
gamedesigninitiative
at cornell university

the

Game Audio

Lecture 12

gamedesigninitiative
at cornell university

the

Engagement

� Entertains the player
� Music/Soundtrack

� Enhances the realism
� Sound effects

� Establishes atmosphere
� Ambient sounds

The Role of Audio in Games

Game Audio2

gamedesigninitiative
at cornell university

the

� Indicate off-screen action
� Hint for player action

� Highlight on-screen action
� Call attention to an NPC

� Increase reaction time
� Players react to sound faster

The Role of Audio in Games

Feedback

Game Audio3

gamedesigninitiative
at cornell university

the

Game Audio

History of Sound in Games

Basic
Sounds

• Arcade games

• Early handhelds

• Early consoles

4

gamedesigninitiative
at cornell university

the

Early Sounds: Wizard of Wor

Game Audio5

gamedesigninitiative
at cornell university

the

Game Audio

History of Sound in Games

Recorded
Sound

Samples

Basic
Sounds

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

Sample = pre-recorded audio

6

gamedesigninitiative
at cornell university

the

Game Audio

History of Sound in Games

Some
Variability
of Samples

Recorded
Sound

Samples

Basic
Sounds

• Sample selection

• Volume

• Pitch

• Stereo pan

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

7

gamedesigninitiative
at cornell university

the

Game Audio

History of Sound in Games

Some
Variability
of Samples

Recorded
Sound

Samples

More
Variability
of Samples

Basic
Sounds

• Sample selection

• Volume

• Pitch

• Stereo pan

• Multiple samples

• Reverb models

• Sound filters

• Surround sound

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

8

gamedesigninitiative
at cornell university

the

Game Audio

History of Sound in Games

Some
Variability
of Samples

Recorded
Sound

Samples

More
Variability
of Samples

Basic
Sounds

• Sample selection

• Volume

• Pitch

• Stereo pan

• Multiple samples

• Reverb models

• Sound filters

• Surround sound

• Arcade games

• Early handhelds

• Early consoles

• Starts w/ MIDI

• 5th generation

(Playstation)

• Early PCs

LibGDX
is here

CUGL
is here

9

gamedesigninitiative
at cornell university

the

The Technical Challenges

� Sound formats are not (really) cross-platform
� It is not as easy as choosing MP3
� Different platforms favor different formats

� Sound playback APIs are not standardized
� LibGDX & CUGL are layered over many APIs
� Behavior is not the same on all platforms

� Sound playback crosses frame boundaries
� Mixing sound with animation has challenges

Game Audio10

gamedesigninitiative
at cornell university

the

File Format

� The data storage format
� Has data other than audio

� Many have many encodings
� .caf holds MP3 and PCM

� Examples:
� .mp3, .wav, .aiff
� .aac, .mp4, .m4a (Apple)
� .flac, .ogg (Linux)

Game Audio

File Format vs Data Format

Data Format

� The actual audio encoding
� Basic audio codec
� Bit rate (# of bits/unit time)
� Sample rate

(digitizes an analog signal)

� Examples:
� MP3, Linear PCM
� AAC, HE-AAC, ALAC
� FLAC, Vorbis

11

gamedesigninitiative
at cornell university

the

Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Game Audio

MP3 largely avoided due to patent issues.

12

gamedesigninitiative
at cornell university

the

Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Game Audio

MP3 largely avoided due to patent issues.

Supported in LibGDX

13

gamedesigninitiative
at cornell university

the

Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Game Audio

MP3 largely avoided due to patent issues.

Supported in CUGL

14

gamedesigninitiative
at cornell university

the

Which Formats Should You Choose?

� Question 1: Streaming or no streaming?
� Audio gets large fast; music often streamed
� But streaming creates overhead; bad for sound fx
� Few engines support WAV streams (LibGDX & CUGL do)

� Question 2: Lossy or lossless compression?
� Music can by lossy; sound fx not so much
� Only FLAC and WAV are standard lossless

� Question 3: How many channels (speakers) needed?
� MP3 channel is stereo only
� Others support many channels (e.g. 7.1 surround)

Game Audio15

gamedesigninitiative
at cornell university

the

Which Formats Should You Choose?

