the

gamedesigninitiative
at cornell university
I
Lecture 13

Concurrency &
Multithreading

Games are Naturally Multithreaded

® The core game loop 1s time constrained
® Frame rate sets a budget of how much you can do

® Exceeding that budget causes frame rate drops

® Sometimes we need an extra thread to ...
® Offload tasks that block drawing (asset loading)
® Offload tasks that s/low drawing (pathfinding)

® Execute tasks decoupled from drawing (audio)

® Part of architecture spec: computation model

2 Multithreading tggcamedesigr1ir1i’cir;1’ciye

11111111111111111111

Multithreading in CUGL

® CUGL has three primary threads

® The Application, or main graphics thread

® The AssetManager thread, for loading assets

® The AudioEngine thread, for audio playback
® Note that only Application 1s required

® Also has tools for making your own threads
® Most are built on top of C++ and std::thread

® But there are some unique features too

[EE— EE——

the . e ee e
3 Multithreading gamedeﬂ;%grﬂ?ﬂﬁf

Multithreading in CUGL

® CUGL has three primary threads

® The Application, or main graphics thread

A i Aadl Nl Aunan DA 1. 1 C .. 1 . . 1° 4

¥ Understanding the three threads
BN can help us to make our own.

® Also has tools for making your own threads
® Most are built on top of C++ and std::thread

® But there are some unique features too

[EE— EE——

4 Multithreading tghfamedesignini’tir;l’tiye

11111111111111111111

Recall: The Application Thread

60 times/s

16.7 ms

Multithreading

Receive player input
Process player actions

Process NPC actions
Interactions (e.g. physics)

Cull non-visible objects
Transform visible objects

Draw to backing buffer

Display backing buffer

the . e ey g
gamedesigninitiative

at cornell university

Recall: The AssetManager Thread

Game Thread Asset Thread

Specify Asset \
Asset
\ Manager
Notify done

® Works as a dictionary

® Each asset given a key

® (Can access asset by key
® But templated by type

the . e ege e
Multithreading gamedesi%f;}f;}tﬁiﬁtﬁ

Recall: The AssetManager Thread

Game Thread Asset Thread

moLks as a dictionary

® Each asset given a key

® (Can access asset by key
® But templated by type

the . e e .
Multithreading gamedesﬂ‘%grlﬁtfvtﬁ(;

- =

Asset Loading Consists of Tasks

Task 1 Task 2 Task 3 Task 4

Load Font Load Image Load Sound Load Widget

"Times.ttf" "smile.png" "music.ogg" "menu.json”

[EE— —

the . e ege e
8 Multithreading gamedesﬂ%f;}f;}tﬁiﬁ:j

- ===

ldeally, Each One is a Thread

Task 1 Task 2 Task 3 Task 4

Load Font Load Image Load Sound Load Widget

"Times.ttf" "smile.png" "music.ogg" "menu.json”

Thread 1 Thread2 Thread3 Thread 4

the . e ege e
0 Multithreading gamedesﬂ%f;}f;}tﬁiﬁtj

- ===

ldeally, Each One is a Thread

Task 1 Task 2 Task 3 Task 4

Load Font Load Image Load Sound Load Widget
"Times.ttf" "smile.png" "music.ogg" "menu.json"

% But We Cannot Do This
= &

Thread1 Thread2 Thread3 Thread 4

the . P .
10 Multithreading gamedesﬂ‘%grlﬁtﬁtﬁf

- =

What is the Problem??

® Some tasks have shared resources
® Example: Fonts all use same engine to make atlases
® Cannot execute without protecting critical section
® Typically easier to just not do them concurrently

® Some tasks have dependencies

® Example: Widgets must come after images, fonts
® Forces an order on the asset loading

® What we want 1s a task service manager
® Executes given tasks in a partial order

[EE— EE——

the . e ege 4.
11 Multithreading gamedesigninitiative

11111111111111111111

Solution: Thread Pool

® Threads + scheduler

Task 4

® Scheduler puts tasks thread
Task 3 o

Uses first available thread

Task 2 ® Holds tasks if all busy

Task 1

Scheduler ~

the . e e .
12 Multithreading gamedesﬂ%{:}ﬁtﬁ?ﬁﬁ‘;’

Solution: Thread Pool

Task 4

Task 3
Task 2

Task 1

Scheduler ~

the . e e .
13 Multithreading gamedeﬂa‘%{c}fﬁtﬁtﬁ?

