv interface and is
reported on the TerminalObserver interface.

See Also:
TermEv, TerminalObserver

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

package javax.telephony.media

Interface Index

MediaCallObserver
MediaTerminalConnection

Interface javax.telephony.media.MediaCallObserver

public interface MediaCallObserver
extends CallObserver

The MediaCallObserver extends the CallObserver interface and reports all events
pertaining to the MediaTerminalConnection object. Events for this object are reported on
this observer because, in the core, TerminalConnection events are reported on the
CallObserver object.

This interface does not have any methods. All events for the MediaTerminalConnection
object are reported via the callChangedEvent() method on the CallObserver interface. All
MediaTerminalConnection events, therefore, extend the core TermConnEv interface
(which extends the core CallEv interface.

Applications which desire MediaTerminalConnection events implement this interface as
a "signal" to the implementation that is wants to be sent events for the
MediaTerminalConnection object.

Interface javax.telephony.media.MediaTerminalConnection

public interface MediaTerminalConnection
extends TerminalConnection

Introduction

The MediaTerminalConnection interface extends the TerminalConnection interface to
add media capabilities. Media streams are associated with the TerminalConnection
object in the call model. Therefore, different Terminals which are part of the same call at
the same Address may have their own media streams. Additionality, Terminals which
are part of more than one call have separate media streams for each of its calls.

The media interface consists of a base media API which supports all of the various types
of media−based telephony applications. A simplier, voice−based API exist for
applications which desire only the most simply voice−based media features. The base
media API is still under development. This specification only represent the voice API.

The voice API supports the following applications: routing voice data to/from the
telephone line to/from a workstation’s speaker of microphone; routing voice data to/from
the telephone line to/from audio files; starting and stoping of playing and recording; and
DTMF tone detection.

In this specification, "playing" is defined as sending information to the telephone line.
For example, an application would "play" an audio file to the telephone line for the
opposite parties to hear. The term "recording" is defines as receiving information from
the telephone line. For example, an application may "record" data from the telephone
line into a file on disk.

Playing

For playing, applications may either route data from a URL with the usePlayURL()
method or from the workstatation’s default microphone using the
useDefaultMicrophone() method. Note that if there is more than one microphone on the
workstation, then the default microphone may be set using the javax.telephony.phone
package. Applications begin playing using the startPlaying() method and stop playing
using the stopPlaying() method. If an application issues a startPlaying() after a
stopPlaying(), the implementation attempts to read from the media where it last left off,
if possible. If the application wishes to "rewind" the media to the beginning, it should
re−issue the usePlayURL() method.

Recording

For recording, applications may either route data to a URL with the useRecordURL()
method or to the workstation’s default speaker using the useDefaultSpeaker() method.
Note that if there is more than one speaker on the workstation, then the default speaker
may be set using the javax.telephony.phone package. Applications begin recording using
the startRecording() method and stop recording using the stopRecording() method. If an
application issues a startRecording() after a stopRecording(), the implementation
attempts to write to the media where it last left off, if possible. If the application wishes
to "overwrite" the media from the beginning, it should re−issue the useRecordURL()
method.

Variable Index

o AVAILABLE
Media is currently available on this terminal connection

o PLAYING
There is currently playing on this terminal connection

o RECORDING
There is currently recording on this terminal connection

o UNAVAILABLE
Media is currently not available on this terminal connection

Method Index

o generateDtmf(String)
o getMediaAvailability()

Returns the current media availability state, either AVAILABLE or
UNAVAILABLE.

o getMediaState()
Returns the current state of the terminal connection as a bit mask of PLAYING
and RECORDING.

o setDtmfDetection(boolean)
o startPlaying()

Start the playing.
o startRecording()

Start the recording.
o stopPlaying()

Stop the playing.
o stopRecording()

Stop the recording.
o useDefaultMicrophone()

Instructs the terminal connection to use the default microphone for playing to the
telephone line.

o useDefaultSpeaker()

Instructs the terminal connection to use the default speaker for recording from the
telephone line.

o usePlayURL(URL)
Instructs the terminal connection to use a file for playing to the telephone line.

o useRecordURL(URL)
Instructs the terminal connection to use a file for recording from the telephone
line.

Variables

o AVAILABLE

 public static final int AVAILABLE

Media is currently available on this terminal connection

o UNAVAILABLE

 public static final int UNAVAILABLE

Media is currently not available on this terminal connection

o PLAYING

 public static final int PLAYING

There is currently playing on this terminal connection

o RECORDING

 public static final int RECORDING

There is currently recording on this terminal connection

Methods

o getMediaAvailability

 public abstract int getMediaAvailability() throws MethodNotSupportedException

Returns the current media availability state, either AVAILABLE or
UNAVAILABLE.

Returns:
The current availability of the media channel.

o getMediaState

 public abstract int getMediaState() throws MethodNotSupportedException

Returns the current state of the terminal connection as a bit mask of PLAYING
and RECORDING.

Returns:
The current state of playing or recording.

o useDefaultSpeaker

 public abstract void useDefaultSpeaker() throws PrivilegeViolationException, ResourceUnavailableExce

Instructs the terminal connection to use the default speaker for recording from the
telephone line.

Throws: PrivilegeViolationException
Indicates the application is not permitted to direct voice media to the default
speaker.

Throws: ResourceUnavailableException
Indicates that the speaker is not currently available for use.

o useRecordURL

 public abstract void useRecordURL(URL url) throws PrivilegeViolationException, ResourceUnavailableEx

Instructs the terminal connection to use a file for recording from the telephone
line.

Parameters:
url − The URL−destination for the voice data for recording.

Throws: PrivilegeViolationException
Indicates the application is not permitted to use the give URL for recording.

Throws: ResourceUnavailableException
Indicates the URL given is not available, either because the URL was invalid
or a network problem occurred.

o useDefaultMicrophone

 public abstract void useDefaultMicrophone() throws PrivilegeViolationException, ResourceUnavailableE

Instructs the terminal connection to use the default microphone for playing to the
telephone line.

Throws: PrivilegeViolationException
Indicates the application is not permitted to direct voice media from the
default microphone.

Throws: ResourceUnavailableException
Indicates that the microphone is not currently available for use.

o usePlayURL

 public abstract void usePlayURL(URL url) throws PrivilegeViolationException, ResourceUnavailableExce

Instructs the terminal connection to use a file for playing to the telephone line.

Parameters:
url − The URL−source of the voice data to play. valid or available source of
voice data.

Throws: PrivilegeViolationException
Indicates the application is not permitted to use the give URL for playing.

Throws: ResourceUnavailableException
Indicates the URL given is not available, either because the URL was invalid
or a network problem occurred.

o startPlaying

 public abstract void startPlaying() throws MethodNotSupportedException, ResourceUnavailableException

Start the playing. This method returns once playing has begun, that is, when
getMediaState() & PLAYING == PLAYING.

Throws: MethodNotSupportedException
The implementation does not support playing to the telephone line.

Throws: ResourceUnavailableException
Indicates playing is not able to be started because some resource is
unavailable.