� Question 1: Streaming or no streaming?
� Audio gets large fast; music often streamed
� But streaming creates overhead; bad for sound fx
� Few engines support WAV streaming (CUGL does)

� Question 2: Lossy or lossless compression?
� Music can by lossy; sound fx not so much
� Only FLAC and WAV are standard lossless

� Question 3: How many channels (speakers) needed?
� MP3 channel is stereo only
� Others support many channels (e.g. 7.1 surround)

Game Audio

Sound FX: Linear PCM/WAV

Music: OGG Vorbis

16

gamedesigninitiative
at cornell university

the

Linear PCM Format

� Sound data is an array of sample values

� A sample is an amplitude of a sound wave

� Values are normalized -1.0 to 1.0 (so they are floats)

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

17

gamedesigninitiative
at cornell university

the

Linear PCM Format

� Sound data is an array of sample values

� A sample is an amplitude of a sound wave

� Values are normalized -1.0 to 1.0 (so they are floats)

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

Sometimes encoded as shorts or bytes MIN to MAX

18

gamedesigninitiative
at cornell university

the

Linear PCM Format

� Sound data is an array of sample values

� Magnitude of the amplitude is the volume
� 0 is lowest volume (silence)
� 1 is maximum volume of sound card
� Multiply by number 0 to 1 to change global volume

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

19

gamedesigninitiative
at cornell university

the

Linear PCM Format

� Sound data is an array of sample values

� Magnitude of the amplitude is the volume
� 0 is lowest volume (silence)
� 1 is maximum volume of sound card
� Multiply by number 0 to 1 to change global volume

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

20

gamedesigninitiative
at cornell university

the

Linear PCM Format

� Samples are organized into (interleaved) channels

� Each channel is essentially a speaker
� Mono sound has one channel
� Stereo sound has two channels
� 7.1 surround sound is eight channels

� A frame is set of simultaneous samples
� Each sample is in a separate frame

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

frame

21

gamedesigninitiative
at cornell university

the

Linear PCM Format

� The sample rate is frames per second

� Example: 0.5 seconds of stereo at 44.1 kHZ
� 0.5 s * 44100 f/s = 22050 frames
� 2 samples/frame * 22050 frames = 44100 samples
� 4 bytes/sample * 44100 samples = 176.4 kBytes

� 1 minute of stereo CD sound is 21 MB!
Game Audio

1 second

frames

22

gamedesigninitiative
at cornell university

the

Playing Sound Directly

Game Audio

Sound
Card

PCM data buffer

Game
Loop

23

gamedesigninitiative
at cornell university

the

Playing Sound Directly

Game Audio

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

24

gamedesigninitiative
at cornell university

the

Direct Sound in CUGL: AudioNode

Game Audio

� Class representing an audio source instance
� Not the same as Sound, which is an asset
� sound->createNode() returns an instance node
� Plug node into an AudioOutput (device)

� Data is read from method
/**
* Reads up to the specified number of frames into the given buffer
*
* @param buffer The read buffer to store the results
* @param frames The maximum number of frames to read
*/
Uint32 AudioNode::read(float* buffer, Uint32 frames);

25

gamedesigninitiative
at cornell university

the

Direct Sound in CUGL: AudioNode

Game Audio

� Class representing an audio source instance
� Not the same as Sound, which is an asset
� sound->createNode() returns an instance node
� Plug node into an AudioOutput (device)

� Data is read from method
/**
* Reads up to the specified number of frames into the given buffer
*
* @param buffer The read buffer to store the results
* @param frames The maximum number of frames to read
*/
Uint32 AudioNode::read(float* buffer, Uint32 frames);

Called in separate
audio thread

26

gamedesigninitiative
at cornell university

the

� Buffer is really a queue
� Output from queue front
� Playback writes to end
� Creates a playback delay

� Latency: amount of delay
� Some latency must exist
� Okay if latency ≤ framerate
� Android latency is ~90 ms!

