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Engagement

� Entertains the player
� Music/Soundtrack

� Enhances the realism
� Sound effects

� Establishes atmosphere
� Ambient sounds

The Role of Audio in Games

Game Audio2
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� Indicate off-screen action
� Hint for player action

� Highlight on-screen action
� Call attention to an NPC

� Increase reaction time
� Players react to sound faster

The Role of Audio in Games

Feedback

Game Audio3



gamedesigninitiative
at cornell university

the

Game Audio

History of Sound in Games

Basic 
Sounds

• Arcade games 

• Early handhelds

• Early consoles
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Early Sounds: Wizard of Wor

Game Audio5
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Game Audio

History of Sound in Games

Recorded 
Sound 

Samples

Basic 
Sounds

• Arcade games 

• Early handhelds

• Early consoles

• Starts w/ MIDI 

• 5th generation

(Playstation)

• Early PCs

Sample = pre-recorded audio 
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Game Audio

History of Sound in Games

Some 
Variability
of Samples

Recorded 
Sound 

Samples

Basic 
Sounds

• Sample selection 

• Volume

• Pitch

• Stereo pan

• Arcade games 

• Early handhelds

• Early consoles

• Starts w/ MIDI 

• 5th generation

(Playstation)

• Early PCs
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Game Audio

History of Sound in Games

Some 
Variability
of Samples

Recorded 
Sound 

Samples

More 
Variability
of Samples

Basic 
Sounds

• Sample selection 

• Volume

• Pitch

• Stereo pan

• Multiple samples

• Reverb models

• Sound filters

• Surround sound

• Arcade games 

• Early handhelds

• Early consoles

• Starts w/ MIDI 

• 5th generation

(Playstation)

• Early PCs
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Game Audio

History of Sound in Games

Some 
Variability
of Samples

Recorded 
Sound 

Samples

More 
Variability
of Samples

Basic 
Sounds

• Sample selection 

• Volume

• Pitch

• Stereo pan

• Multiple samples

• Reverb models

• Sound filters

• Surround sound

• Arcade games 

• Early handhelds

• Early consoles

• Starts w/ MIDI 

• 5th generation

(Playstation)

• Early PCs

LibGDX 
is here

CUGL 
is here
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The Technical Challenges

� Sound formats are not (really) cross-platform
� It is not as easy as choosing MP3
� Different platforms favor different formats

� Sound playback APIs are not standardized
� LibGDX & CUGL are layered over many APIs
� Behavior is not the same on all platforms

� Sound playback crosses frame boundaries
� Mixing sound with animation has challenges

Game Audio10
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File Format

� The data storage format
� Has data other than audio

� Many have many encodings
� .caf holds MP3 and PCM

� Examples:
� .mp3, .wav, .aiff
� .aac, .mp4, .m4a (Apple)
� .flac, .ogg (Linux)

Game Audio

File Format vs Data Format

Data Format

� The actual audio encoding
� Basic audio codec
� Bit rate (# of bits/unit time)
� Sample rate 

(digitizes an analog signal)

� Examples:
� MP3, Linear PCM
� AAC, HE-AAC, ALAC
� FLAC, Vorbis

11
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Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Game Audio

MP3 largely avoided due to patent issues.
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Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Game Audio

MP3 largely avoided due to patent issues.

Supported in LibGDX
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Game Audio Formats

Format Description File Formats
Linear PCM Completely uncompressed sound .wav, .aiff
MP3 A popular compressed, lossy codec .mp3, .wav
Vorbis Xiph.org’s alternative to MP3 .ogg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
(HE-)AAC A lossy codec, Apple’s MP3 alternative .aac, .mp4, .m4a
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

Game Audio

MP3 largely avoided due to patent issues.

Supported in CUGL
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Which Formats Should You Choose?

� Question 1: Streaming or no streaming?
� Audio gets large fast; music often streamed
� But streaming creates overhead; bad for sound fx
� Few engines support WAV streams (LibGDX & CUGL do)

� Question 2: Lossy or lossless compression?
� Music can by lossy; sound fx not so much
� Only FLAC and WAV are standard lossless

� Question 3: How many channels (speakers) needed?
� MP3 channel is stereo only
� Others support many channels (e.g. 7.1 surround)

Game Audio15
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Which Formats Should You Choose?