Throws: InvalidStateException
Indicates the TerminalConnection is not in the media channel available
state.

o stopPlaying

 public abstract void stopPlaying() throws MethodNotSupportedException

Stop the playing. This method returns once the playing has stopped, that is, when
getMediaState() & PLAYING == 0. If playing is not currently taking place, this
method has no effect.

o startRecording

 public abstract void startRecording() throws MethodNotSupportedException, ResourceUnavailableExcepti

Start the recording. This method returns once the recording has started, that is,
when getMediaState() & RECORDING == RECORDING.

Throws: MethodNotSupportedException
The implementation does not support recording from the telephone line.

Throws: ResourceUnavailableException
Indicates recording is not able to be started because some resource is
unavailable.

Throws: InvalidStateException
Indicates the TerminalConnection is not in the media channel available
state.

o stopRecording

 public abstract void stopRecording() throws MethodNotSupportedException

Stop the recording. This method returns once the recording has stopped, that is,
when getMediaState() & RECORDING == 0. If recording is not currently taking
place, this method has no effect.

o setDtmfDetection

 public abstract void setDtmfDetection(boolean enable) throws MethodNotSupportedException, ResourceUn

o generateDtmf

 public abstract void generateDtmf(String digits) throws MethodNotSupportedException, ResourceUnavail

package javax.telephony.media.capabilities

Interface Index

MediaTerminalConnectionCapabilities

Interface
javax.telephony.media.capabilities.MediaTerminalConnectionCapabilities

public interface MediaTerminalConnectionCapabilities
extends TerminalConnectionCapabilities

The MediaTerminalConnectionCapabilities interface extends the
TerminalConnectionCapabilities interface. This interface provides capabilities methods
for the MediaTerminalConnection object. The methods in this interface provides
applications the ability to query for those actions where are possible on the
MediaTerminalConnection interface as part of the capabilities package.

Method Index

o canDetectDtmf()
This method returns true if the application is able to detect DTMF−tones on the
telephone line.

o canGenerateDtmf()
This method returns true if the application is able to generate DTMF− tones the
telephone line.

o canStartPlaying()
This method returns true if the application is able to start playing to the telephone
line.

o canStartRecording()
This method returns true if the application is able to start recording from the
telephone line.

o canStopPlaying()
This method returns true if the application is able to stop playing to the telephone
line.

o canStopRecording()
This method returns true if the application is able to stop recording from the
telephone line.

o canUseDefaultMicrophone()
This method returns true if the application can invoke the useDefaultMicrophone()
method and route the media from the default microphone.

o canUseDefaultSpeaker()
This method returns true if the application can invoke the useDefaultSpeaker()
method and route the media from the telephone line to the default speaker.

o canUsePlayURL()
This method returns true if the application can invoke the usePlayURL() method
and route voice media from URL’s.

o canUseRecordURL()
This method returns true if the application can invoke the useRecordURL()
method and route voice media to URL’s.

Methods

o canUseDefaultSpeaker

 public abstract boolean canUseDefaultSpeaker()

This method returns true if the application can invoke the useDefaultSpeaker()
method and route the media from the telephone line to the default speaker.
Returns false otherwise.

Returns:
True if the application can route voice media to the default speaker, false
otherwise.

o canUseDefaultMicrophone

 public abstract boolean canUseDefaultMicrophone()

This method returns true if the application can invoke the useDefaultMicrophone()
method and route the media from the default microphone. Returns false otherwise.

Returns:
True if the application can route voice media from the default microphone,
false otherwise.

o canUseRecordURL

 public abstract boolean canUseRecordURL()

This method returns true if the application can invoke the useRecordURL()
method and route voice media to URL’s. Returns false otherwise.

Returns:
True if the application can route voice media to URL’s, false otherwise.

o canUsePlayURL

 public abstract boolean canUsePlayURL()

This method returns true if the application can invoke the usePlayURL() method
and route voice media from URL’s. Returns false otherwise.

Returns:
True if the application can route voice media from URL’s, false otherwise.

o canStartPlaying

 public abstract boolean canStartPlaying()

This method returns true if the application is able to start playing to the telephone
line. Returns false otherwise.

Returns:
True if the application can begin playing to the telephone line, false
otherwise.

o canStopPlaying

 public abstract boolean canStopPlaying()

This method returns true if the application is able to stop playing to the telephone
line. Returns false otherwise.

Returns:
True if the application can stop playing to the telephone line, false otherwise.

o canStartRecording

 public abstract boolean canStartRecording()

This method returns true if the application is able to start recording from the
telephone line. Returns false otherwise.

Returns:
True if the application can start recording from the telephone line, false
otherwise.

o canStopRecording

 public abstract boolean canStopRecording()

This method returns true if the application is able to stop recording from the
telephone line. Returns false otherwise.

Returns:
True if the application can stop recording from the telephone line, false
otherwise.

o canDetectDtmf

 public abstract boolean canDetectDtmf()

This method returns true if the application is able to detect DTMF−tones on the

telephone line. Returns false otherwise. This method indicates whether the
application is able to invoke the setDtmfDetection(true) method.

Returns:
True if the application can detect DTMF−tones from the telephone line, false
otherwise.

o canGenerateDtmf

 public abstract boolean canGenerateDtmf()

This method returns true if the application is able to generate DTMF− tones the
telephone line. Returns false otherwise.

Returns:
True if the application can generate DTMF−tones to the telephone line, false
otherwise.

package javax.telephony.media.events

Interface Index

MediaEv
MediaTermConnAvailableEv
MediaTermConnDtmfEv
MediaTermConnEv
MediaTermConnStateEv
MediaTermConnUnavailableEv

Interface javax.telephony.media.events.MediaEv

public interface MediaEv
extends Ev

The MediaEv is the base event for all events in the Media package. Each event in this
package must extend this interface. This interface is not meant to be a public interface,
it is just a building block for other event interfaces.

The MediaEv interface contains getMediaCause(), which returns the reason for the
event.

Variable Index

o CAUSE_NORMAL
Cause code indicating normal operation

o CAUSE_UNKNOWN
Cause code indicating the cause was unknown

Method Index

o getMediaCause()
Returns the media and core causes associated with this event.

Variables

o CAUSE_NORMAL

 public static final int CAUSE_NORMAL

Cause code indicating normal operation

o CAUSE_UNKNOWN

 public static final int CAUSE_UNKNOWN

Cause code indicating the cause was unknown

Methods

o getMediaCause

 public abstract int getMediaCause()

Returns the media and core causes associated with this event. Every event has a
cause. The various cause values are defined as public static final variablies in this
interface, with the exception of CAUSE_NORMAL and CAUSE_UNKNOWN,
which are defined in the core.

Returns:
s The cause of the event.

Interface javax.telephony.media.events.MediaTermConnEv

public interface MediaTermConnEv
extends MediaEv, TermConnEv

Interface
javax.telephony.media.events.MediaTermConnAvailableEv

public interface MediaTermConnAvailableEv
extends MediaTermConnEv

The MediaTermConnAvailableEv interface indicates that media is currently available on
the TerminalConnection. Media becomes available on the TerminalConnection when the
state of the TerminalConnection changes with respect to the telephone call. For example,
when a TerminalConnection becomes active on the telephone call, media is made
available to the application. This event interface extends the
javax.telephony.events.TermConnEv interface, through which the application may
obtain the TerminalConnection object associated with this event.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

Interface
javax.telephony.media.events.MediaTermConnDtmfEv

public interface MediaTermConnDtmfEv
extends MediaTermConnEv

The MediaTermConnDtmfEv interface indicates that a DTMF−tone has been detection
on the telephone line. This event interface extends the
javax.telephony.events.TermConnEv interface, through which the application may
obtain the TerminalConnection object associated with this event.