� Buffering is a necessary evil
� Keeps playback smooth
� Allows real-time effects

Game Audio

The Latency Problem

Playback
Buffer

Sound
Card

Sound
Source

delay

27

gamedesigninitiative
at cornell university

the

Playing Sound Directly

� Choice of buffer size is important!
� Too large: long latency until next sound plays
� Too small: buffers swap too fast, causing audible pops

Game Audio

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

28

gamedesigninitiative
at cornell university

the

Playing Sound Directly

� Choice of buffer size is important!
� Too large: long latency until next sound plays
� Too small: buffers swap too fast, causing audible pops

Game Audio

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

• Windows: 528 bytes (even if you ask for larger)
• MacOS, iOS: 512-1024 bytes (hardware varies)
• Android: 2048-4096 bytes (hardware varies)

29

gamedesigninitiative
at cornell university

the

How Streaming Works

� All sound cards only play PCM data
� Other files (MP3 etc.) are decoded into PCM data
� But the data is paged-in like memory in an OS

� Why LibGDX/CUGL can stream WAV files too!

Game Audio

Sound
File

Streaming
Buffer

Sound
Engine

Append PCM Page Retrieve PCM Page

30

gamedesigninitiative
at cornell university

the

How Streaming Works

� Sound: Sound asset that is preloaded as full PCM

� Music: Sound asset that is streamed as PCM pages

Game Audio

Sound
Card

Sound
File

Streaming
Buffer

Page size set
by file format

Chunk size set
by audio API

31

gamedesigninitiative
at cornell university

the

How Streaming Works

� Sound: Sound asset that is preloaded as full PCM

� Music: Sound asset that is streamed as PCM pages

Game Audio

Sound
Card

Sound
File

Streaming
Buffer

Page size set
by file format

Chunk size set
by audio API

32

LibGDX distinction;
less true in CUGL

gamedesigninitiative
at cornell university

the

Handling Multiple Sounds

Game Audio

Sound
Card

PCM
Data

PCM
Data

PCM
Data

PCM
Data

PCM
Data

Literally!

33

gamedesigninitiative
at cornell university

the

Handling Multiple Sounds

� Can create values outside of -1 to 1
� This causes clipping/distortion
� Common if many simultaneous sounds

� Audio engineer must balance properly

Game Audio

Sound
Card

PCM
Data

PCM
Data

PCM
Data

PCM
Data

PCM
Data

Literally!

34

gamedesigninitiative
at cornell university

the

Why is Mixing Hard?

� Playback may include multiple sounds
� Sounds may play simultaneously (offset)
� Simultaneous sounds may be same asset
� Asset (source) vs. Instance (playback)

� Playback crosses frame boundaries
� It may span multiple animation frames
� Need to know when it stops playing
� May need to stop (or pause) it early

Game Audio35

gamedesigninitiative
at cornell university

the

We Want Something Simpler!

� Want ability to play and track sounds
� Functions to load sound into card buffer
� Functions to detect if sound has finished

� Want ability to modify active sounds
� Functions for volume and pitch adjustment
� Functions for stereo panning (e.g. left/right channels)
� Functions to pause, resume, or loop sound

� Want ability to mix sounds together
� Functions to add together sound data quickly
� Background process for dynamic volume adjustment

Game Audio36

gamedesigninitiative
at cornell university

the

We Want Something Simpler!

� Want ability to play and track sounds
� Functions to load sound into card buffer
� Functions to detect if sound has finished

� Want ability to modify active sounds
� Functions for volume and pitch adjustment
� Functions for stereo panning (e.g. left/right channels)
� Functions to pause, resume, or loop sound

� Want ability to mix sounds together
� Functions to add together sound data quickly
� Background process for dynamic volume adjustment

Game Audio

This is the purpose of a sound engine

37

gamedesigninitiative
at cornell university

the

Cross-Platform Sound Engines

� OpenAL
� Created in 2000 by Loki Software for Linux
� Was an attempt to make a sound standard
� Loki went under; last stable release in 2005
� Apple supported, but HARD deprecated in iOS 9

� FMOD/WWISE
� Industry standard for game development
� Mobile support is possible but not easy
� Not free; but no cost for low-volume sales

Game Audio38

gamedesigninitiative
at cornell university

the

Proprietary Sound Engines

� Apple AVFoundation
� API to support modern sound processing

� Mainly designed for music/audio creation apps

� But very useful for games and playback apps

� OpenSL ES
� Directed by Khronos Group (OpenGL)

� Substantially less advanced than other APIs

� Really only has support in Android space

� Google is deprecating in 2022
Game Audio39

gamedesigninitiative
at cornell university

the

Proprietary Sound Engines

� Apple AVFoundation
� API to support modern sound processing

� Mainly designed for music/audio creation apps

� But very useful for games and playback apps

� OpenSL ES
� Directed by Khronos Group (OpenGL)

� Substantially less advanced than other APIs

� Really only has support in Android space

� Google is deprecating in 2022
Game Audio

And many competing 3rd party solutions

40

gamedesigninitiative
at cornell university

the

What about SDL?