� Question 1: Streaming or no streaming?
� Audio gets large fast; music often streamed
� But streaming creates overhead; bad for sound fx
� Few engines support WAV streaming (CUGL does)

� Question 2: Lossy or lossless compression?
� Music can by lossy; sound fx not so much
� Only FLAC and WAV are standard lossless

� Question 3: How many channels (speakers) needed?
� MP3 channel is stereo only
� Others support many channels (e.g. 7.1 surround)

Game Audio

Sound FX: Linear PCM/WAV

Music: OGG Vorbis
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Linear PCM Format

� Sound data is an array of sample values

� A sample is an amplitude of a sound wave

� Values are normalized -1.0 to 1.0 (so they are floats)

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0
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Linear PCM Format

� Sound data is an array of sample values

� A sample is an amplitude of a sound wave

� Values are normalized -1.0 to 1.0 (so they are floats)

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

Sometimes encoded as shorts or bytes MIN to MAX
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Linear PCM Format

� Sound data is an array of sample values

� Magnitude of the amplitude is the volume
� 0 is lowest volume (silence)
� 1 is maximum volume of sound card
� Multiply by number 0 to 1 to change global volume

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0
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Linear PCM Format

� Sound data is an array of sample values

� Magnitude of the amplitude is the volume
� 0 is lowest volume (silence)
� 1 is maximum volume of sound card
� Multiply by number 0 to 1 to change global volume

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0
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Linear PCM Format

� Samples are organized into (interleaved) channels

� Each channel is essentially a speaker
� Mono sound has one channel
� Stereo sound has two channels
� 7.1 surround sound is eight channels

� A frame is set of simultaneous samples
� Each sample is in a separate frame

Game Audio

0.5 0.2 -0.1 0.3 -0.5 0.0 -0.2 -0.2 0.0 -0.6 0.2 -0.3 0.4 0.0

frame
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Linear PCM Format

� The sample rate is frames per second

� Example: 0.5 seconds of stereo at 44.1 kHZ
� 0.5 s * 44100 f/s = 22050 frames
� 2 samples/frame * 22050 frames = 44100 samples
� 4 bytes/sample * 44100 samples = 176.4 kBytes

� 1 minute of stereo CD sound is 21 MB!
Game Audio

1 second

# frames
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Playing Sound Directly

Game Audio

Sound 
Card

PCM data buffer

Game
Loop
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Playing Sound Directly

Game Audio

Sound 
Card

Game
Loop

Write PCM 
chunk to buffer

PCM data buffer
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Direct Sound in CUGL: AudioNode

Game Audio

� Class representing an audio source instance
� Not the same as Sound, which is an asset
� sound->createNode() returns an instance node
� Plug node into an AudioOutput (device)

� Data is read from method
/**
* Reads up to the specified number of frames into the given buffer
* 
* @param buffer The read buffer to store the results
* @param frames The maximum number of frames to read
*/
Uint32 AudioNode::read(float* buffer, Uint32 frames);

25



gamedesigninitiative
at cornell university

the

Direct Sound in CUGL: AudioNode

Game Audio

� Class representing an audio source instance
� Not the same as Sound, which is an asset
� sound->createNode() returns an instance node
� Plug node into an AudioOutput (device)

� Data is read from method
/**
* Reads up to the specified number of frames into the given buffer
* 
* @param buffer The read buffer to store the results
* @param frames The maximum number of frames to read
*/
Uint32 AudioNode::read(float* buffer, Uint32 frames);

Called in separate 
audio thread
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� Buffer is really a queue
� Output from queue front
� Playback writes to end
� Creates a playback delay

� Latency: amount of delay
� Some latency must exist
� Okay if latency ≤ framerate
� Android latency is ~90 ms!

� Buffering is a necessary evil 
� Keeps playback smooth
� Allows real-time effects

Game Audio

The Latency Problem

Playback
Buffer

Sound
Card

Sound
Source

delay
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Playing Sound Directly

� Choice of buffer size is important!
� Too large: long latency until next sound plays
� Too small: buffers swap too fast, causing audible pops

Game Audio

Sound 
Card

Game
Loop

Write PCM 
chunk to buffer

PCM data buffer
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Playing Sound Directly

� Choice of buffer size is important!
� Too large: long latency until next sound plays
� Too small: buffers swap too fast, causing audible pops

Game Audio

Sound 
Card

Game
Loop

Write PCM 
chunk to buffer

PCM data buffer

• Windows: 528 bytes (even if you ask for larger)
• MacOS, iOS: 512-1024 bytes (hardware varies)
• Android: 2048-4096 bytes (hardware varies)
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How Streaming Works

� All sound cards only play PCM data
� Other files (MP3 etc.) are decoded into PCM data
� But the data is paged-in like memory in an OS

� Why LibGDX/CUGL can stream WAV files too!