- =

Solution: Thread Pool

Task 4

Task 3

Scheduler % ~

the . e e .
14 Multithreading gamedeﬂa‘%{c}fﬁtﬁtﬁ?

- =

Task 2

[EE— EE——

Solution: Thread Pool

Task 4

Scheduler

the . e e .
15 Multithreading gamedeﬂa‘%{c}fﬁtﬁtﬁ?

- =

Solution: Thread Pool

Task 4

Scheduler

D

the . e e .
16 Multithreading gamedeﬂa‘%{c}fﬁtﬁtﬁ?

- =

Solution: Thread Pool

Scheduler % = %

17 Multithreading game d signinitic tv

- =

(00

Solution: Thread Pool

Scheduler % % %

18 Multithreading game d signiniti tv

- =

Task 5

Solution: Thread Pool

Task 4

Scheduler % = %

19 Multithreading game d signinitic tv

- =

Task 5

Solution: Thread Pool

Scheduler % g %

20 Multithreading game d signinitic tv

- =

CUGL Support: ThreadPool

® /**
* Returns a thread pool with the given number of threads.

*

* @param threads the number of threads in this pool

*

* @return a thread pool with the given number of threads.
*/
static std::shared_ptr<ThreadPool> alloc(int threads = 4)
® /**
* Adds a task to the thread pool.
*

* @param task the function to add to the thread pool
*/
void addTask(const std::function<void()> &task)

[EE— —

the . e ey g
21 Multithreading 8amede“§2}f;}5ﬁti¥§

- ===

CUGL Support: ThreadPool

o /**
* Returns a thread pool with the given number of threads.

*

* @param threads the number of threads in this pool

LiUUD W VWL UV UllV Ulll vau yUUL.
*

* @param task the function to add to the thread pool
*/
void addTask(const std::function<void()> &task)

[EE— EE——

22 Multithreading tg;rmelmedesignini’tir;l’ciye

11111111111111111111

Recall: Custom Loaders

® void read(key, srec, cb, asyne)
NN Y

Thread Safe

® Reads asset from file src
® agsync indicates if in sep thread

® (allback cb executed when done

® void read(json, cb, asyne) _ g

® Values key and sr¢ now 1in json Thread Safe

® As are other special properties

® void materialize(key, asset, ch)
® (Code to “finish” asset Main Thread |
® Always in the main thread Only

23 Multithreading

the . e ey g
gamedesigninitiative

at cornell university

Recall: Custom Loaders

® void read(key, srec, cb, asyne)
® Receads asset from file sre
® agsync indicates if in sep thread

® (allback ¢b executed when done
® void read(json, cb, async)
® Values key and sr¢ now in json

® As are other special properties

® void materialize(key, asset, cb)
® (Code to “finish” asset

® Always in the main thread

24 Multithreading

Each of these

1S 1ts own task

1111111111111111111

Executing Tasks on the Main Thread

® Any other thread can access the Application
® Use the static method Application::get()

® This class 1s essentially a singleton

® That object has a schedule method
® Works much like addTask in thread pool
® But executes that task on the main thread

® Executed just before the call to your update

® Scheduling this task 1s thread safe

[EE— EE——

25 Multithreading tggcamedesigrﬁni’cir;l’ciye

11111111111111111111

The Schedule Method

/**
* Schedules a task function on the main thread.
*@paramcb The task callback function
* @param ms The number of milliseconds to delay

*

* @return a unique identifier for the task
*/
Uint32 schedule(std::function<bool()> ¢b, Uint32 ms)

the . e ege e
26 Multithreading gamedesﬂ%f;}f;}tﬁiﬁ:j

- ===

The Schedule Method

/* *
* Schedules a task function on the main thread.