� CUGL is on top of SDL
� SDL has its own audio API
� Works on all platforms

� But it is a extremely low-level API
� Fill the buffer with linear PCM data
� Either pull (callback) or push (queue)
� No support for non-WAV audio formats
� No support for mixing, pausing, or anything

Game Audio41

gamedesigninitiative
at cornell university

the

Solution: CUGL Audio Classes

� AudioEngine: Playing sound effects
� Built on the the OpenAL model
� Very easy to use and understand
� Designed for simultaneous sounds

� AudioQueue: Playing music sequences
� Accessed from the AudioEngine
� Creates seamless playback queues
� Ideal for long-running music loops

Game Audio42

gamedesigninitiative
at cornell university

the

Solution: CUGL Audio Classes

� AudioEngine: Playing sound effects
� Built on the the OpenAL model
� Very easy to use and understand
� Designed for simultaneous sounds

� AudioQueue: Playing music sequences
� Accessed from the AudioEngine
� Creates seamless playback queues
� Ideal for long-running music loops

Modern version of OpenAL model

Game Audio43

gamedesigninitiative
at cornell university

the

Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

…

Engine has fixed
number of slots
(historically 24)

Slot

Game Audio44

gamedesigninitiative
at cornell university

the

Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

Sound

…

Load sound
into a slot
to play it

Engine has fixed
number of slots
(historically 24)

Game Audio45

gamedesigninitiative
at cornell university

the

Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

Sound

…

Load sound
into a slot
to play itSound

Queue
to follow

after

Engine has fixed
number of slots
(historically 24)

Game Audio46

gamedesigninitiative
at cornell university

the

Playing a Sound with Slots

� Request a playback slot for your asset
� If none is available, sound fails to play
� Otherwise, it gives you an id for the slot

� Load asset into the slot (but might stream)

� Play the playback slot
� Playing is a property of the slot, not asset
� Playback slot has other properties, like volume

� Release the slot when the sound is done
� This is usually done automatically

Game Audio47

gamedesigninitiative
at cornell university

the

Application Design

Mixer
Slot

Slot

Slot

Slot

Sound

…

Need to
remember
the slot id

Volume
is property
of a slot!

Game Audio48

gamedesigninitiative
at cornell university

the

Why This is Undesirable

� Tightly couples architecture to sound engine
� All controllers need to know this playback slot id
� Playback must communicate id to all controllers

� Instances usually have a semantic meaning
� Example: Torpedo #3, Ship/crate collision
� Meaning is independent of the slot assigned
� Would prefer to represent them by this meaning

� Solution: Refer to instances by keys
Game Audio49

gamedesigninitiative
at cornell university

the

Application Design

Mixer
Slot

Slot

Slot

Slot

Sound

…

Assign this a
key identifier

How AudioEngine works!

Game Audio50

gamedesigninitiative
at cornell university

the

The AudioEngine API
� /**

* Plays the given sound, and associates it with the specified key.
*
* @param key the reference key for the sound effect
* @param sound the sound effect file to play
* @param loop whether to loop indefinitely
* @param volume the sound volume
*/
void play(const string key, const std::shared_ptr<Sound>& sound);

� void stop(const string key);

� void setVolume(const string key, float volume);

� void getState(const string key);

Refer to
instance
logically

Game Audio51

gamedesigninitiative
at cornell university

the

Stopping Sounds

� Would like to know when a sound is finished
� To free up the slot (if not automatic)
� To stop any associated animation
� To start a follow-up sound

� Two main approaches
� Polling: Call an isPlaying() method/function
� Callback: Pass a listener to the engine

� AudioEngine allows both approaches
Game Audio52

gamedesigninitiative
at cornell university

the

Gapless Playback

� Gapless playback requires a queue
� Queue immediately plays next sound on completion
� Ideally with some crossfade to prevent pops