Applications may obtain the detected DTMF−digit via the getDtmfDigit() method on this
interface.

Variable Index

o ID
Event id

Method Index

o getDtmfDigit()
Returns the DTMF−digit which has been recognized.

Variables

o ID

 public static final int ID

Event id

Methods

o getDtmfDigit

 public abstract char getDtmfDigit()

Returns the DTMF−digit which has been recognized. This digit may either be the
numbers zero through nine (0−9), the asterisk (*), or the pound (#).

Returns:
The DTMF−digit which has been detected.

Interface
javax.telephony.media.events.MediaTermConnStateEv

public interface MediaTermConnStateEv
extends MediaTermConnEv

The MediaTermConnStateEv interface indicates that the playing/recording state has
changed on the TerminalConnection object. This event interface extends the
javax.telephony.events.TermConnEv interface, through which the application may
obtain the TerminalConnection object associated with this event.

Applications may obtain the new state via the getMediaState() method on this interface,
or via the MediaTerminalConnection.getMediaState() method.

Variable Index

o ID
Event id

Method Index

o getMediaState()
Returns the current state of playing/recording on the TerminalConnection in the
form of a bit mask.

Variables

o ID

 public static final int ID

Event id

Methods

o getMediaState

 public abstract int getMediaState()

Returns the current state of playing/recording on the TerminalConnection in the
form of a bit mask.

Returns:
The current playing/recording state.

Interface
javax.telephony.media.events.MediaTermConnUnavailableEv

public interface MediaTermConnUnavailableEv
extends MediaTermConnEv

The MediaTermConnUnavailableEv interface indicates that there is currently no media
available on the TerminalConnection. This event is most likely cause by a change in
state of the TerminalConnection which respect to the call. For example, when someone
goes on hold, media is no longer avaiable on that TerminalConnection. This event
interface extends the javax.telephony.events.TermConnEv interface, through which the
application may obtain the TerminalConnection object associated with this event.

Variable Index

o ID
Event id

Variables

o ID

 public static final int ID

Event id

package javax.telephony.phone

Interface Index

Component
ComponentGroup
PhoneButton
PhoneDisplay
PhoneGraphicDisplay
PhoneHookswitch
PhoneLamp
PhoneMicrophone
PhoneRinger
PhoneSpeaker
PhoneTerminal
PhoneTerminalObserver

Interface javax.telephony.phone.Component

public interface Component

The Component interface is the base interface for all individual components used to
model telephone hardware. Each individual component extends this interface.

Each component is identified not only by its type, but also by an identifying name, which
may be obtained via the getName() method on this interface.

Method Index

o getName()
Returns the name of the Component.

Methods

o getName

 public abstract String getName()

Returns the name of the Component.

Returns:
The name of this component.

Interface javax.telephony.phone.ComponentGroup

public interface ComponentGroup

A ComponentGroup is a grouping of Component objects. Terminals may be composed of
zero or more ComponentGroups. Applications query the PhoneTerminal interface for the
available ComponentGroups. Then they query this interface for the components which
make up this component group.

Variable Index

o HAND_SET
The component group is of type HAND_SET.

o HEAD_SET
The component group is of type HEAD_SET.

o OTHER
The component group is of type OTHER.

o PHONE_SET
The componet group is of type PHONE_SET.

o SPEAKER_PHONE
The component group is of type SPEAKER_PHONE.

Method Index

o activate()
Enables all routing of events or media stream between all Components of this
group and calls on any of the Addresses asociated with the parent Terminal.

o activate(Address)
Enables all routing of events or media stream between all Components of this
group and calls to the specified Address.

o deactivate()
Disables all routing of events or media stream between all Components of this
group and calls on any of the Addresses associated with the parent Terminal.

o deactivate(Address)
Disables all routing of events or media stream between all Components of this
group and the specified Address.

o getComponents()
Returns the groups components, null if the group contains zero components.

o getDescription()
Returns a string describing the component group.

o getType()
Returns the type of group, either HEAD_SET, HAND_SET, SPEAKER_PHONE,
PHONE_SET or OTHER.

Variables

o HEAD_SET

 public static final int HEAD_SET

The component group is of type HEAD_SET.

o HAND_SET

 public static final int HAND_SET

The component group is of type HAND_SET.

o SPEAKER_PHONE

 public static final int SPEAKER_PHONE

The component group is of type SPEAKER_PHONE.

o PHONE_SET

 public static final int PHONE_SET

The componet group is of type PHONE_SET.

o OTHER

 public static final int OTHER

The component group is of type OTHER.

Methods

o getType

 public abstract int getType()

Returns the type of group, either HEAD_SET, HAND_SET, SPEAKER_PHONE,
PHONE_SET or OTHER.

Returns:
The type of group.

o getDescription

 public abstract String getDescription()

Returns a string describing the component group.

Returns:
A string description of the component group.

o getComponents

 public abstract Component [] getComponents()

Returns the groups components, null if the group contains zero components.

Returns:
An array of Component objects.

o activate

 public abstract boolean activate()

Enables all routing of events or media stream between all Components of this
group and calls on any of the Addresses asociated with the parent Terminal.

Returns:
true if successful and false if unsuccessful.

o deactivate

 public abstract boolean deactivate()

Disables all routing of events or media stream between all Components of this
group and calls on any of the Addresses associated with the parent Terminal.

Returns:
true if successful and false if unsuccessful.

o activate

 public abstract boolean activate(Address address) throws InvalidArgumentException

Enables all routing of events or media stream between all Components of this
group and calls to the specified Address.

Parameters:
address − The Address that the group is to be activated on.

Returns:

true if successful and false if unsuccessful.
Throws: InvalidArgumentException

The provided Address is not valid for the Terminal.

o deactivate

 public abstract boolean deactivate(Address address) throws InvalidArgumentException

Disables all routing of events or media stream between all Components of this
group and the specified Address.

Parameters:
address − The Address that the group is to be deactivated on.

Returns:
true if successful and false if unsuccessful.

Throws: InvalidArgumentException
The provided Address is not valid for the Terminal.

Interface javax.telephony.phone.PhoneButton

public interface PhoneButton
extends Component

Method Index

o buttonPress()
Press the button.

o getAssociatedPhoneLamp()
Returns the associated lamp information.

o getInfo()
Returns the button information.

o setInfo(String)
Sets button information.

Methods

o getInfo

 public abstract String getInfo()

Returns the button information.

Returns:
The string button information.

o setInfo

 public abstract void setInfo(String buttonInfo)

Sets button information.

Parameters:
buttonInfo − The button information.

o getAssociatedPhoneLamp

 public abstract PhoneLamp getAssociatedPhoneLamp()

Returns the associated lamp information.

Returns:
The associated lamp object.

o buttonPress

 public abstract void buttonPress()

Press the button.

Interface javax.telephony.phone.PhoneDisplay

public interface PhoneDisplay
extends Component

Method Index

o getDisplay(int, int)
Returns the displayed string starting at coordinates (x, y).

o getDisplayColumns()
Returns the number of display columns.

o getDisplayRows()
Returns the number of display rows.

o setDisplay(String, int, int)
Displays the given string starting at coordinates (x, y).

