Lecture 14

Level Design
Do We Really Need Level Design?

• Level design makes sense for single player games

• What if our game is **open world**?
 • Each location is a level
 • All that changes is the transition

• What if our game is **multiplayer**?
 • Are the maps always the same?
 • What about game modes?

• What if is a **strategic card game** (e.g. *Magic*)?
 • Are all the cards available at start?
 • How does someone learn how to play?
What is Level Design?

- Layout of **game geography**
 - Location and relationship of challenges
 - Movement of dynamic features (e.g. NPCs)

- Understanding of **player capabilities**
 - Abilities, mechanics available to the player
 - Assumptions of current player skill level

- Layout of **player progression**
 - How the player should move through the game
 - How the player visualizes this progression
Aspects of Game Design

- Games as **Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- Games as **Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- Games as **Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design
Aspects of Game Design

• Games as **Exploration**
 • Focuses on game *geography* and *capabilities*
 • Typically involves heavy storyboarding

• Games as **Education**
 • Train player skill and understanding
 • Focuses primarily on *player capabilities*

• Games as **Storytelling**
 • Focuses on player progression
 • Most challenging element of game design

Not in this Lecture

Level Design
Aspects of Game Design

• **Games as Exploration**
 • Focuses on game *geography* and *capabilities*
 • Typically involves heavy storyboarding

• **Games as Education**
 • Train player skill and understanding
 • Focuses primarily on *player capabilities*

• **Games as Storytelling**
 • Focuses on player progression
 • Most challenging element of game design

Not in this Lecture
Players Want to Explore the World

- Exploring the **physical space**
 - What happens when I go here?
 - **Example**: Any western RPG
 - But does not require complex game world

- Exploring the **ludic space**
 - What happens when do this action?
 - Requires deep, complex interactions
 - **Example**: Goofing on Bethesda NPCs
Storyboarding

- Diagrams player action throughout level
 - Different from film storyboarding
 - Currently a bunch of informal practices

- Disembodied Action
 - Action corresponding to UI elements
 - **Example**: Buttons, menus

- Embodied Action
 - Action that is tied to a character/avatar
 - Typically maps player movement in level
Disembodied Action: Cause and Effect

- **Draw the initial scene**
 - Could be the entire level
 - Zoomed in portion of screen
 - Must capture area that will be affected by the action

- **Indicate the action**
 - Draw mouse pointer
 - Indicate gamepad button
 - Annotate with a “tool tip”

- **Draw the action effect**
 - Change in initial scene
Embodied Action: Single Scene

Easy Level
Embodied Action: Multiple Scenes

1. Point light
2. Move, plug in
3. Move, grab lights
4. Point light
5. Walk
6. Win.
But There is a Problem

- You are **not** the player!
 - You storyboard what you *think* player will do
 - Player may do something completely *different*!

- Level design is about **constraining** player
 - You design level to force player to do things
 - Challenges are doors blocking progress
 - Player must use skill to open the door

- Storyboarding **maps** these constraints
This is How it Ever Was

- Classic text adventures…
 - Goal is location to reach
 - Locked doors block progress
 - Use actions to unlock doors
- Still design in same way
 - Challenges block the goal
 - Use mechanics to overcome
- Design levels with…
 - **Discrete challenges** (doors)
 - Put together *intelligently*
This is How it Ever Was

- Classic text adventures...
 - Goal is location to reach
 - Locked doors block progress
 - Use actions to unlock doors

- Tight Level Design = Tight Challenge Spacing

 - Use mechanics to overcome

- Design levels with...
 - Discrete challenges (doors)
 - Put together intelligently
Design Patterns

- Design uses building blocks
 - Mechanic/challenge pairs
 - Start and end location
 - String together to make level

- Key building block features
 - Requires verb/interaction
 - Must be possible to *fail*
 - Difficulty is *tunable*

- **Patterns** are common blocks
 - Appear many times in game
 - Even across multiple games
Design Pattern Examples

Platformer

Start → Tricky Jump → End

Stealth Game

Start → Avoid Detection → End
Design Pattern Examples

Shooter/Action Game

- Cover
- Cover
- Cover
- Kill Enemies

Racing Game

- Brake
- Gain Speed
- Cover

Dash: Basic Design Patterns
Dash: Putting it All Together

![Diagram of game level design with legend]

Legend:
- **Player**: Blue
- **Wanderer**: Yellow
- **Shielded**: Green
- **Chaser**: Red
- **Shooter**: Black
- **Object**: Green
- **Lantern**: Orange
- **Finish**: White
- **Player Path**: Blue arrows
- **Enemy Path**: Orange arrows
- **Point Along Enemy Path**: Black dots

1. Start point for the player
2. Sensing area for the player
3. Chaser's path
4. Shielded area
5. Shooter's path

19 Level Design
Dash: Putting it All Together

Legend:
- Player
- Wanderer
- Shielded
- Chaser
- Shooter
- Object
- Lantern
- Finish
- Player Path
- Enemy Path
- Point Along Enemy Path