� Supported by class AudioQueue
� Built on top of AudioEngine; use allocQueue() method
� Permanently takes over a slot for the queue
� Can have multiple queues – as many as there are slots
� But no simultaneity guarantee between queues

� AudioQueue is kind of similar to AudioEngine
� But no need for keys, as there is only one slot

Game Audio53

gamedesigninitiative
at cornell university

the

The AudioQueue API
� /**

* Adds the given sound to the queue, to play when possible.
*
* @param sound the sound effect file to play
* @param loop whether to loop indefinitely
* @param volume the sound volume
* @param fade number of seconds to fade in
*/
void enqueue(const std::shared_ptr<Sound>& sound);

� void advance(usigned int steps);

� void setVolume(float volume);

� void getState();

No need
for a key

Game Audio54

gamedesigninitiative
at cornell university

the

Problem with the Slots Model

� All controls are embedded in the slot
� Example: Volume, looping, play position
� Restricted to a predetermined set of controls

� Modern games want custom sound-processing
� User defined sound filters (low pass, reverb)
� Advanced equalizer support
� Support for surround and 3D sound
� Procedural sound generation

Game Audio55

gamedesigninitiative
at cornell university

the

DSP Processing: The Mixer DAG

Source Effect

Mixer

Main
Mixer

Effect

Source Effect Effect

Mixer
Source

Source
Effect

Game Audio56

gamedesigninitiative
at cornell university

the

Example: UDK Kismet

Game Audio57

gamedesigninitiative
at cornell university

the

Example: FMOD

Game Audio58

gamedesigninitiative
at cornell university

the

Example: Pure Data

Game Audio59

gamedesigninitiative
at cornell university

the

The Slot Model is a Special Case

Empty

Main
Mixer

Source

Input

Empty

Source

Input

Input

Input

Input

Source Interface to set state:
volume, pan, fadeout

Game Audio60

gamedesigninitiative
at cornell university

the

The Slot Model is a Special Case

Empty

Main
Mixer

Source

Input

Empty

Source

Input

Input

Input

Input

Source Input has scheduling
features as well

Sound

Queue

All happens behind scenes of AudioEngine interface.

Game Audio61

gamedesigninitiative
at cornell university

the

The Slot Model is a Special Case

Empty

Main
Mixer

Mixer

Input

Empty

Input

Input

Input

Source

…

Source

Effect

Source

Effect

Theoretically input should accept any audio subgraph

Game Audio62

gamedesigninitiative
at cornell university

the

The AudioEngine Revisited
� /**

* Plays the given sound, and associates it with the specified key.
*
* @param key the reference key for the sound effect
* @param node the audio node to play
* @param loop whether to loop indefinitely
* @param volume the sound volume
*/
void play(const string key, const std::shared_ptr<AudioNode>& node);

� void stop(const string key);

� void setVolume(const string key, float volume);

� void getState(const string key);

Refer to
instance
logically

Game Audio63

gamedesigninitiative
at cornell university

the

The AudioEngine Revisited
� /**

* Plays the given sound, and associates it with the specified key.
*
* @param key the reference key for the sound effect
* @param node the audio node to play
* @param loop whether to loop indefinitely
* @param volume the sound volume
*/
void play(const string key, const std::shared_ptr<AudioNode>& node);

� void stop(const string key);

� void setVolume(const string key, float volume);

� void getState(const string key);

Refer to
instance
logically

Also supported

by AudioQueue

Game Audio64

gamedesigninitiative
at cornell university

the

Using AudioNode in AudioEngine

� Normal playback is built on top of it
� Uses sound->getInstance() to get your node
� So just as fully featured as normal playback

� But the node must implement completed()
� This is optional method for AudioNode subclasses
� The default implementation always returns false
� But that means the sound never finished playing
� So the scheduler cannot free slot for new sound

Game Audio65

gamedesigninitiative
at cornell university

the

AudioNode Classes in CUGL

� AudioPlayer
� Single playable instance for a sound asset

� AudioFader
� Fade-in, fade-out and cross-fade effects

� AudioMixer
� Group several simultaneous nodes together

� AudioScheduler
� Used to queue up sounds in a sequence

Game Audio66

gamedesigninitiative
at cornell university

the

AudioNode Classes in CUGL

� AudioPanner
� Simple stereo channel panning

� AudioSpinner
� Like panner but works on 7.1 sound fields

� AudioResampler
� Converts audio to different sample rate

� AudioSynchronizer
� Experimental beat detection for rhythm games

Game Audio67

gamedesigninitiative
at cornell university

the

Application: Vertical Layering

Mixer

Source

Source

Source

Source

Slot

Create with
getInstance()