Game Audio

Sound 
File

Streaming 
Buffer

Sound 
Engine

Append PCM Page Retrieve PCM Page
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How Streaming Works

� Sound: Sound asset that is preloaded as full PCM

� Music: Sound asset that is streamed as PCM pages

Game Audio

Sound 
Card

Sound 
File

Streaming 
Buffer

Page size set 
by file format

Chunk size set 
by audio API

31
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How Streaming Works

� Sound: Sound asset that is preloaded as full PCM

� Music: Sound asset that is streamed as PCM pages

Game Audio

Sound 
Card

Sound 
File

Streaming 
Buffer

Page size set 
by file format

Chunk size set 
by audio API

32
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Handling Multiple Sounds

Game Audio

Sound 
Card

PCM 
Data

PCM 
Data

PCM 
Data

PCM 
Data

PCM 
Data

Literally!
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Handling Multiple Sounds

� Can create values outside of -1 to 1
� This causes clipping/distortion
� Common if many simultaneous sounds

� Audio engineer must balance properly

Game Audio

Sound 
Card

PCM 
Data

PCM 
Data

PCM 
Data

PCM 
Data

PCM 
Data

Literally!
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Why is Mixing Hard?

� Playback may include multiple sounds
� Sounds may play simultaneously (offset)
� Simultaneous sounds may be same asset
� Asset (source) vs. Instance (playback)

� Playback crosses frame boundaries
� It may span multiple animation frames
� Need to know when it stops playing
� May need to stop (or pause) it early

Game Audio35
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We Want Something Simpler!

� Want ability to play and track sounds
� Functions to load sound into card buffer
� Functions to detect if sound has finished

� Want ability to modify active sounds
� Functions for volume and pitch adjustment
� Functions for stereo panning (e.g. left/right channels)
� Functions to pause, resume, or loop sound

� Want ability to mix sounds together
� Functions to add together sound data quickly
� Background process for dynamic volume adjustment

Game Audio36
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We Want Something Simpler!

� Want ability to play and track sounds
� Functions to load sound into card buffer
� Functions to detect if sound has finished

� Want ability to modify active sounds
� Functions for volume and pitch adjustment
� Functions for stereo panning (e.g. left/right channels)
� Functions to pause, resume, or loop sound

� Want ability to mix sounds together
� Functions to add together sound data quickly
� Background process for dynamic volume adjustment

Game Audio

This is the purpose of a sound engine
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Cross-Platform Sound Engines

� OpenAL
� Created in 2000 by Loki Software for Linux
� Was an attempt to make a sound standard
� Loki went under; last stable release in 2005
� Apple supported, but HARD deprecated in iOS 9

� FMOD/WWISE
� Industry standard for game development
� Mobile support is possible but not easy
� Not free; but no cost for low-volume sales

Game Audio38
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Proprietary Sound Engines

� Apple AVFoundation
� API to support modern sound processing

� Mainly designed for music/audio creation apps

� But very useful for games and playback apps

� OpenSL ES
� Directed by Khronos Group (OpenGL)

� Substantially less advanced than other APIs

� Really only has support in Android space

� Google is deprecating in 2022
Game Audio39
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Proprietary Sound Engines

� Apple AVFoundation
� API to support modern sound processing

� Mainly designed for music/audio creation apps

� But very useful for games and playback apps

� OpenSL ES
� Directed by Khronos Group (OpenGL)

� Substantially less advanced than other APIs

� Really only has support in Android space

� Google is deprecating in 2022
Game Audio

And many competing 3rd party solutions
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What about SDL?

� CUGL is on top of SDL
� SDL has its own audio API
� Works on all platforms

� But it is a extremely low-level API
� Fill the buffer with linear PCM data
� Either pull (callback) or push (queue)
� No support for non-WAV audio formats
� No support for mixing, pausing, or anything

Game Audio41
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Solution: CUGL Audio Classes

� AudioEngine: Playing sound effects
� Built on the the OpenAL model
� Very easy to use and understand
� Designed for simultaneous sounds

� AudioQueue: Playing music sequences
� Accessed from the AudioEngine
� Creates seamless playback queues
� Ideal for long-running music loops

Game Audio42
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Solution: CUGL Audio Classes

� AudioEngine: Playing sound effects
� Built on the the OpenAL model
� Very easy to use and understand
� Designed for simultaneous sounds

� AudioQueue: Playing music sequences
� Accessed from the AudioEngine
� Creates seamless playback queues
� Ideal for long-running music loops

Modern version of OpenAL model

Game Audio43
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Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

…

Engine has fixed 
number of slots 
(historically 24)

Slot

Game Audio44
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Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

Sound

…

Load sound
into a slot
to play it

Engine has fixed 
number of slots 
(historically 24)