*

* @param cb

* @param ms

* frame after
* @return a uniqu ry7 ms millisec |
*/

Uint32 schedule(std::function<bool()> ¢b, Uint32 ms)

[D

the . e ege e
27 Multithreading gamedes igninitiative

- =

Putting it All Together

Game Thread Asset Thread

addTask(...) \
Asset
\ Manager

schedule(...)

Schedules

materialize

Application ThreadPool

the . e ege e
28 Multithreading gamedesﬂ%f;}f;}tﬁiﬁ:j

- ===

Aside: Schedule is Useful in General

29

Can specify an event to run in the future
® This 1s the purpose of the milliseconds

® May be easier than tracking a timer yourself

Can specify a task to run periodically

® Example: Spawning enemies

® The task returns true if 1t wants to run again
® Same delay 1s applied as the first time

® Alternate schedule separates delay and period

the . P .
: : amedesigninitiative
Multlthreadlng g a% 11111 ell university
- ==

Recall: Playing Sound Directly

Write PCM
chunk to buffer

& PCM data buffer
Sound

Game
Loop
|

Missing a write causes pops/clicks

[EE— EE——

the . e ege 4.
30 Multithreading gamedesigninitiative

11111111111111111111

The CUGL Approach

31

Game Thread DSP Graph Audio Thread

I

Application Thread

[EE— —

the . e ege e
Multithreading gamedeSla%grlﬁtﬁtﬁs

- ===

The CUGL Approach

32

Game Thread DSP Graph

% modifies |

Application

Multithreading

Audio Thread

Update

éﬁ'@J

Thread

[EE— —

the . e ey g
gamedesigninitiative
at cornell uni

university

- ===

The CUGL Approach

Game Thread DSP Graph Audio Thread

v v
modifies

This 1s a very complex
Producer/Consumer

Application Thread

[EE— EE——

the . e ege 4.
33 Multithreading gamedesigninitiative

at cornell university

Aside: Audio is Not a ThreadPool

® Audio 1s a dedicated std::thread

® Because it needs to run as long as the game does
® Started when you 1nitialized AudioEngine

® But process 1s stmilar to ThreadPool
® Package your task as a std::function<void()>

® Pass this when you create the thread object

® Daifference is that task 1s 1in a loop
® Has an attribute called running to manage loop
® When you set to false, the thread 1s done

[EE— EE——

34 Multithreading tggcamedesigr1ir1i’cir;1’ciye

11111111111111111111

The CUGL Approach

35

Game Thread DSP Graph Audio Thread

v

v
modifies

How do we protect
the critical section?

[EE— EE——

Multithreading tghiamedesignir‘li’ti.’»Tl’t‘ix‘/e

at cornell university

The Java Approach: Synchronized

public class CriticalSection {

synchronized void methodl() {...} <l
| Locked to
synchronized void method2() {...} 211 &) UMETE

synchronized void method3() {...}

the . e ege e
36 Multithreading gamedesi%{;}f;}tﬁiﬁ:j

The Java Approach: Synchronized

public class CriticalSection {

synchronized void methodl() {...}

Locked to
one thread
at a time

synchronized void method2() {...}

/ \
Lock applies
to all of the
methods

synchronized void method3() {...}

the . e ege e
37 Multithreading gamedeSﬂ%ﬂfﬂtﬁtﬁg

- ===

C++ Actually Has Two Tools

std::mutex std::atomic

® Used to protect a code block ® Used to protect a variable

® Places lock on code block ® Prevents data races
® Only one thread can access ® Useful for shared setters
® Advantages ® Advantages
® (an replicate synchronized ®]0x faster than std::mutex
® Relatively easy to use ® Sometimes easy to use
® Disadvantages ® Disadvantages
® Locking has some cost ® Extremely limited in use
® Deadlocks easy if careless ® Advanced use 1s advanced