1. Tight
2. Not Tight
3. Tight
4. Not Tight
5. Tight

Level Design
Composite Patterns

• Piecewise design creates a very linear feel
 • Pattern A followed by Pattern B followed by...
 • Player is explicitly aware of building blocks

• Composite patterns allow for variations
 • Two patterns combined in the same space
 • Makes original pattern much more difficult
 • Player now has to react to them both

• Reading: Extended/Evolutionary Challenge
Composite Patterns

Platformer

Interceptor

Force Jump

Stealth Game

Chaser

Level Design
Composite Patterns

Shooter/Action Game

- Cover
- Cover
- Cover
- GRENADIE!
- Cover Busters

Racing Game

- Restrict Positions

Level Design
Is Linearity a Problem?

[Image attribution unknown]

FPS map design

1993

2010

Level Design
But Actually…

[refugeinaudacity.wordpress.com]
But Actually…

Complaint is not **linearity**; it is **tightness**

[refugeinaudacity.wordpress.com]
Aspects of Game Design

- Games as **Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- Games as **Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- Games as **Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design
Learning How to Play

- Mechanics are (often) new and unfamiliar
 - Players have to learn how to interact with them
 - *Aside*: why innovation is not always popular

- Players could learn by reading the *manual*
 - This is boring! Let me play already

- **Tutorial levels** allow the player to…
 - Get started playing immediately
 - Learn the mechanics while playing
Classic Approach: Restrict the Player

- Start with your **gameplay specification**
 - Remove all but the barest mechanics
 - Remove verbs by disabling controls
 - Remove interactions by omitting "board elements"

- Levels add new mechanics back one at a time
 - **Example**: Platformer with a "no-jump" level

- Do not need to add a new mechanic each level
 - "Deep" mechanics allow many levels per mechanic
 - This can influence game geography (e.g. worlds)
Example: Starcraft Campaign
Explicit Restrictions

- Mechanics are unavailable for current level
 - Controls for actions are explicitly disabled
 - Interactions disabled, even if elements present

- **Motivation**: Prevents player confusion
 - Do not waste time on useless mechanics
 - Key in the casual and young audience

- **Examples**: Many AAA commercial games
 - *Starcraft* single-player campaign
 - *Portal* (integrated into story)
Implicit Restrictions

• Mechanics are always available, but not needed
 • Challenges designed for an explicit mechanic
 • Other mechanics may succeed, but they are harder
 • Level has hints to guide player to right mechanic

• **Motivation**: Allow replay in tutorial levels
 • Players go back and try optional approaches
 • Achievements are structured to encourage this

• **Example**: Many amateur Flash games
 • *My First Quantum Translocator*
The Tyranny of Choice

• Too much choice can make us unhappy
 • We are often paralyzed by what to do
 • Studied by Myers & Lane; popularized by Barry Schwartz

• But games are about meaningful choice
 • Problem is when choices are too similar
 • Good choices must be significantly different
 • Example: Dagger adds +1 bonus to a stat of 102

• Players use rough heuristics for making choices
 • Pattern match current situation to determine action
The Tyranny of Choice

- Too much choice can make us unhappy
 - We are often paralyzed by what to do
 - Studied by Myers & Lane; popularized by Barry Schwartz

- But some choice is good
 - Pattern match current situation to determine action
 - Good examples:
 - Limiting choice helps train player
 - Example: Dagger adds +1 bonus to a stat of 102

- Players use rough heuristics for making choices
 - Pattern match current situation to determine action
Portal 2 Mechanics

Level Design
Recombination

New Mechanics
Reinforcement

How long to “dwell” on mechanic before a new one?

Actions:

A = jump B = dash

A B vs. A A A A B
Recombination

How often to combine with other mechanics

Actions:
A = jump B = dash C = shoot fireball

A B C vs. A AB ABC
Reinforcement vs. Recombination

Reinforcement

A A A B B B
A A B B AB AB
A B C D E
A AB ABC
ABCD ABCDE

Recombination
Robot Unicorn Attack
Robot Unicorn Attack Progression

Mechanics:

A = jump B = dash

A A A B A B A A A B

High reinforcement, low recombination
Hello Worlds!
The Level Design Initiative at Cornell University
Hello Worlds

Mechanics:
\[A = \text{move} \quad B = \text{two worlds} \quad C = \text{close world} \]

\[A \quad AB \quad AB \quad ABC \quad ABC \]

Moderate reinforcement, high recombination
Starcraft
Low reinforcement, high recombination
Summary

- Level design is always important
 - How keep your game different, lively?
 - How do you train your player?

- Level design uses geographic constraints
 - Create challenges by defining design patterns
 - Storyboard so player must go through challenges

- Level design uses ludic constraints
 - Do not introduce all of your capabilities at once
 - Leverage reinforcement and recombination