gamedesigninitiative at cornell university

Lecture 2

Mechanics Revisited

Purpose of Today's Lecture

- Give a review of formal design elements
 - Not everyone here has had the Intro Games course
 - And for the rest of you, it has been over a year
- Develop a deeper understanding of mechanics
 - Understand the important of interactions
 - Understand the *analysis* challenges
- Set us up for the later lectures on mechanics
 - Mobile game design and monetization

Reminder: Aspects of a Game

• Players: How do humans affect the game?

• Goals: What is the player trying to do?

• Rules: How can the player achieve the goal?

• Challenges: What obstacles block the goal?

Formal Design Elements

Players: Player Mode Sketches

Goals: Objectives

Rules: Actions and Interactions

Challenges: Obstacles and Opponents

Formal Design Elements

Players: Player Mode Sketches

Will assume you are familiar with first two

Goals: Objectives

Rules: Actions and Interactions

Challenges: Obstacles and Opponents

Actions

Verbs that describe what the player can do

```
• Walk (left or right)
```

- Run (walk, but faster!)
- Jump (up; jump/run for left or right)
- Shoot (left or right)

Action Platformer

- Does not need to be attached to an avatar
 - Build (RTS or simulation)
 - Swap (Bejeweled clones)
 - Rotate (Stacking games)

Evaluating Your Actions

- How important are they?
 - Do they help achieve goal
 - If not, why are they there?
- Example: Platformers
 - Goal: reach exit location
 - Killing enemies is optional
 - Other actions are *secondary*
- Goal: Minimize verbs
 - More verbs lead to bloat
 - Leverage interactions

Interactions

- Not a direct action of player
 - Outcome of the game state
 - Can happen without controller
- Example: collisions
 - Accidental or player forced
 - May be bad (take damage)
 - May be good (gain power-up)
- Other Examples:
 - Spatial proximity
 - Line-of-sight
 - Resource acquisition

Game Mechanics

• Game mechanic

- Relationship between verbs and interactions
- Often call this relationship the "rules"
- Gameplay is manifestation of these rules
- Example: Joust
 - Verbs: Flap; go left or right
 - Interaction: Collision with opponent
 - Rule: If hit opponent, lower player dies

Gameplay Example: Joust

Early Mobile Games: Just One Verb

- Can we limit to one verb?
 - Mechanics are all interactions
 - Common in mobile, tablet
 - Due to lack of input modes
- Example: Sneak Beat Bandit
 - Has only one verb: *move*
 - Rhythm game; move to beat
 - All movement on rails
 - If obstacle in way, turn
 - Line-of-sight mechanics

Beat Sneak Bandit

Avoid Verb Proxies

- **Proxy**: verb that activates another verb
 - "Use an item" (what does the item do?)
 - "Shoot" (what does the weapon do?)
- Make the outcome of your verbs clear
 - Fire standard projectile (effects have "travel time")
 - Fire continuous beam (effects are instantaneous)
- Important questions to ask
 - How does help reach the goal?
 - How is it outcome challenged?

Avoid Verb Proxies

- **Proxy**: verb that activates another verb
 - "Use an item"

"Shoot"

Behavior is defined

by the *interaction*

of projectile/beam

em do?)

eapon do?)

- Make the outcom
 - Fire standard projectile (effects have "travel time")

• Fire continuous beam (effects are instantaneous)

- Important questions to ask
 - How does help reach the goal?
 - How is it outcome challenged?

Challenges

Obstacles

- Prevent progress towards goal
- Have to be "overcome"

Opponents

- Players or bots with their own goals
- May or may not need to be overcome

Dilemmas

- Can only perform one of several actions
- "Correct" choice not immediately clear

Challenges

Obstacles

- Prevent progress towards goal
- Have to be "overcome"

Opponents

- Players or bots with their own goals
- May or may not need to be overcome

Dilemmas

- Can only p
- "Correct" c

Generally necessary for "deep" gameplay

"Deep Gameplay"

- Want many ways to overcome challenges
 - Example: kill enemy or sneak past
 - If just one way, gameplay is "shallow"
- Shallow challenges hurt replayability
 - "Twitch" challenges become boring fast
 - Cerebral challenges solved by the walkthrough
- All games should have a strategic element

Strategy

- **Definition**: an elaborate sequence of steps
 - Action is the culmination of all the steps
 - Changing steps or order changes action
- Still allows for puzzle gameplay
 - Allow some *flexibility* in these solution steps
 - Example: Multiple solutions to Rubik's Cube
 - Example: Time-rewind in *Braid*
- Resources are a common way to implement

Understanding Game State

- Many game state values are spatial
 - Represent location of a game *entity*
 - Also physical values like velocity, acceleration
- Entities act as containers for non-spatial values
 - Values that never change: attributes
 - Values that can change: resources
- Attributes, resources can be global as well
 - Though most mechanics are at entity level...

