the gamedesigninitiative at cornell university

Lecture 11

Networking

Game Networking Issues

Consistency

- Do our games agree?
 - Where do I see objects?
 - Where do you see them?
 - Who is **authoritative**?
- How to force agreement?
 - Do I wait for everyone?
 - Do I guess and fix errors?

Security

- What cheats are possible?
 - View hidden data
 - Enter invalid states
 - Improve player skill
- How do we cheat proof?
 - Technical solutions?
 - Community policing?

Game Networking Issues

Consistency

- Do our games agree?
 - Where do I see objects?
 - Where do

Today's Lecture

- How to force agreement?
 - Do I wait for everyone?
 - Do I guess and fix errors?

Security

- What cheats are possible?
 - View hidden data
 - Enter involid

Not going to cover

- How up we cheat proof?
 - Technical solutions?
 - Community policing?

The Issue of Consistency

- *Latency* is root of all evil
 - Local actions are instant
 - Network actions are slow
- Example: targeting
 - Want "geometric fidelity"
 - Fire a weapon along ray
 - Hits first object on ray
 - But movement is fast!

How to tell these cases apart?

World State vs. Local State

- State: all objects in game
 - Local State: on a machine
 - World State: "true" state
- *Where* is the world state?
 - On a single machine?
 - Union of local states?
- States may be *inconsistent*
 - Local disagrees with world
 - Is this really a problem?
 - What can we do about it?

The Question of Authority

Centralized Authority

- One computer is authority
 - Stores the full world state
 - Local states must match it
- Often call this the "server"

Distributed Authority

- Authority is divided up
 - Each object has an owner
 - Must match if not owner
- Classically call this "P2P"

Authority and Latency

- Lack of authority enforces a delay
 - Only draw what authority tells you
 - Requires round trip from your input
 - Round-trip time (RTT) can be > 200 ms
- This makes the game less responsive
 - Need some way to compensate for this

Authority and Latency

- Lack of authority enforces a delay
 - Only draw what authority tells you

 - Need to understand basics before solving this
- This makes the game less responsive
 - Need some way to compensate for this

Networking Breaks into Two Phases

Matchmaking

- Service to find other players
 - Groups players in a session
 - But does not run session
- Why make your own?
 - Control user accounts
 - Implement skill ladders
- 3rd party services common
 - Apple GameCenter
 - GooglePlay API
 - CUGL Docker Service

Game Session

- Service to run the core game
 - Synchronizes player state
 - Supports minor adds/drops
- Why make your own?
 - Must tailor to your game
 - You often have no choice
- Limited 3rd party services
 - Often just a networking API
 - For limited class of games
 - Examples: Unity, Unreal

Networking Breaks into Two Phases

Matchmaking

- Service to find other players
 - Groups players in a session
 - But does not run session
- Simplify if possible simplify is possible
- 3rd party services common
 - Apple GameCenter
 - Google OpenMatch
 - CUGL Docker Service

Game Session

- Service to run the core game
 - Synchronizes player state
 - Supports minor adds/drops
- Our main focus
 - no choice
- Limited 3rd party services
 - Often just a networking API
 - For limited class of games
 - Examples: Unity, Unreal

- Requires a custom server
 - Needs a fixed IP address
 - IP is coded into the game
 - Or at least put in an asset
- Can leverage cloud tech
 - Write a Docker container
 - Deploy only as needed
- Benefit: cross-platform play
 - Must for iOS-Android play
 - See also Open Match

Client

Client

13

Game Session

Game Session

Matchmaking in Family Style

Why Not Just Direct IPs?

- Idea: Just let the host be "the server"
 - Player starts up server instance
 - Player writes down their IP address
 - Everyone else types in that IP address
- Problem: Network Address Translation
 - Most networks use NAT to attach many devices
 - This means IP addresses on NAT are not real
- Matchmaker provides NAT punchthrough!
 - Reason why you keep it open for reconnects

Game Session: Part of Core Loop

Decoupling the Network Loop

Decoupling the Network Loop

Decoupling Enables Latency Masking

- Animation is "buying time"
 - Looks fast and responsive
 - But no real change to state
 - Animation done at update

• Examples:

- Players wait for elevator
- Teleportation takes time
- Many hits needed per kill
- Bullets have flying time
- Inertia limits movement

Game Session: Dedicated Server

- Server developer provides
 - Acts as central authority
 - May be several servers
 - May use cloud services

Pros:

- Could be real computer
- More power/responsiveness
- No player has advantage

Cons:

- Lag if players not nearby
- Expensive to maintain

Game Session: AdHoc Server

- One client acts as host
 - Acts as central authority
 - Chosen by matchmaker
 - But may change in session

Pros:

- Cheap long-term solution
- Can group clients spatially

Cons:

- Server is a mobile device
- Host often has advantages
- Must migrate if host is lost

Game Session: AdHoc Server

- One client acts as host
 - Acts as central authority
 - Chosen by matchmaker
 - But may change in session
- Predominant commercial architecture
- Cons:
 - Server is a mobile device
 - Host often has advantages
 - Must migrate if host is lost

Game Session: AdHoc Server

- One client acts as host
 - Acts as central authority
 - Chosen by matchmaker
 - But may change in session
- Looks like
 the CUGL
 approach?
- Cons:
 - Server is a mobile device
 - Host often has advantages
 - Must migrate if host is lost

- Authority is distributed
 - Each client owns part of state
 - Special algorithms for conflict
 - Coordinator for adds/drops

Pros:

- No lag on owned objects
- Lag limited to "attacks"
- Same advantages as adhoc

Cons:

- Incredibly hard to implement
- High networking bandwidth

- Authority is distributed
 - Each client owns part of state
 - Special algorithms for conflict
 - Coordinator for adds/drops
- Almost no-one
 - does this outside
 - academia
- Cons:
 - Incredibly hard to implement
 - High networking bandwidth

What Do CUGL Games Use?