the . P .
38 Multithreading gamedesﬂ‘%grlﬁtﬁtﬁf

C++ Actually Has Two Tools

std::mutex std::atomic

® Used to protect a code block ® Used to protect a variable

® Places lock on code block ® Prevents data races

® Only one thread can access ® Useful for shared setters

Audio thread

uses whenever [
it 1s possible

1t must do so

® Disadvantages ® Disadvantages
® Locking has some cost ® Extremely limited in use
® Deadlocks easy if careless ® Advanced use is advanced

cornell university

39 Multithreading gamedesi gninitiative

Replicating Synchronized

class CriticalSection {

private:
/** Mutex to synchronize methods */
std::mutex _mutex;

public:
void method() {
_mutex.lock(); // Lock method code

_mutex.unlock(); // Release when done

)

the . e e .
40 Multithreading gamedesﬂ%{:}ﬁtﬁitﬁ‘;’

- =

Obervations About std::mutex

® It 1s not a reentrant lock (unlike synchronized)

® Locking it again inside same class will deadlock
® This matters when you have locks on helpers

® Must use std::recursive _mutex for reentrant lock

® Manual lock/unlock calls are frowned upon

41

® To easy to forget to unlock and deadlock
® Preferred way 1s to attach a locking object

® When locking object is deleted, so 1s lock

[EE— EE——

the . P .
: : amedesigninitiative
Multlthreadlng g § 11111 ell university
- ==

Using a Locking Object

class CriticalSection {

private:
/** Mutex to synchronize methods */
std::mutex _mutex;

public:
void method() {
std::lock_guard<std::mutex> lock(_mutex);

// Mutex unlocked once lock variable deleted
}

the . e e .
42 Multithreading gamedesﬂ%{:}f;ﬁfvtﬁ‘;’

- =

What If Critical Section is a Variable?

43

Example: running attribute controlling thread

® Audio thread loops so long as it 1s true
® Setting 1t to false stops the audio

Mutexes exist to prevent inconsistent states
® Fither all code 1s executed, or none 1s
® Cannot happen to variable assignment, right?

C++ 1s not assembly code!
® A single assignment 1s multiple lines of assembly
® This 1s not thread safe (especially on Windows)

Multithreading tggcamedesignir}i’ci.’»Tl’c‘ix‘/e

11111111111111111111

What If Critical Section is a Variable?

44

Example: running attribute controlling thread

® Audio thread loops so long as it 1s true
® Setting 1t to false stops the audio

Mutexes g Bt states
EBEEY T1iq |cads to data races!
® Cannot | right?

C++ 1s not assembly code!
® A single assignment 1s multiple lines of assembly
® This 1s not thread safe (especially on Windows)

Multithreading t{cgfamedesignir}i’ti.’»Tl’t‘ix‘/e

11111111111111111111

std::atomic Protects Assignment

® Template around a type: std::atomic<int>

® Supports all primitive C++ types
® Cannot apply to objects in general, but ...

® [s possible to make std::shared_ptr atomic

® Supported by two methods

45

® |0ad(): An atomic getter for the value
® store(value): An atomic setter for the value

® Shared pointers are slightly more complicated

Multithreading %famedesigninitiative

at cornell university

- =

std::atomic Protects Assignment

® Template around a type: std::atomic<int>

® Supports all primitive C++ types
® Cannot apply to objects in general, but ...

® [s possible to make std::shared_ptr atomic

® Supported by two metly \

46

® Joad(): An atomic getter|EAasEiE assignment 1s
atomic, not methods

® store(value): An atomic

® Shared pointers are slightly more complicated

the . P .
Multithreading gamedeae?grlﬁtﬁtﬁf

- =

Only Use If Read/Write Are Separate

class WithAtomics {
private:

std::atomic<int> _xvar; // Atomic integer
public:

/** Change the value of X */

void writeX(int val) { _xvar.store(val); }

/** Use the value of X to compute something */

void readX() {
int x = _xvar.load(); // Copy value to local variable
// Use x in local computation

)

the . e e .
47 Multithreading gamedeﬂa‘%{;}ﬂtﬁtﬁ?