Resources and Gameplay

- Resources are crucial to "combat" mechanics
 - Entities have resource values (e.g. health, ammo)
 - Expend resources to affect others (e.g. attack)
 - May change resources of that entity (e.g. damage)
- Three basic categories of resource combat
 - Tug-Of-War: entities take from each other
 - **Dot Eating**: entities race to gather *limited* resource
 - Flower Picking: race to gather *unlimited* resource

Resources and the Game Economy

- Sources: How a resource can increase
 - Examples: ammunition clips, health packs
- Drains: How a resource can decrease
 - Examples: firing weapon, player damage
- Converters: Changes one resource to another
 - Example: vendors, *Starcraft* barracks
- Traders: Exchange resources between entities
 - Mainly (but not always) in multiplayer games

Resources and the Game Economy

- Sources: How a resource can increase
 - Examples: ammunition clips, health packs
- Drains: How a recourse
 - Examp

 Will explore in more detail with monetization
- Converte C
 - Example: vendors, Starcraft barracks
- Traders: Exchange resources between entities
 - Mainly (but not always) in multiplayer games

Economic Challenges

- You can use resources to
 - Control player progression (hinder or advance)
 - Modify player abilities (limit or enhance)
 - Create a large possibility space (for replay value)
 - Create strategic gameplay
- Do not need a lot of resources
 - Not every game is a strategy game
 - But almost all games have some economy

Resources as Dilemma

- Players perform cost-benefit analyses
 - Cost: resource change not beneficial to player
 - Benefit: resource change beneficial to player
- Example: Survival Horror
 - Use ammo to shoot zombie (Cost: ammo)
 - Use knife to stab zombie (Cost: health)
 - Benefit the same in each case
- Players act with least cost for benefit

Emergent Behavior

Coupled Interactions

- Two mechanics that can happen at once
- Verbs: jump AND run in a platformer
- Resources: warrior AND archer in an RTS

Context-dependent Interactions

- Mechanics combine to give new behavior
- Verbs: jump and run is new form of movement
- Resources: warriors form wall to cover archers

Emergent Behavior

- Coupled Interactions
 Key Word
 - Two mechanics that can happen at once
 - Verbs: jump AND run in a platformer
 - Resources: warrior AND archer in an RTS
- Context-dependent Interactions
 - Mechanics combine to give new behavior
 - Verbs: jump and run is new form of movement
 - Resources: warriors form wall to cover archers

Examples of Emergent Actions

Running Jump

- Can move while in midair
 - Just horizontal movement
 - Not realistic; it is a game
 - Many platformer challenges assume this type of control
- Different than a long jump
 - Less height than reg. jump
 - No control once in the air
 - Would be a distinct action

Strafing Fire

- Based on "real life" property
 - Bullets travel in straight line
 - Movement changes origin
 - Walking side-side makes a spray (used in covering fire)
- But some features are gamy
 - Bullets slower than life
 - Character faster than life
 - Creates interesting effects

Examples of Emergent Actions

Interaction(?) | Imp

- Can move while in midair
 - Just horizontal movement
 - Not realistic; it is a game
 - Many platformer challenges assume this type of control
- Different than a long jump
 - Less height than reg. jump
 - No control once in the air
 - Would be a distinct action

Strafing Fire

Interaction

- Based on "rear property
 - Bullets travel in straight line
 - Movement changes origin
 - Walking side-side makes a spray (used in covering fire)
- But some features are gamy
 - Bullets slower than life
 - Character faster than life
 - Creates interesting effects

Combining Actions

Running Jump

- Can move while in midair
 - Just horizontal movement
 - Not realistic; it is a game
 - Many platformer challenges assume this type of control
- Different than a long jump
 - Less height than reg. jump
 - No control once in the air
 - Would be a distinct action

Strafing Fire

- Based on "real life" property
 - Bullets travel in straight line
 - Movement changes origin
 - Walking side-side makes a spray (used in covering fire)
- But some features are gamy
 - Bullets slower than life
 - Character faster than life
 - Creates interesting effects

Common Spatial Interactions

Collisions

- Can effect resources
 - Player takes damage
 - Player gains power-up
 - Player-NPC transfer gold
- Can effect spatial values
 - Bounce off collision point
 - Swing from attached rope
 - Attraction to magnet/charge

Detection

- Examples:
 - Line-of-sight (w/ obstacles)
 - Spatial proximity
- Can have *direct* effects
 - Alarms in a stealth game
- Can have *indirect* effects
 - Tower defense targeting
 - Adjust NPC reactions

Resource-Spatial Interactions

Resource Affects Spatial

- Resources can unlock areas
 - Keys are a trivial resource
 - Also use resource thresholds
 - Ex: Collect all tokens to pass
- Resources affect difficulty
 - Adjust input device sensitivity
 - Ex: Deadeye meter in *RDR*
 - Ex: Jet packs to increase jump

Spatial Affects Resources

- Resources made by entities
 - Have a spatial location
 - Ex: Time to transfer resources
 - Ex: Sources be captured
- Resource values are entities
 - Take up physical volume
 - Need space to acquire
 - Ex: Inventory in *Deux Ex*

Challenges: Limitations

- You cannot always perform an action
 - Shooting may require ammo
 - Cannot (always) jump in mid air
- Limitation: requirement to perform action
 - Boolean test (like an if-then)
 - Checked at time of user input
- Only one limitation per verb
 - If more than one, split into more verbs
 - Reason double-jump is distinct

Challenges: Limitations

- You cannot always perform an action
 - Shooting may require ammo Resource
 - Cannot (always) jump in mid air
- Limitation: requirement to perform action
 - Boolean test (like an if-then)
 - Checked at time of user input
- Only one limitation per verb
 - If more than one, split into more verbs
 - Reason double-jump is distinct

Next Time: Mobile Gaming