Methods

o getDisplayRows

 public abstract int getDisplayRows()

Returns the number of display rows.

Returns:
The number of display rows.

o getDisplayColumns

 public abstract int getDisplayColumns()

Returns the number of display columns.

Returns:
The number of display columns.

o getDisplay

 public abstract String getDisplay(int x,
 int y) throws InvalidArgumentException

Returns the displayed string starting at coordinates (x, y).

Parameters:
x − The x−coordinate.
y − The y−coordinate.

Returns:
The string displayed starting at coordinates (x, y).

Throws: InvalidArgumentException
Either the coordinates provided were invalid.

o setDisplay

 public abstract void setDisplay(String string,
 int x,
 int y) throws InvalidArgumentException

Displays the given string starting at coordinates (x, y).

Parameters:
string − The string to display.
x − The x−coordinate.
y − The y−coordinate.

Throws: InvalidArgumentException
Either the coordinates provided were invalid.

Interface javax.telephony.phone.PhoneGraphicDisplay

public interface PhoneGraphicDisplay
extends Component

A PhoneGraphicsDisplay represents a display device that is pixel−addressable, and
which can be drawn into using AWT primitives.

Method Index

o getGraphics()
Returns a Graphics object for drawing into the display.

o size()
Returns the size of the display.

Methods

o getGraphics

 public abstract Graphics getGraphics()

Returns a Graphics object for drawing into the display.

Returns:
A Graphic object, as defined in the AWT.

o size

 public abstract Dimension size()

Returns the size of the display.

Returns:
The size of the display, packaged in an AWT Dimension object.

Interface javax.telephony.phone.PhoneHookswitch

public interface PhoneHookswitch
extends Component

Variable Index

o OFF_HOOK
The Hookswitch is OFF_HOOK.

o ON_HOOK
The Hookswitch is ON_HOOK.

Method Index

o getHookSwitchState()
Returns the current state of the hookswitch.

o setHookSwitch(int)
Sets the state of the hookswitch to either ON_HOOK or OFF_HOOK.

Variables

o ON_HOOK

 public static final int ON_HOOK

The Hookswitch is ON_HOOK.

o OFF_HOOK

 public static final int OFF_HOOK

The Hookswitch is OFF_HOOK.

Methods

o setHookSwitch

 public abstract void setHookSwitch(int hookSwitchState) throws InvalidArgumentException

Sets the state of the hookswitch to either ON_HOOK or OFF_HOOK.

Parameters:
hookSwtichState − The desired state of the hook switch.

Throws: InvalidArgumentException
The provided hookswitch state is not valid.

o getHookSwitchState

 public abstract int getHookSwitchState()

Returns the current state of the hookswitch.

Returns:
The current state of the hookswitch.

Interface javax.telephony.phone.PhoneLamp

public interface PhoneLamp
extends Component

Variable Index

o LAMPMODE_BROKENFLUTTER
The lamp mode is BROKENFLUTTER, which is the superposition of flash and
flutter.

o LAMPMODE_FLASH
The lamp mode is FLASH, which means slow on and off.

o LAMPMODE_FLUTTER
The lamp mode is FLUUTER, which means fast on and off.

o LAMPMODE_OFF
The lamp mode is OFF.

o LAMPMODE_STEADY
The lamp is STEADY, which means continuously lit.

o LAMPMODE_WINK
The lamp mode is WINK.

Method Index

o getAssociatedPhoneButton()
Returns the button associated with the lamp.

o getMode()
Returns the current lamp mode.

o getSupportedModes()
Returns an array of supported lamp modes.

o setMode(int)
Sets the current lamp mode to a mode supported by the lamp and returns by
getSupportedModes().

Variables

o LAMPMODE_OFF

 public static final int LAMPMODE_OFF

The lamp mode is OFF.

o LAMPMODE_FLASH

 public static final int LAMPMODE_FLASH

The lamp mode is FLASH, which means slow on and off.

o LAMPMODE_STEADY

 public static final int LAMPMODE_STEADY

The lamp is STEADY, which means continuously lit.

o LAMPMODE_FLUTTER

 public static final int LAMPMODE_FLUTTER

The lamp mode is FLUUTER, which means fast on and off.

o LAMPMODE_BROKENFLUTTER

 public static final int LAMPMODE_BROKENFLUTTER

The lamp mode is BROKENFLUTTER, which is the superposition of flash and
flutter.

o LAMPMODE_WINK

 public static final int LAMPMODE_WINK

The lamp mode is WINK.

Methods

o getSupportedModes

 public abstract int[] getSupportedModes()

Returns an array of supported lamp modes.

Returns:
An array of supported lamp modes.

o setMode

 public abstract void setMode(int mode) throws InvalidArgumentException

Sets the current lamp mode to a mode supported by the lamp and returns by
getSupportedModes().

Parameters:
mode − The desired lamp mode.

Throws: InvalidArgumentException
The provided lamp mode is not valid.

o getMode

 public abstract int getMode()

Returns the current lamp mode.

Returns:
The current lamp mode.

o getAssociatedPhoneButton

 public abstract PhoneButton getAssociatedPhoneButton()

Returns the button associated with the lamp.

Returns:
The button associated with the lamp.

Interface javax.telephony.phone.PhoneMicrophone

public interface PhoneMicrophone
extends Component

Variable Index

o FULL
The full microhphone gain.

o MID
The microphone gain is MID.

o MUTE
The microphone gain is MUTE.

Method Index

o getGain()
Returns the current microphone gain.

o setGain(int)
Sets the microphone gain to a value between MUTE and FULL, inclusive.

Variables

o MUTE

 public static final int MUTE

The microphone gain is MUTE.

o MID

 public static final int MID

The microphone gain is MID.

o FULL

 public static final int FULL

The full microhphone gain.

Methods

o getGain

 public abstract int getGain()

Returns the current microphone gain.

Returns:
The current microphone gain.

o setGain

 public abstract void setGain(int gain) throws InvalidArgumentException

Sets the microphone gain to a value between MUTE and FULL, inclusive.

Parameters:
gain − A microphone gain between MUTE and FULL, inclusive.

Throws: InvalidArgumentException
The microphone gain is not valid.

Interface javax.telephony.phone.PhoneRinger

public interface PhoneRinger
extends Component

Variable Index

o FULL
Ringer volume definition for the ringer at maximum volume.

o MIDDLE
Ringer volume definition for the middle volume.

o OFF
Ringer volume definition for the ringer off.

Method Index

o getNumberOfRingPatterns()
Returns the number of available ringing patterns.

o getNumberOfRings()
Returns the number of complete ring cycles that the ringer has been ringing.

o getRingerPattern()
Returns the current ringer pattern.

o getRingerVolume()
Returns the current ringer volume.

o isRingerOn()
Returns true if the ringer is on, false otherwise.

o setRingerPattern(int)
Set the ringer pattern given an valid index number returned by
getNumberOfRingPatterns().

o setRingerVolume(int)
Sets the ringer volume between ZERO or FULL, inclusive.

