Lecture 14

Level Design
Do We Really Need Level Design?

- Level design makes sense for single player games

- What if our game is **open world**?
 - Each location is a level
 - All that changes is the transition

- What if our game is **multiplayer**?
 - Are the maps always the same?
 - What about game modes?

- What if is a **strategic card game** (e.g. *Magic*)?
 - Are all the cards available at start?
 - How does someone learn how to play?
What is Level Design?

• Layout of **game geography**
 • Location and relationship of challenges
 • Movement of dynamic features (e.g. NPCs)

• Understanding of **player capabilities**
 • Abilities, mechanics available to the player
 • Assumptions of current player skill level

• Layout of **player progression**
 • How the player should move through the game
 • How the player visualizes this progression
Aspects of Game Design

- **Games as Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- **Games as Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- **Games as Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design
Aspects of Game Design

- **Games as Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- **Games as Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- **Games as Storytelling**
 - Focuses on player progression
 - Most challenging element of game design

Not in this Lecture
Aspects of Game Design

- Games as Exploration
 - Focuses on game geography and capabilities
 - Typically involves heavy storyboarding

- Games as Education
 - Train player skill and understanding
 - Focuses primarily on player capabilities

- Games as Storytelling
 - Focuses on player progression
 - Most challenging element of game design
 - Not in this Lecture

Level Design
Players Want to Explore the World

- Exploring the **physical space**
 - What happens when I go here?
 - **Example**: Any western RPG
 - But does not require complex game world

- Exploring the **ludic space**
 - What happens when do this action?
 - Requires deep, complex interactions
 - **Example**: Goofing on Bethesda NPCs
Storyboarding

- Diagrams player action throughout level
 - Different from film storyboarding
 - Currently a bunch of informal practices

- Disembodied Action
 - Action corresponding to UI elements
 - Example: Buttons, menus

- Embodied Action
 - Action that is tied to a character/avatar
 - Typically maps player movement in level
Disembodied Action: Cause and Effect

- **Draw the initial scene**
 - Could be the entire level
 - Zoomed in portion of screen
 - Must capture area that will be affected by the action

- **Indicate the action**
 - Draw mouse pointer
 - Indicate gamepad button
 - Annotate with a “tool tip”

- **Draw the action effect**
 - Change in initial scene
Embodied Action: Single Scene

Easy Level
Embodied Action: Multiple Scenes

1. Point light
2. Move, plug in
3. Move, grab lights

4. Point light
5. Walk
6. Win.
But There is a Problem

- You are not the player!
 - You storyboard what you think player will do
 - Player may do something completely different!

- Level design is about constraining player
 - You design level to force player to do things
 - Challenges are doors blocking progress
 - Player must use skill to open the door

- Storyboarding maps these constraints
This is How it Ever Was

- Classic text adventures...
 - Goal is location to reach
 - Locked doors block progress
 - Use actions to unlock doors
- Still design in same way
 - Challenges block the goal
 - Use mechanics to overcome
- Design levels with...
 - **Discrete challenges** (doors)
 - Put together **intelligently**
This is How it Ever Was

• Classic text adventures…
 • Goal is location to reach
 • Locked doors block progress
 • Use actions to unlock doors

• Tight Level Design = Tight Challenge Spacing

• Use mechanics to overcome
• Design levels with…
 • Discrete challenges (doors)
 • Put together intelligently
Design Patterns

- Design uses building blocks
 - Mechanic/challenge pairs
 - Start and end location
 - String together to make level
- Key building block features
 - Requires verb/interaction
 - Must be possible to *fail*
 - Difficulty is *tunable*
- **Patterns** are common blocks
 - Appear many times in game
 - Even across multiple games
Design Pattern Examples

Platformer

Stealth Game

Tricky Jump

Start

End

Start

Avoid Detection

End
Design Pattern Examples

Shooter/Action Game

- Cover
- Cover
- Cover
- Kill Enemies
- Cover

Racing Game

- Brake
- Gain Speed
Dash: Basic Design Patterns

1.

2.

3.

4.
Dash: Putting it All Together

Legend:
- Player
- Wanderer
- Shielded
- Chaser
- Shooter
- Object

1. 4. 5.