- =

Only Use If Read/Write Are Separate

class WithAtomics {
private:

std::atomic<int> _xvar; // Atomic integer
public:

/** Change the value of X */

void writeX(int val) { _xvar.store(val); }

/** Use the value of X to compute something */
void readX() {

int x = _xvar.load(); ~&Copy value to local variable
// Use x in local ccg)
) Never store _xvar
} in same method

the . e e .
48 Multithreading gamedesﬂ%{:}ﬁtﬁ?ﬁﬁ‘;’

- =

This Is Only Scratching the Surface

® C++ supports monitors and semaphores
® These are used for producer/consumer problem
® Monitor allows consumer to wait on producer

® C++ supports promises
® These are threads that return a value
® Simplify critical section 1n that case

® Atomics support memory orders
® These are used to optimize performance
® Best avoided unless you know what you are doing

49 Multithreading tggcamedesigr1ir1i’cir;1’ciye

11111111111111111111

This Is Only Scratching the Surface

® C++ supports monitors and semaphores
® These are used for producer/consumer problem
® Monitor allows consumer to wait on producer

See readings 1f want more

® Atomics support memory orders
® These are used to optimize performance
® Best avoided unless you know what you are doing

the . e ee e
50 Multithreading gamedesﬂ%{:iﬂ}iﬁﬁﬁ

So Why Do We Care?

® All of these threads are made for you!

® But how about making your own threads?

® Pathfinding 1s a classic example
® NPC behavior can also be long-running

® How can extreme can we go?
® What if all updates are 1n separate thread?

® Then the main thread just draws!

® This can give us potentially very high FPS

[EE— EE——

the . e ee e
51 Multithreading gamedesﬂ%{;if;}iﬁﬁﬁ

This Will Not Quite Work

14113

Frame 1 Frame 2 Frame 3

Without update, redraw same 1mage.

We need animation in the core loop.

the . P .
52 Multithreading 8amede“§{§if££ﬁitﬁ$

- =

Recall: Two Approaches to Animation

Tweening Physics
® Animates timed actions ® Animates physical objects
® Given a duration and a start ® Bodies with force and mass
® [Interpolates scene over time ® Also shape for collisions
® Render thread simply... ® Render thread simply...
® accesses all active actions ® steps simulation forward
® moves them forward by dt ® renders objects at end
® Gameplay creates actions ® Gameplay nudges objects
® Happens less frequently ® Might be less frequent
® Decoupled from render ® [fso, can also decouple

the . P .
53 Multithreading gamedest%{;iﬂﬂﬁiﬁi

Recall: Two Approaches to Animation

Tweening Physics
® Animates timed actions ® Animates physical objects
® (Given a duration and a start ® Bodies with force and mass

® [Interpolates scene over time ® Also shape for collisions

Like networking, animation uses
M dcad reckoning when missing input

® Gameplay creates actions ® Gameplay nudges objects
® Happens less frequently ® Might be less frequent
® Decoupled from render ® [fso, can also decouple

54 Multithreading gamedeagmr}}hat‘we

1111111111111111111

A New Architecture

Animation Thread

Update Tweening

reads\

Game

J

Simulate Physics

State

modifies |

I

55

Multithreading

Gameplay Thread

Process Input

Process Player Actions

Process NPC Actions
Process Interactions

the . e ey g
gamedesigninitiative

at cornell university

A New Architecture

Animation Thread

Update Tweening

Simulate Physics

56

But don’t want
this slow either!

Multithreading

' Process Input

Gameplay Thread

Process P’layer Actions
Process NPC Actions
Process Interactions

the . e ey g
gamedesigninitiative

at cornell university

Summary

® Games engines are naturally multithreaded
® (Offload tasks that block drawing (asset loading)
® Offload tasks that s/ow drawing (pathfinding)

® Execute tasks decoupled from drawing (audio)

® CUGL has native task-based parallelism
® ThreadPool for tasks off the main thread
® Application::schedule for tasks on main thread

® C++ has general-purpose tools for parallelism
® std:thread class for managing other threads
® std:mutex and std::atomic for critical sections

the . P .
57 Multithreading 8amede“§{§if££ﬁitﬁ$