Variables

o OFF

 public static final int OFF

Ringer volume definition for the ringer off.

o MIDDLE

 public static final int MIDDLE

Ringer volume definition for the middle volume.

o FULL

 public static final int FULL

Ringer volume definition for the ringer at maximum volume.

Methods

o isRingerOn

 public abstract int isRingerOn()

Returns true if the ringer is on, false otherwise.

Returns:
True if the ringer is on, false otherwise

o getRingerVolume

 public abstract int getRingerVolume()

Returns the current ringer volume.

Returns:
The current ringer volume.

o setRingerVolume

 public abstract void setRingerVolume(int volume) throws InvalidArgumentException

Sets the ringer volume between ZERO or FULL, inclusive.

Parameters:
volume − The ringer volume, between ZERO and FULL, inclusive.

Throws: InvalidArgumentException
The volume provided was not valid.

o getRingerPattern

 public abstract int getRingerPattern()

Returns the current ringer pattern.

Returns:
The current ringer pattern.

o getNumberOfRingPatterns

 public abstract int getNumberOfRingPatterns()

Returns the number of available ringing patterns. An index between zero and the
returns value minus one may be used for the setRingerPattern() method.

Returns:
The number of available ringer patterns.

o setRingerPattern

 public abstract void setRingerPattern(int ringerPattern) throws InvalidArgumentException

Set the ringer pattern given an valid index number returned by
getNumberOfRingPatterns().

Parameters:
ringerPattern − The desired ringer pattern.

Throws: InvalidArgumentException
The ring pattern provided was not valid.

o getNumberOfRings

 public abstract int getNumberOfRings()

Returns the number of complete ring cycles that the ringer has been ringing. A
value of 0 indicates that the ringer is not being rung.

Returns:
The current ringer count.

Interface javax.telephony.phone.PhoneSpeaker

public interface PhoneSpeaker
extends Component

Variable Index

o FULL
Speaker volume definition for highest volume.

o MID
Speaker volume definition for the middle volume.

o MUTE
Speaker volume definition for muting.

Method Index

o getVolume()
Returns the volume of the speaker.

o setVolume(int)
Sets the speaker or handset volume.

Variables

o MUTE

 public static final int MUTE

Speaker volume definition for muting.

o MID

 public static final int MID

Speaker volume definition for the middle volume.

o FULL

 public static final int FULL

Speaker volume definition for highest volume.

Methods

o getVolume

 public abstract int getVolume()

Returns the volume of the speaker.

Returns:
The volume of the speaker.

o setVolume

 public abstract void setVolume(int volume)

Sets the speaker or handset volume. The volume value may be anything between
MUTE or FULL, inclusive.

Parameters:
volume − The volume, between MUTE and FULL.

Interface javax.telephony.phone.PhoneTerminal

public interface PhoneTerminal
extends Terminal

The PhoneTerminal interface extends the Terminal interface to provide functionality for
the Phone package. It allows applications to obtain arrays of telephony Components
(each group is called a ComponentGroup) which represents the physical components of
telephones.

Method Index

o getComponentGroups()
Returns an array of ComponentGroup objects available on the Terminal.

Methods

o getComponentGroups

 public abstract ComponentGroup [] getComponentGroups()

Returns an array of ComponentGroup objects available on the Terminal. A
ComponentGroup object is composed of a number of Components. Examples of
Component objects include headsets, handsets, speakerphones, and buttons.
ComponentGroup objects group Components together.

Returns:
An array of ComponetGroup objects on this Terminal.

Interface javax.telephony.phone.PhoneTerminalObserver

public interface PhoneTerminalObserver
extends TerminalObserver

The PhoneTerminalObserver interface is used to report all Phone−related events. Note
that this observer does not have any method associated with it. Applications which
implement a TerminalObserver class should also implement this interface to indicate to
the implementation that it wants Phone−related events sent to it. If an application’s
observer does not implement this interface, phone−related events will not be sent to the
application.

package javax.telephony.phone.capabilities

Interface Index

ComponentCapabilities
ComponentGroupCapabilities

Interface
javax.telephony.phone.capabilities.ComponentCapabilities

public interface ComponentCapabilities

Method Index

o canControl()
Returns true if the component can be controlled.

o canObserve()
Returns true if the component can be observed.

Methods

o canObserve

 public abstract boolean canObserve()

Returns true if the component can be observed. For example, this method on a
PhoneMicrophone component would return true, if events for changes in gain
setting can be received through the TerminalObserver interface and also if the
"get" methods on each of the component interfaces is expected to be successful.

Returns:
True if the component can be observed, false otherwise.

o canControl

 public abstract boolean canControl()

Returns true if the component can be controlled. For example, this method on a
PhoneMicrophone component would return true, if the gain setting can be adjusted
programmatically.

Returns:
True if the componet can be controlled, false otherwise.

Interface
javax.telephony.phone.capabilities.ComponentGroupCapabilities

public interface ComponentGroupCapabilities

Method Index

o canActivate()
Returns true if the ComponentGroup can be "activated" on the Terminal that the
ComponentGroup is associated with.

o canActivate(Address)
Returns true if the ComponentGroup can be "activated" on the specified Address at
the Terminal that the ComponentGroup is associated with.

Methods

o canActivate

 public abstract boolean canActivate()

Returns true if the ComponentGroup can be "activated" on the Terminal that the
ComponentGroup is associated with. For example, activation of a headset on a
certain Terminal allows media to flow between the headset and the telephone line
associated with the terminal for all calls on the line . This method allows the
application to determine if activation of the ComponentGroup on its Terminal is
supported.

Returns:
True if the component group can be activated on its Terminal, false
otherwise.

o canActivate

 public abstract boolean canActivate(Address address)

Returns true if the ComponentGroup can be "activated" on the specified Address at
the Terminal that the ComponentGroup is associated with. For example,
activation of a headset on a certain Address at a Terminal allows media to flow
between the headset and the telephone line associated with the Terminal for all
calls on the specified Address. This method allows the application to determine if

activation of the ComponentGroup on a specific Address at a Terminal is
supported.

Returns:
True if the component group can be activated on its Terminal at the specified
Address, false otherwise.

package javax.telephony.phone.events

Interface Index

ButtonInfoEv
ButtonPressEv
DisplayUpdateEv
HookswitchStateEv
LampModeEv
MicrophoneGainEv
PhoneEv
PhoneTermEv
RingerPatternEv
RingerVolumeEv
SpeakerVolumeEv

Interface javax.telephony.phone.events.PhoneEv

public interface PhoneEv
extends Ev

The PhoneEv is the base event for all events in the Phone package. Each event in this
package must extend this interface. This interface is not meant to be a public interface,
it is just a building block for other event interfaces.

The PhoneEv interface contains getPhoneCause(), which returns the reason for the
event.

Variable Index

o CAUSE_NORMAL
Cause code indicating normal operation

o CAUSE_UNKNOWN
Cause code indicating the cause was unknown

Method Index

o getPhoneCause()
Returns the phone and core causes associated with this event.

Variables

o CAUSE_NORMAL

 public static final int CAUSE_NORMAL

Cause code indicating normal operation

o CAUSE_UNKNOWN

 public static final int CAUSE_UNKNOWN

Cause code indicating the cause was unknown

Methods

o getPhoneCause

 public abstract int getPhoneCause()

Returns the phone and core causes associated with this event. Every event has a
cause. The various cause values are defined as public static final variablies in this
interface, with the exception of CAUSE_NORMAL and CAUSE_UNKNOWN,
which are defined in the core.