Level Design
Dash: Putting it All Together

Legend:
- Player
- Wanderer
- Shielded
- Chaser
- Shooter
- Object
- Lantern
- Finish
- Player Path
- Enemy Path
- Point Along Enemy Path

Tight

Not Tight
Composite Patterns

• Piecewise design creates a very linear feel
 • Pattern A followed by Pattern B followed by...
 • Player is explicitly aware of building blocks

• Composite patterns allow for variations
 • Two patterns combined in the same space
 • Makes original pattern much more difficult
 • Player now has to react to them both

• Reading: Extended/Evolutionary Challenge
Composite Patterns

Platformer

Interceptor

Force Jump

Stealth Game

Chaser
Composite Patterns

Shooter/Action Game

Racing Game

Cover

Cover

Cover

Cover Busters

GRENADE!

Cover

Cover

Restrict Positions

Level Design
Is Linearity a Problem?

[Image attribution unknown]

FPS map design

1993

2010

Level Design
But Actually…

[refugeinaudacity.wordpress.com]
But Actually…

Complaint is not **linearity**; it is **tightness**

[refugeinaudacity.wordpress.com]
Aspects of Game Design

- **Games as Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- **Games as Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- **Games as Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design
Learning How to Play

- Mechanics are (often) new and unfamiliar
 - Players have to learn how to interact with them
 - Aside: why innovation is not always popular

- Players could learn by reading the *manual*
 - This is boring! Let me play already

- **Tutorial levels** allow the player to...
 - Get started playing immediately
 - Learn the mechanics while playing
Classic Approach: Restrict the Player

- Start with your **gameplay specification**
 - Remove all but the barest mechanics
 - Remove verbs by disabling controls
 - Remove interactions by omitting "board elements"

- Levels add new mechanics back one at a time
 - **Example**: Platformer with a "no-jump" level

- Do not need to add a new mechanic each level
 - "Deep" mechanics allow many levels per mechanic
 - This can influence game geography (e.g. worlds)
Example: Starcraft Campaign
Explicit Restrictions

- Mechanics are unavailable for current level
 - Controls for actions are explicitly disabled
 - Interactions disabled, even if elements present

- **Motivation**: Prevents player confusion
 - Do not waste time on useless mechanics
 - Key in the casual and young audience

- **Examples**: Many AAA commercial games
 - *Starcraft* single-player campaign
 - *Portal* (integrated into story)
Implicit Restrictions

- Mechanics are always available, but not needed
 - Challenges designed for an explicit mechanic
 - Other mechanics may succeed, but they are harder
 - Level has hints to guide player to right mechanic

- **Motivation**: Allow replay in tutorial levels
 - Players go back and try optional approaches
 - Achievements are structured to encourage this

- **Example**: Many amateur Flash games
 - *My First Quantum Translocator*
The Tyranny of Choice

- Too much choice can make us unhappy
 - We are often paralyzed by what to do
 - Studied by Myers & Lane; popularized by Barry Schwartz

- But games are about **meaningful choice**
 - Problem is when choices are too similar
 - Good choices must be *significantly* different
 - **Example**: Dagger adds +1 bonus to a stat of 102

- Players use rough heuristics for making choices
 - Pattern match current situation to determine action
The Tyranny of Choice

- Too much choice can make us unhappy
 - We are often paralyzed by what to do
 - Studied by Myers & Lane; popularized by Barry Schwartz

- But games are about meaningful choice
 - Problem is when choices are too similar
 - Good choices must be significantly different
 - Example: Dagger adds +1 bonus to a stat of 102

- Players use rough heuristics for making choices
 - Pattern match current situation to determine action
Portal 2 Mechanics

Level Design
Recombination

New Mechanics
Reinforcement

How long to “dwell” on mechanic before a new one?

Actions:

A = jump B = dash

A B vs. A A A A B
Recombination

How often to combine with other mechanics

Actions:
A = jump B = dash C = shoot fireball

A B C vs. A AB ABC
Reinforcement vs. Recombination

Reinforcement

A A A B B B B

A A B B AB AB

A B C D E

A AB ABC

ABCD ABCDE

Recombination
Robot Unicorn Attack
Robot Unicorn Attack Progression

Mechanics:

A = jump B = dash

A A A B A A B

High reinforcement, low recombination
Hello Worlds!
Hello Worlds!
Hello Worlds

Mechanics:
A = move B = two worlds C = close world

A AB AB ABC ABC

Moderate reinforcement, high recombination
Starcraft

Level Design
Starcraft

A AB ABC ABCD

Low reinforcement, high recombination
Summary

• Level design is always important
 • How keep your game different, lively?
 • How do you train your player?

• Level design uses geographic constraints
 • Create challenges by defining design patterns
 • Storyboard so player must go through challenges

• Level design uses ludic constraints
 • Do not introduce all of your capabilities at once
 • Leverage reinforcement and recombination