Game Audio45
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Classic Model: Playback Slots

Mixer
Slot

Slot

Slot

Slot

Sound

…

Load sound
into a slot 
to play itSound

Queue 
to follow

after

Engine has fixed 
number of slots 
(historically 24)

Game Audio46
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Playing a Sound with Slots

� Request a playback slot for your asset
� If none is available, sound fails to play
� Otherwise, it gives you an id for the slot

� Load asset into the slot (but might stream)

� Play the playback slot
� Playing is a property of the slot, not asset
� Playback slot has other properties, like volume

� Release the slot when the sound is done
� This is usually done automatically

Game Audio47
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Application Design

Mixer
Slot

Slot

Slot

Slot

Sound

…

Need to 
remember 
the slot id

Volume 
is property 
of a slot!

Game Audio48
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Why This is Undesirable

� Tightly couples architecture to sound engine
� All controllers need to know this playback slot id
� Playback must communicate id to all controllers

� Instances usually have a semantic meaning
� Example: Torpedo #3, Ship/crate collision
� Meaning is independent of the slot assigned
� Would prefer to represent them by this meaning

� Solution: Refer to instances by keys
Game Audio49
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Application Design

Mixer
Slot

Slot

Slot

Slot

Sound

…

Assign this a 
key identifier

How AudioEngine works!

Game Audio50
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The AudioEngine API
� /**

* Plays the given sound, and associates it with the specified key.
*
* @param key       the reference key for the sound effect
* @param sound   the sound effect file to play
* @param loop      whether to loop indefinitely
* @param volume  the sound volume
*/
void play(const string key, const std::shared_ptr<Sound>& sound);

� void stop(const string key);

� void setVolume(const string key, float volume);

� void getState(const string key);

Refer to 
instance 
logically

Game Audio51
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Stopping Sounds

� Would like to know when a sound is finished
� To free up the slot (if not automatic)
� To stop any associated animation
� To start a follow-up sound

� Two main approaches
� Polling: Call an isPlaying() method/function
� Callback: Pass a listener to the engine

� AudioEngine allows both approaches
Game Audio52
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Gapless Playback

� Gapless playback requires a queue
� Queue immediately plays next sound on completion
� Ideally with some crossfade to prevent pops

� Supported by class AudioQueue
� Built on top of AudioEngine; use allocQueue() method
� Permanently takes over a slot for the queue
� Can have multiple queues – as many as there are slots
� But no simultaneity guarantee between queues

� AudioQueue is kind of similar to AudioEngine
� But no need for keys, as there is only one slot

Game Audio53
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The AudioQueue API
� /**

* Adds the given sound to the queue, to play when possible.
*
* @param sound   the sound effect file to play
* @param loop      whether to loop indefinitely
* @param volume  the sound volume
* @param fade      number of seconds to fade in
*/
void enqueue(const std::shared_ptr<Sound>& sound);

� void advance(usigned int steps);

� void setVolume(float volume);

� void getState();

No need 
for a key

Game Audio54
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Problem with the Slots Model

� All controls are embedded in the slot
� Example: Volume, looping, play position
� Restricted to a predetermined set of controls

� Modern games want custom sound-processing
� User defined sound filters (low pass, reverb)
� Advanced equalizer support
� Support for surround and 3D sound
� Procedural sound generation

Game Audio55
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DSP Processing: The Mixer DAG

Source Effect

Mixer

Main
Mixer

Effect

Source Effect Effect

Mixer
Source

Source
Effect
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Example: UDK Kismet

Game Audio57
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Example: FMOD
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Example: Pure Data

Game Audio59
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The Slot Model is a Special Case

Empty

Main
Mixer

Source

Input

Empty

Source

Input

Input

Input

Input

Source Interface to set state: 
volume, pan, fadeout

Game Audio60
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The Slot Model is a Special Case

Empty

Main
Mixer

Source

Input

Empty

Source

Input

Input

Input

Input

Source Input has scheduling
features as well

Sound

Queue 

All happens behind scenes of AudioEngine interface.