Returns:
s The cause of the event.

Interface javax.telephony.phone.events.PhoneTermEv

public interface PhoneTermEv
extends PhoneEv, TermEv

The PhoneTermEv interface extends the TermEv interface and is the base event
interface for all phone−components related events. All component events must extends
this interface. These events are reported through the TerminalObserver interface.

Method Index

o getComponent()
Returns the Component object responsible for this event.

o getComponentGroup()
Returns the ComponentGroup object associated with this event.

Methods

o getComponentGroup

 public abstract ComponentGroup getComponentGroup()

Returns the ComponentGroup object associated with this event.

Returns:
s The ComponentGroup object associated with this event.

o getComponent

 public abstract Component getComponent()

Returns the Component object responsible for this event.

Returns:
s The Component object responsible for this event.

Interface javax.telephony.phone.events.ButtonInfoEv

public interface ButtonInfoEv
extends PhoneTermEv

The ButtonInfoEv interface extends the PhoneTermEv interface and is reported via the
PhoneTermObserver interface. This event interface indicates the information associated
with a button component has changed.

Applications may obtain the new information associated with this button via the
getInfo() method on this interface. The old information (before the change) may be
obtained via the getOldInfo() method on this interface.

Variable Index

o ID
Event id

Method Index

o getInfo()
Returns the button information.

o getOldInfo()
Returns the information previously associated with this button.

Variables

o ID

 public static final int ID

Event id

Methods

o getInfo

 public abstract String getInfo()

Returns the button information.

Returns:
The string button information.

o getOldInfo

 public abstract String getOldInfo()

Returns the information previously associated with this button.

Returns:
The old button information.

Interface javax.telephony.phone.events.ButtonPressEv

public interface ButtonPressEv
extends PhoneTermEv

The ButtonPressEv interface extends the PhoneTermEv interface and is reported via the
PhoneTermObserver interface. This event interface indicates that a button component
has been pressed.

Applications may obtain the identifying information associated with this button via the
getInfo() method.

Variable Index

o ID
Event id

Method Index

o getInfo()
Returns the button information.

Variables

o ID

 public static final int ID

Event id

Methods

o getInfo

 public abstract String getInfo()

Returns the button information.

Returns:

The string button information.

Interface javax.telephony.phone.events.DisplayUpdateEv

public interface DisplayUpdateEv
extends PhoneTermEv

The DisplayUpdateEv interface extends the PhoneTermEv interface and is reported via
the PhoneTermObserver interface. This event interface indicates that the contents of the
display component has changed.

Applications may obtain the new contents of the display component via the
getDisplay(int x, int y) method on this interface.

Variable Index

o ID
Event id

Method Index

o getDisplay(int, int)
Returns the displayed string starting at coordinates (x, y).

Variables

o ID

 public static final int ID

Event id

Methods

o getDisplay

 public abstract String getDisplay(int x,
 int y)

Returns the displayed string starting at coordinates (x, y).

Parameters:
x − The x−coordinate.
y − The y−coordinate.

Returns:
The string displayed starting at coordinates (x, y).

Interface javax.telephony.phone.events.HookswitchStateEv

public interface HookswitchStateEv
extends PhoneTermEv

The HookswitchStateEv interface extends the PhoneTermEv interface and is reported
via the PhoneTermObserver interface. This event interface indicates that the state of the
hookswitch component has changed.

Applications may obtain the new state of the hookswitch (either on−hook or off−hook)
via the getHookSwitchState() method on this interface.

Variable Index

o ID
Event id

Method Index

o getHookSwitchState()
Returns the current state of the hookswitch.

Variables

o ID

 public static final int ID

Event id

Methods

o getHookSwitchState

 public abstract int getHookSwitchState()

Returns the current state of the hookswitch.

Returns:

The current state of the hookswitch.

Interface javax.telephony.phone.events.LampModeEv

public interface LampModeEv
extends PhoneTermEv

The LampModeEv interface extends the PhoneTermEv and is reported via the
PhoneTerminalObserver interface. This event indicates that the mode of the lamp has
changed.

Applications may use the getMode() method on this interface to obtain the new mode of
the lamp.

Variable Index

o ID
Event id

Method Index

o getMode()
Returns the current lamp mode.

Variables

o ID

 public static final int ID

Event id

Methods

o getMode

 public abstract int getMode()

Returns the current lamp mode.

Returns:

The current lamp mode.

Interface javax.telephony.phone.events.MicrophoneGainEv

public interface MicrophoneGainEv
extends PhoneTermEv

The MicrophoneGainEv interface extends the PhoneTermEv interface and is reported
via the PhoneTerminalObserver interface. This event interface indicates that the gain of
a microphone component has changed.

Applications may use the getGain() method on this interface to obtain the new gain of
the microphone component.

Variable Index

o ID
Event id

Method Index

o getGain()
Returns the gain of the microphone.

Variables

o ID

 public static final int ID

Event id

Methods

o getGain

 public abstract int getGain()

Returns the gain of the microphone.

Returns:

The gain of the microphone.

Interface javax.telephony.phone.events.RingerPatternEv

public interface RingerPatternEv
extends PhoneTermEv

The RingerPatternEv interface extends the PhoneTermEv interface and is reported via
the PhoneTerminalObserver interface. This event interface indicates that the pattern of
a ringer component has changed.

Applications may use the getPattern() method on this interface to obtain the new pattern
of the ringer component.

Variable Index

o ID
Event id

Method Index

o getRingerPattern()
Returns the pattern of the ringer.

Variables

o ID

 public static final int ID

Event id

Methods

o getRingerPattern

 public abstract int getRingerPattern()

Returns the pattern of the ringer.

Returns:

The pattern of the ringer.

Interface javax.telephony.phone.events.RingerVolumeEv

public interface RingerVolumeEv
extends PhoneTermEv

The RingerVolumeEv interface extends the PhoneTermEv interface and is reported via
the PhoneTerminalObserver interface. This event interface indicates that the volume of
a ringer component has changed.

Applications may use the getVolume() method on this interface to obtain the new volume
of the ringer component.

Variable Index

o ID
Event id

Method Index

o getVolume()
Returns the volume of the ringer.

Variables

o ID

 public static final int ID

Event id

Methods

o getVolume

 public abstract int getVolume()

Returns the volume of the ringer.

Returns:

The volume of the ringer.

Interface javax.telephony.phone.events.SpeakerVolumeEv

public interface SpeakerVolumeEv
extends PhoneTermEv

The SpeakerVolumeEv interface extends the PhoneTermEv interface and is reported via
the PhoneTerminalObserver interface. This event interface indicates that the volume of
a speaker component has changed.

Applications may use the getVolume() method on this interface to obtain the new volume
of the speaker component.

Variable Index

o ID
Event id

Method Index

o getVolume()
Returns the volume of the speaker.

Variables

o ID

 public static final int ID

Event id

Methods

o getVolume

 public abstract int getVolume()

Returns the volume of the speaker.