Assign
to slot

Game Audio68

gamedesigninitiative
at cornell university

the

Application: Vertical Layering

Mixer

Source

Source

Source

Source

Slot

Create with
getInstance()

Assign
to slot

Control
volume

individually

Game Audio69

gamedesigninitiative
at cornell university

the

Application: Vertical Layering

Mixer

Source

Source

Source

Source

Slot

Create with
getInstance()

Assign
to slot

Control
volume

individually
AudioMixer completes when

all of its input nodes do

Game Audio70

gamedesigninitiative
at cornell university

the

� Class AudioOutput
� Terminal node of the graph
� Represents output device
� Can be named or default
� Defines channels, sample rate

� Class AudioInput
� Initial node of the graph
� Represents input device
� Can be named or default
� May or may not match ouput

Two Special AudioNodes

AudioOutput

AudioOutput

AudioOutput

Game Audio71

gamedesigninitiative
at cornell university

the

� Class AudioOutput
� Terminal node of the graph
� Represents output device
� Can be named or default
� Defines channels, sample rate

� Class AudioInput
� Initial node of the graph
� Represents input device
� Can be named or default
� May or may not match ouput

Two Special AudioNodes

AudioInput

AudioInput

AudioInput

Game Audio72

gamedesigninitiative
at cornell university

the

� Class AudioOutput
� Terminal node of the graph
� Represents output device
� Can be named or default
� Defines channels, sample rate

� Class AudioInput
� Initial node of the graph
� Represents input device
� Can be named or default
� May or may not match ouput

Two Special AudioNodes

AudioInput

AudioInput

AudioInput

These are all managed by

the AudioDevice
s singleton

Game Audio73

gamedesigninitiative
at cornell university

the

Advanced: Reverb Calculations

� Uses audio raytracing

� Also material reflection

� In many AAA games

Game Audio74

gamedesigninitiative
at cornell university

the

Advanced: Reverb Calculations

� Uses audio raytracing

� Also material reflection

� In many AAA games

Unfortunately
this is a patent

mine field!

Game Audio75

gamedesigninitiative
at cornell university

the

Advanced: Surround Sound

Player

Sub Left Front Right FrontCenter

Left
Surround

Right
Surround

Left Rear
Surround

Right Rear
SurroundGame Audio76

gamedesigninitiative
at cornell university

the

Advanced: Surround Sound
Sub Left Front Right FrontCenter

Left
Surround

Right
Surround

Left Rear
Surround

Right Rear
SurroundGame Audio77

gamedesigninitiative
at cornell university

the

Advanced: Surround Sound
Sub Left Front Right FrontCenter

Left
Surround

Right
Surround

Left Rear
Surround

Right Rear
Surround

Original source
must be mono

to work properly

Game Audio78

gamedesigninitiative
at cornell university

the

Advanced: Surround Sound
Sub Left Front Right FrontCenter

Left
Surround

Right
Surround

Left Rear
Surround

Right Rear
Surround

Original source
must be mono

to work properly

See AudioSpinn
er

Game Audio79

gamedesigninitiative
at cornell university

the

� Mobile positional sound?
� Only stereo: left/right
� Cannot pinpoint source

� Goal: realistic perception
� Track the sound parallax
� Account for shape of head

� Not (yet) in CUGL
� In experimental branch
� Will merge in summer

Game Audio

Advanced: Binarual Synthesis

80

gamedesigninitiative
at cornell university

the

Example: Papa Sangre

Game Audio81

gamedesigninitiative
at cornell university

the

Summary

� Audio design is about creating soundscapes
� Music, sound effects, and dialogue
� Combining sounds requires a sound engine

� Cross-platform support is a problem
� Licensing issues prevent a cross-platform format
� Very little standardization in sound APIs

� Best engines use digital signal processing (DSP)
� Mixer graph is a DAG supporting sound effects
� CUGL has some early support for all this

Game Audio82