Game Audio61
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The Slot Model is a Special Case

Empty

Main
Mixer

Mixer

Input

Empty

Input

Input

Input

Source

…

Source

Effect

Source

Effect

Theoretically input should accept any audio subgraph
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The AudioEngine Revisited
� /**

* Plays the given sound, and associates it with the specified key.
*
* @param key       the reference key for the sound effect
* @param node     the audio node to play
* @param loop      whether to loop indefinitely
* @param volume  the sound volume
*/
void play(const string key, const std::shared_ptr<AudioNode>& node);

� void stop(const string key);

� void setVolume(const string key, float volume);

� void getState(const string key);

Refer to 
instance 
logically

Game Audio63
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The AudioEngine Revisited
� /**

* Plays the given sound, and associates it with the specified key.
*
* @param key       the reference key for the sound effect
* @param node     the audio node to play
* @param loop      whether to loop indefinitely
* @param volume  the sound volume
*/
void play(const string key, const std::shared_ptr<AudioNode>& node);

� void stop(const string key);

� void setVolume(const string key, float volume);

� void getState(const string key);

Refer to 
instance 
logically

Also supported 

by AudioQueue
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Using AudioNode in AudioEngine

� Normal playback is built on top of it
� Uses sound->getInstance() to get your node
� So just as fully featured as normal playback

� But the node must implement completed()
� This is optional method for AudioNode subclasses
� The default implementation always returns false
� But that means the sound never finished playing
� So the scheduler cannot free slot for new sound

Game Audio65
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AudioNode Classes in CUGL

� AudioPlayer
� Single playable instance for a sound asset

� AudioFader
� Fade-in, fade-out and cross-fade effects

� AudioMixer
� Group several simultaneous nodes together

� AudioScheduler
� Used to queue up sounds in a sequence

Game Audio66
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AudioNode Classes in CUGL

� AudioPanner
� Simple stereo channel panning

� AudioSpinner
� Like panner but works on 7.1 sound fields

� AudioResampler
� Converts audio to different sample rate

� AudioSynchronizer
� Experimental beat detection for rhythm games

Game Audio67
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Application: Vertical Layering

Mixer

Source

Source

Source

Source

Slot

Create with
getInstance() 

Assign 
to slot
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Application: Vertical Layering

Mixer

Source

Source

Source

Source

Slot

Create with
getInstance() 

Assign 
to slot

Control 
volume 

individually
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Application: Vertical Layering

Mixer

Source

Source

Source

Source

Slot

Create with
getInstance() 

Assign 
to slot

Control 
volume 

individually
AudioMixer completes when 

all of its input nodes do
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� Class AudioOutput
� Terminal node of the graph
� Represents output device
� Can be named or default
� Defines channels, sample rate

� Class AudioInput
� Initial node of the graph
� Represents input device
� Can be named or default
� May or may not match ouput

Two Special AudioNodes

AudioOutput

AudioOutput

AudioOutput

Game Audio71
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� Class AudioOutput
� Terminal node of the graph
� Represents output device
� Can be named or default
� Defines channels, sample rate

� Class AudioInput
� Initial node of the graph
� Represents input device
� Can be named or default
� May or may not match ouput

Two Special AudioNodes

AudioInput

AudioInput

AudioInput
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� Class AudioOutput
� Terminal node of the graph
� Represents output device
� Can be named or default
� Defines channels, sample rate

� Class AudioInput
� Initial node of the graph
� Represents input device
� Can be named or default
� May or may not match ouput

Two Special AudioNodes

AudioInput

AudioInput

AudioInput

These are all managed by

the AudioDevice
s singleton
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Advanced: Reverb Calculations

� Uses audio raytracing

� Also material reflection

� In many AAA games

Game Audio74
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Advanced: Reverb Calculations

� Uses audio raytracing

� Also material reflection

� In many AAA games

Unfortunately
this is a patent

mine field!

Game Audio75



gamedesigninitiative
at cornell university

the

Advanced: Surround Sound

Player

Sub Left Front Right FrontCenter

Left 
Surround

Right
Surround

Left Rear
Surround

Right Rear
SurroundGame Audio76
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Advanced: Surround Sound
Sub Left Front Right FrontCenter

Left 
Surround

Right
Surround

Left Rear
Surround

Right Rear
Surround

Original source 
must be mono 

to work properly
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Advanced: Surround Sound
Sub Left Front Right FrontCenter

Left 
Surround

Right
Surround

Left Rear
Surround

Right Rear
Surround

Original source 
must be mono 

to work properly

See AudioSpinn
er
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� Mobile positional sound?
� Only stereo: left/right
� Cannot pinpoint source

� Goal: realistic perception 
� Track the sound parallax
� Account for shape of head

� Not (yet) in CUGL
� In experimental branch
� Will merge in summer
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Example: Papa Sangre
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Summary

� Audio design is about creating soundscapes
� Music, sound effects, and dialogue
� Combining sounds requires a sound engine

� Cross-platform support is a problem
� Licensing issues prevent a cross-platform format
� Very little standardization in sound APIs

� Best engines use digital signal processing (DSP)
� Mixer graph is a DAG supporting sound effects 
� CUGL has some early support for all this

Game Audio82