Returns:

The volume of the speaker.

package javax.telephony.privatedata

Interface Index

PrivateData

Interface javax.telephony.privatedata.PrivateData

public interface PrivateData

Introduction

The private data mechanism in JTAPI is a means by which applications can send
platform−specific messages to the underlying telephone platform. The PrivateData
interface may be implemented on any JTAPI object. Applications may query an object to
see if it supports this interface via the instanceof operator. This interface makes no
attempt to interpret the data sent to the underlying platform.

Note: Use of this interface interferes with application portability across different JTAPI
implementations. Applications which make use of this interface may not work properly
with other JTAPI−compliant implementations.

Setting vs. Sending Private Data

There are two ways in which information is sent to the platform. Applications can set a
piece of data to be associated with the next method invocation on the object. The data is
only valid for the next method invocation on the same object. This data is not
transmitted to the underlying platform until the next method is invoked. Also,
applications may immediately send a piece of data to the underlying platform. This data
is not associated with any future method invocation.

Private Data Events

Implementations may also send platform−specific events to the application. Each
individual object carries its own private data event. The data carried in these objects are
specific to the implementation. The private data event interfaces defined are:
PrivateAddrEv , PrivateCallEv , PrivateProvEv , and PrivateTermEv

See Also:
PrivateDataCapabilities, PrivateAddrEv, PrivateCallEv, PrivateProvEv,
PrivateTermEv

Method Index

o getPrivateData()

Returns some platform−specific data associated with the last method that was
invoked on the object for which this PrivateData is implemented.

o sendPrivateData(Object)
Immediately performs some platform−specific action.

o setPrivateData(Object)
Associates some platform−specific data with the next method that is invoked on
the object for which this interface is implemented.

Methods

o setPrivateData

 public abstract void setPrivateData(Object data)

Associates some platform−specific data with the next method that is invoked on
the object for which this interface is implemented. The format of this data and the
manner in which it modifies the method invocation is platform−dependent. This
data applies to the next method invocation ONLY and does not affect any future
method invocations.

Parameters:
data − The platform−dependent data.

o getPrivateData

 public abstract Object getPrivateData()

Returns some platform−specific data associated with the last method that was
invoked on the object for which this PrivateData is implemented. The format of
this data is platform−dependent. This data pertains to the last method invocation
ONLY.

Returns:
Object The platform−dependent data.

o sendPrivateData

 public abstract Object sendPrivateData(Object data)

Immediately performs some platform−specific action. The effect of this methods
invocation is immediate and does not directly relate to any future object method
invocations. The action taken upon receipt of this data is platform−dependent as is
the format of the data itself. This method returns the platform−dependent data
actually sent.

Parameters:
data − The platform−dependent data.

Returns:

The platform−dependent data sent.

package javax.telephony.privatedata.capabilities

Interface Index

PrivateDataCapabilities

Interface
javax.telephony.privatedata.capabilities.PrivateDataCapabilities

public interface PrivateDataCapabilities

The PrivateDataCapabilities interface is the capabilities interface for the
PrivateData interface. Additional packages which want to extend the private data
package should extend this interface for its capabilities.

Since the PrivateData interface is always implemented on some existing JTAPI object
(e.g. Provider, Call, etc), this interface should be implemented along with the
corresponding object’s capabilities interface. For example, if the implementation’s Call
object supports private data, the Provider.getCallCapabilities() and
Call.getCapabilities() methods should return objects which implement
PrivateDataCapabilities in addition to the CallCapabilities interface.

See Also:
PrivateData

Method Index

o canGetPrivateData()
This method returns true if the PrivateData.getPrivateData() method is
supported, false otherwise.

o canSendPrivateData()
This method returns true if the PrivateData.sendPrivateData() method is
supported, false otherwise.

o canSetPrivateData()
This method returns true if the PrivateData.setPrivateData() method is
supported, false otherwise.

Methods

o canSetPrivateData

 public abstract boolean canSetPrivateData()

This method returns true if the PrivateData.setPrivateData() method is
supported, false otherwise.

Returns:
True if the setting of private data is supported, false otherwise.

o canGetPrivateData

 public abstract boolean canGetPrivateData()

This method returns true if the PrivateData.getPrivateData() method is
supported, false otherwise.

Returns:
True if obtaining the private data is supported, false otherwise.

o canSendPrivateData

 public abstract boolean canSendPrivateData()

This method returns true if the PrivateData.sendPrivateData() method is
supported, false otherwise.

Returns:
True if the sending of private data is supported, false otherwise.

package javax.telephony.privatedata.events

Interface Index

PrivateAddrEv
PrivateCallEv
PrivateProvEv
PrivateTermEv

Interface javax.telephony.privatedata.events.PrivateAddrEv

public interface PrivateAddrEv
extends AddrEv

The PrivateAddrEv interface sends platform−specific event information to an
AddressObserver . This interface extends the core AddrEv interface. This interface
could be a stand−alone event for private data that is not associated with any other event.
This interface could also be used to extend any other event for private data.

When used as a stand−alone event, the ID returned by Ev.getID() should be the ID
defined in this interface. When used to extend another event to add private data to that
event, the ID returned by Ev.getID() should be the ID defined in the other event
interface.

See Also:
AddrEv, AddressObserver, PrivateData

Variable Index

o ID
The Event ID.

Method Index

o getPrivateData()
Returns platform−specific information to the application.

Variables

o ID

 public static final int ID

The Event ID.

Methods

o getPrivateData

 public abstract Object getPrivateData()

Returns platform−specific information to the application. The format of the data
and the action that should be taken upon receipt of the data is
platform−dependent.

Returns:
The platform−specific data.

Interface javax.telephony.privatedata.events.PrivateCallEv

public interface PrivateCallEv
extends CallEv

The PrivateCallEv interface sends platform−specific event information to a
CallObserver . This interface extends the core CallEv interface. This event could be a
stand−alone event for private data that is not associated with any other event. This
interface could also be used to extend any other event for private data.

When used as a stand−alone event, the ID returned by Ev.getID() should be the ID
defined in this interface. When used to extend another event to add private data to that
event, the ID returned by Ev.getID() should be the ID defined in the other event
interface.

See Also:
CallEv, CallObserver, PrivateData

Variable Index

o ID
The Event ID.

Method Index

o getPrivateData()
Returns platform−specific information to the application.

Variables

o ID

 public static final int ID

The Event ID.

Methods

o getPrivateData

 public abstract Object getPrivateData()

Returns platform−specific information to the application. The format of the data
and the action that should be taken upon receipt of the data is
platform−dependent.

Returns:
The platform−specific data.

Interface javax.telephony.privatedata.events.PrivateProvEv

public interface PrivateProvEv
extends ProvEv

The PrivateProvEv interface sends platform−specific event information to a
ProviderObserver . This interface extends the core ProvEv interface. This event could
be a stand−alone event for private data that is not associated with any other event. This
interface could also be used to extend any other event for private data.

When used as a stand−alone event, the ID returned by Ev.getID() should be the ID
defined in this interface. When used to extend another event to add private data to that
event, the ID returned by Ev.getID() should be the ID defined in the other event
interface.

See Also:
ProvEv, ProviderObserver, PrivateData

Variable Index

o ID
The Event ID.

Method Index

o getPrivateData()
Returns platform−specific information to the application.

Variables

o ID

 public static final int ID

The Event ID.