- There is a designated host in CUGL networking
 - But this used for matchmaking, not the session
 - No requirement that host is authoritative
- Library was actually designed for P2P
 - Method send() broadcasts to all (including host)
 - Worked because *Family Style* spaces were disjoint
- But possible to make host authoritative
 - Method sendOnlyToHost() talks only to host
 - Host synchronizes incoming messages
 - Broadcasts back to clients with send()

Synchronization Algorithms

- Clients must be synchronized
 - Ensure they have same state
 - ... or differences do not mattter
- Synchronization != authority
 - Authority determines true state
 - Not how clients updated
 - Or *when* clients are updated
- Major concept in networking
 - Lots of complicated algorithms
 - Also a patent mindfield
 - Take distributed systems course

Synchronization Algorithms

Pessimistic

- Everyone sees same world
 - Ensure local = world state
 - Forces a drawing delay
- Best on fast networks
 - Local LAN play
 - Bluetooth proximity
- Or games with limited input
 - Real time strategy
 - Simulation games

Optimistic

- Allow some world drift
 - Best guess + roll back
 - Fix mistakes if needed
- Works on any network
 - Lag errors can be fixed
 - But fixes may be distracting
- Works great for shooters
 - Player controls only avatar
 - All else approximated

Synchronization Algorithms

Pessimistic

- Everyone sees same world
 - Ensure local = world state
 - Forces a drawing delay
- Best on fast networks
 - Local LAN play
 - Bluetooth proximity
- Or games with limited input
 - Real time strategy
 - Simulation games

Optimistic

- Allow some world drift
 - Best guess + roll back
 - Fix mistakes if needed
- Works on any network
 - Lag errors can be fixed
 - But fixes may be distracting
- Also great for aboutors

 Also great for aboutors

 distributed authority

Pessimistic: Lock-Step Synchronization

- Algorithm: play by "turns"
 - Players send turn actions
 - Even if no action was taken
 - Wait for response to render

Problems

- *Long* Internet latency
- Variable latencies (jitter)
- Speed set by slowest player
- What if moves are lost?
- More common in LAN days

Pessimistic: Bucket Synchronization

- **Algorithm**: turns w/ timeout
 - Often timeout after 200 ms
 - But can be adapted to RTT
 - All moves are buffered
 - Executed at end of *next* turn

Problems

- Variable latencies (> a turn)
- Speed set by slowest player
- What if moves are lost?
- Used in classic RTS games

Pessimistic: Bucket Synchronization

- **Algorithm**: turns w/ timeout
 - Often timeout after 200 ms
 - But can be adapted to RTT
 - All moves are buffered
 - Executed at end of *next* turn

Problems

- Variable latencies (> a turn)
- Speed set by slowest player
- What if moves are lost?
- Used in classic RTS games

Optimistic: Personal State

Optimistic: Opponent State

Advantages of Sending Actions

Dead Reckoning

- Assume velocity constant
 - Simulate the new position
 - Treats like physics object
- Generalize to other actions

Error Smoothing

- Can interpolate late actions
 - Create simulation for action
 - Avg into original simulation
- Continue until converge

The Perils of Error Correction

CUGL Networking Guarantees

- CUGL built on Slikenet
 - Uses **reliable UDP**, not TCP
 - Uses **messages**, not stream
 - Messages are a byte vector
- Guarantees message order
 - Guarantees are per client
 - No guarantee between clients
- Host can synchronize
 - Host broadcasts moves to all
 - All clients see in same order

CUGL Networking Guarantees

- CUGL built on Slikenet
 - Uses **reliable UDP**, not TCP
 - Uses **messages**, not stream
 - Messages are a byte vector
- Guarantees message order
 - Guarantees are per client
 - No guarantee between clients
- Host can synchronize
 - Host broadcasts moves to all
 - All clients see in same order

CUGL Networking Guarantees

- CUGL built on Slikenet
 - Uses **reliable UDP**, not TCP
 - Uses **messages**, not stream
 - Messages are a byte vector
- Guarantees message order
 - Guarantees are per client
 - No guarantee between clients
- Host can synchronize
 - But introduces o all
 - message delay

rder

Physics: Challenge of Synchronization

- Deterministic bi-simulation is very hard
 - Physics engines have randomness (not Box2D)
 - Not all architectures treat floats the same
- Need to mix interpolation with snapshots
 - Like error correction in optimistic concern
 - Run simulation forward from snapshots

Physics: Challenge of Synchronization

- Deterministic bi-simulation is very hard
 - Physics engines have randomness (not Box 2D)
 - Not all are

• Need to 1

See today's reading

- Like error correction in optimistic concern
- Run simulation forward from snapshots

Physics: Challenge of Authority

- Distributed authority is very difficult
 - Authority naturally maps to player actions
 - Physics is a set of interactions
- Who owns an uncontrolled physics object?
 - Gaffer: The client that set in motion
 - Collisions act as a form of "authority tag"

Summary

- Consistency: local state agrees with world state
 - Caused by latency; takes time for action to be sent
 - Requires complex solutions since must draw now!
- Authority is how we measure world state
 - Almost all games use a centralized authority
 - Distributed authority is beyond scope of this class
- Synchronization is how we ensure consistency
 - Pessimistic synchronization adds a sizeable input delay
 - Optimistic synchronization requires a lot of overhead

