Lecture 7

Nondigital Prototypes
Review: Prototypes

- An *incomplete* model of your product
 - Implements small subset of the final features
 - Features chosen are the most important *now*
- Prototype helps you visualize *gameplay*
 - Way for you to test a new game mechanic
 - Allows you to tune mechanic parameters
 - Can also test (some) user interfaces
Software Prototypes

• **Gameplay Prototype (3/2)**
 • Throw-away prototype (not in final submission)
 • Does not have to be on device
 • Should demonstrate core gameplay

• **Technical Prototype (3/14)**
 • Evolutionary Prototype (part of final submission)
 • Should be on a device except in extreme cases
 • Should demonstrate important mobile challenge
Next Week: Nondigital Prototype

• No software involved at all
 • Board game
 • Card game
 • Something different?

• Goal is to model gameplay
 • How? Nondigital/digital is very different
 • Model will be far removed from final result
 • What can we hope to learn from this?
Understanding Game Progression

- Level design about *progress*
 - Sense of closeness to goal
 - Choice of “paths” to goal (*dilemma challenge*)
 - Path choice can relate to play style and/or difficult
- Easier to design if *discrete*
 - Flow-chart out progression
 - Edges are mechanic(s)
- But game state values are *continuous* (sort of)
Discrete Progression

- Design is **discretization**
 - Impose flow chart on state
 - Each box is an **equivalence class** of game states

- **Spatial Discretization**
 - Contiguous zones
 - **Example**: past a doorway

- **Resource Discretization**
 - Range of resource values
 - **Example**: build threshold
Spatial Discretization
Spatial Discretization
Spatial Discretization
Nature of Discretization

• State must be **unambiguous**
 • Must be an accurate, precise way to determine state
 • **Example**: string to measure distance in a wargame

• Actions must be **significant**
 • May correspond to several animation frames
 • **Example**: movement and attack in single turn

• Mechanics must have **compact interactions**
 • Avoid mechanics that depend on iterated interactions
 • **Example**: physics is *iterative* and hard to discretize
Discretization and Turns

- Discretization requires *turns*
 - Represent a unit of action
 - When done, game “at rest”

- Turns can be *multistep*
 - Multiple actions in a turn
 - Environmental interactions

- Turns can *alternate*
 - between other players
 - with a gamemaster
 - not at all (one player?)
Discretization and Reaction Time

- Allow opponent to **interrupt**
 - Action that reacts to yours
 - Played after you act, but before action takes an effect
 - Core mechanic in *Magic: TG*
- Make play **asynchronous**
 - Players still have turns
 - But take turns as fast as can
 - Conflicts resolved via speed
 - Often need a referee for aid

Mobile Prototypes
Case Study: Runaway Rails

- “Free runner” with coaster
 - Coaster can go faster/slower
 - Speed tests reaction time
- Model with hidden info
 - Cannot “process” all at once
 - Faster go, less screen to see
Reaction Time as Hidden Information

Speed changes # of columns at each turn
What Can We Do Discretely?

- **Evaluate emergent behavior**
 - Allow player to commit simultaneous actions
 - Model interactions as “board elements”

- **Model player cost-benefit analyses**
 - Model all resources with sources and sinks
 - Focus on economic dilemma challenges

- **Test player difficulty/usability**
 - Ideal for puzzle games (or puzzle elements)
 - Can also evaluate unusual interfaces
What Can We Do Discretely?

- Evaluate emergent behavior
 - Allow player to commit simultaneous actions
 - Model interactions as "board elements"
 - Model player cost/benefit analyses
 - Model all resources with sources and sinks
 - Focus on economic dilemma challenges

- Test player difficulty/usability
 - Ideal for puzzle games (or puzzle elements)
 - Can also evaluate unusual interfaces

Not that different from CS 3152

New issues for mobile games
Evaluating Emergent Behavior

- **Recall**: coupled, context-dependent interactions
 - Requires an action and interaction
 - Or (alternatively) multiple actions

- Model interactions as “board elements”
 - Rules to follow after your action
 - May follow several in succession
 - **Examples**: Chutes & Ladders, Bonkers, RoboRally
Case Study: *RoboRally*

- Player “programs” robot
 - Picks 5 movement cards
 - Committed to that choice

- After each card
 - Obey board elements in order
 - Check robot collisions

- Move = board elements + cards + collisions
Cost-Benefit Analysis

- Where nondigital prototypes really shine
 - Resources are very easy to discretize
 - Economic choices easily map to turns
 - Understanding dilemma challenges is important

- Some believe this is *all* of game design
 - Claim everything can be reduced to a resource
 - Common in board game adaptations of other media
 - **Example**: balance game with instability resource
Case Study: *Bounce*

Jetpack expends oxygen (=health)
Tracking Oxygen as a Resource
Case Study: Trino

Can switch w/ resources
Measuring Shapeshifting Resources
Usability Analysis

• **Unusual user-interfaces**
 - Recall that actions correspond to inputs
 - Some inputs are not simple buttons
 - Example: touch gestures, motion controls

• **Puzzle-style games**
 - Create a game with module elements (e.g. cards)
 - Laying out levels creates a new game level
 - Allows you to quickly change and test levels
Case Study: Angry Bunny

Early Design:
Bunny movement affected by multiple battery “attraction”
Modeling Movement Controls

Strings attached at board corners

Control piece by pulling strings
Case Study: Coalide
Modeling Flick Controls
Case Study: *Family Style*

PASS INGREDIENTS FROM PHONE TO PHONE
Modeling Multiplayer Restrictions
Case Study: *Operation Bitwise*
Configurable Prototype from Elements

Mobile Prototypes
Case Study: *Magic Moving Mansion*
Configurable Puzzles at Scale
Experiential Prototypes

- Some prototypes do not test gameplay
 - They test an experience or feeling
 - You determine if the feeling is enjoyable
 - Then go back and design gameplay for that

- Be very careful with this!
 - A very advanced design technique
 - Can easily end up with worthless prototype
 - Have only seen a few successes at this
Case Study: *Gathering Sky*

Mobile Prototypes
Feel of Movement Controls
The Experience of Threat
Most Important Thing: **Progression**

- Do not want a **one-level** game
 - Major problem with “flick” games in this course
 - Endless runners also have this problem

- We want some evidence of a **progression**
 - What is an easy level?
 - What is a medium level?
 - What is a hard level?

- Your prototype should be **reconfigurable**
Easy
Medium
Hard

Mobile Prototypes
The Difficulty Curve

Easy

Medium

Hard
Case Study: *Iridescence*
Easy: *Iridescence*
Medium: *Iridescence*
Hard: *Iridescence*
Case Study: *Project Apollo*
Prototype is a Puzzle Sandbox
Reflecting on What You Have Learned

• Your prototype should teach you *something*
 • About one of the things covered today
 • Even if it is “this design will not work”

• You will be asked about this at *presentation*
 • Must be prepared to answer
 • Write-up as part of submission

• Lesson matters more than *physical artifact*
 • You are not going to sell this prototype
Case Study: Flourish
Case Study: Flourish

Our game seemed unclear at the beginning for some players because [they had to conceptually] balance growth above ground and below ground.

...

In general, we learned about the specificity we need for different rules that we had thought needed less explanation.