Methods

o getPrivateData

 public abstract Object getPrivateData()

Returns platform−specific information to the application. The format of the data
and the action that should be taken upon receipt of the data is
platform−dependent.

Returns:
The platform−specific data.

Interface javax.telephony.privatedata.events.PrivateTermEv

public interface PrivateTermEv
extends TermEv

The PrivateTermEv interface sends platform−specific event information to a
TerminalObserver . This interface extends the core TermEv interface. This event could
be a stand−alone event for private data that is not associated with any other event. This
interface could also be used to extend any other event for private data.

When used as a stand−alone event, the ID returned by Ev.getID() should be the ID
defined in this interface. When used to extend another event to add private data to that
event, the ID returned by Ev.getID() should be the ID defined in the other event
interface.

See Also:
TermEv, TerminalObserver, PrivateData

Variable Index

o ID
The Event ID.

Method Index

o getPrivateData()
Returns platform−specific information to the application.

Variables

o ID

 public static final int ID

The Event ID.

Methods

o getPrivateData

 public abstract Object getPrivateData()

Returns platform−specific information to the application. The format of the data
and the action that should be taken upon receipt of the data is
platform−dependent.

Returns:
The platform−specific data.

	Title Page
	Copyright
	Main Contents
	What is JTAPI?
	Purpose & Scope
	Navigating through the Document
	Intended Audience
	Related Document
	Packages
	Telephony
	Address
	AddressObserver
	Call
	CallObserver
	Connection
	JtapiPeer
	JtapiPeerFactory
	Provider
	ProviderObserver
	Terminal
	TerminalConnection
	TerminalObserver
	InvalidArgumentException
	InvalidObjectException
	InvalidPartyException
	InvalidStateException
	JtapiPeerUnavailableException
	MethodNotSupportedException
	PlatformException
	PrivilegeViolationException
	ProviderUnavailableException
	ResourceUnavailableException

	Callcenter
	ACDAddress
	ACDAddressObserver
	ACDConnection
	ACDManagerAddress
	ACDManagerConnection
	Agent
	AgentTerminal
	AgentTerminalObserver
	CallCenterAddress
	CallCenterCall
	CallCenterCallObserver
	CallCenterProvider
	CallCenterTrunk
	RouteAddress
	RouteCallback
	RouteSession
	Capabilities
	ACDAddressCapabilities
	ACDConnectionCapabilities
	ACDManagerAddressCapabilities
	ACDManagerConnectionCapabilities
	AgentTerminalCapabilities
	CallCenterAddressCapabilities
	CallCenterCallCapabilities
	CallCenterProviderCapabilities
	RouteAddressCapabilities

	Events
	ACDAddrEv
	ACDAddrBusyEv
	ACDAddrLoggedOffEv
	ACDAddrLoggedOnEv
	ACDAddrNotReadyEv
	ACDAddrReadyEv
	ACDAddrUnknownEv
	ACDAddrWorkNotReadyEv
	ACDAddrWorkReadyEv

	AgentTermEv
	AgentTermBusyEv
	AgentTermLoggedOffEv
	AgentTermLoggedOnEv
	AgentTermNotReadyEv
	AgentTermReadyEv
	AgentTermUnknownEv
	AgentTermWorkNotReadyEv
	AgentTermWorkReadyEv

	CallCentEv
	CallCentCallEv
	CallCentCallAppDataEv

	CallCentConnEv
	CallCentConnInProgressEv

	CallCentTrunkEv
	CallCentTrunkInvalidEv
	CallCentTrunkValidEv

	RouteSessionEvent
	RouteCallbackEndedEvent
	RouteEndEvent
	RouteEvent
	RouteUsedEvent

	Callcontrol
	CallControlAddress
	CallControlAddressObserver
	CallControlCall
	CallControlCallObserver
	CallControlConnection
	CallControlTerminal
	CallControlTerminalConnection
	CallControlTerminalObserver
	CallControlForwarding
	Capabilities
	CallControlAddressCapabilities
	CallControlCallCapabilities
	CallControlConnectionCapabilities
	CallControlTerminalCapabilities
	CallControlTerminalConnectionCapabilities

	Events
	CallCtlEv
	CallCtlAddrEv
	CallCtlAddrDoNotDisturbEv
	CallCtlAddrForwardEv
	CallCtlAddrMessageWaitingEv

	CallCtlCallEv
	CallCtlConnEv
	CallCtlConnAlertingEv
	CallCtlConnDialingEv
	CallCtlConnDisconnectedEv
	CallCtlConnEstablishedEv
	CallCtlConnFailedEv
	CallCtlConnInitiatedEv
	CallCtlConnNetworkAlertingEv
	CallCtlConnNetworkReachedEv
	CallCtlConnOfferedEv
	CallCtlConnQueuedEv
	CallCtlConnUnknownEv

	CallCtlTermConnEv
	CallCtlTermConnBridgedEv
	CallCtlTermConnDroppedEv
	CallCtlTermConnHeldEv
	CallCtlTermConnInUseEv
	CallCtlTermConnRingingEv
	CallCtlTermConnTalkingEv
	CallCtlTermConnUnknownEv

	CallCtlTermEv
	CallCtlTermDoNotDisturbEv

	Capabilities
	AddressCapabilities
	CallCapabilities
	ConnectionCapabilities
	ProviderCapabilities
	TerminalCapabilities
	TerminalConnectionCapabilities

	Events
	Ev
	AddrEv
	AddrObservationEndedEv

	CallEv
	CallActiveEv
	CallInvalidEv
	CallObservationEndedEv

	ConnEv
	ConnAlertingEv
	ConnConnectedEv
	ConnCreatedEv
	ConnDisconnectedEv
	ConnFailedEv
	ConnInProgressEv
	ConnUnknownEv

	TermConnEv
	TermConnActiveEv
	TermConnCreatedEv
	TermConnDroppedEv
	TermConnPassiveEv
	TermConnRingingEv
	TermConnUnknownEv

	ProvEv
	ProvInServiceEv
	ProvObservationEndedEv
	ProvOutOfServiceEv
	ProvShutdownEv

	TermEv
	TermObservationEndedEv

	Media
	MediaCallObserver
	MediaTerminalConnection
	Capabilities
	MediaTerminalConnectionCapabilities

	Events
	MediaEv
	MediaTermConnEv
	MediaTermConnAvailableEv
	MediaTermConnDtmfEv
	MediaTermConnStateEv
	MediaTermConnUnavailableEv

	Phone
	Component
	ComponentGroup
	PhoneButton
	PhoneDisplay
	PhoneGraphicDisplay
	PhoneHookswitch
	PhoneLamp
	PhoneMicrophone
	PhoneRinger
	PhoneSpeaker
	PhoneTerminal
	PhoneTerminalObserver
	Capabilities
	ComponentCapabilities
	ComponentGroupCapabilities

	Events
	PhoneEv
	PhoneTermEv
	ButtonInfoEv
	ButtonPressEv
	DisplayUpdateEv
	HookswitchStateEv
	LampModeEv
	MicrophoneGainEv
	RingerPatternEv
	RingerVolumeEv
	SpeakerVolumeEv

	Privatedata
	PrivateData
	Capabilities
	PrivateDataCapabilities

	Events
	PrivateAddrEv
	PrivateCallEv
	PrivateProvEv
	PrivateTermEv

