
gamedesigninitiative
at cornell university

the

Game Architecture
Revisited

Lecture 6



gamedesigninitiative
at cornell university

the

Architecture Revisited2

Recall: The Game Loop

Update

Draw
Cull non-visible objects
Transform visible objects

Display backing buffer
Draw to backing buffer

60 times/s

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

=
16.7 ms



gamedesigninitiative
at cornell university

the

� Almost everything is in loop
� Except asynchronous actions
� Is enough for simple games

� How do we organize this loop?
� Do not want spaghetti code
� Distribute over programmers

Architecture Revisited3

The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

Model
• Defines/manages 

the program data
• Responds to the 

controller requests

View
• Displays model 

to the user/player
• Provides interface 

for the controller

Controller
• Updates model in 

response to events
• Updates view with 

model changes

Architecture Revisited4

Model-View-Controller Pattern

Calls the 
methods of



gamedesigninitiative
at cornell university

the

The Game Loop and MVC

� Model: The game state
� Value of game resources
� Location of game objects

� View: The draw phase
� Rendering commands only
� Major computation in update

� Controller: The update phase
� Alters the game state
� Vast majority of your code

Update

Draw

Architecture Revisited5



gamedesigninitiative
at cornell university

the

Architecture Revisited6

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels



gamedesigninitiative
at cornell university

the

Architecture Revisited7

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

App 
Configuration

Memory policy
(future lecture)



gamedesigninitiative
at cornell university

the

Architecture Revisited8

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant



gamedesigninitiative
at cornell university

the

Architecture Revisited9

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

View

Controller(s)



gamedesigninitiative
at cornell university

the

onStartup()

� Handles the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioChannels

� Creates any player modes
� But does not launch yet
� Waits for assets to load
� Like GDXRoot in 3152

Architecture Revisited10

The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes



gamedesigninitiative
at cornell university

the

onStartup()

� Handles the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioChannels

� Creates any player modes
� But does not launch yet
� Waits for assets to load
� Like GDXRoot in 3152

Architecture Revisited11

The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes

Does not draw!

Handled separatelyonShutdown()

cleans this up



gamedesigninitiative
at cornell university

the

Application Structure

Architecture Revisited12

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Ownership

Collaboration



gamedesigninitiative
at cornell university

the

Application Structure

Architecture Revisited13

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Collaboration

� Collaboration
� Must import class/interface
� Instantiates an object OR
� Calls the objects methods

� Ownership
� Instantiated the object
� Responsible for disposal
� Superset of collaboration

Ownership



gamedesigninitiative
at cornell university

the

Architecture Revisited14

Avoid Cyclic Collaboration

Y X

collaborates with Y X

Z

collaborates
with

Controller

collaborates with



gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited15

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

?



gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited16

Root Node

Scene

Node Node

Node Node Node Node

Model

Model



gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited17

Root Node

Scene

Node Node

Node Node Node Node

Model

Model



gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited18

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

Topic for Another Lecture



gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide

Architecture Revisited19

Model-Controller Separation (Standard)

Controller

� Process user input
� Determine action for input
� Example: mouse, gamepad
� Call action in the model

Traditional controllers 
are “lightweight”



gamedesigninitiative
at cornell university

the

Classic Software Problem: Extensibility

� Given: Class with some base functionality
� Might be provided in the language API
� Might be provided in 3rd party software

� Goal: Object with additional functionality
� Classic solution is to subclass original class first
� Example: Extending GUI widgets (e.g. Swing)

� But subclassing does not always work…
� How do you extend a Singleton object?

Architecture Revisited20



gamedesigninitiative
at cornell university

the

� Games have lots of classes
� Each game entity is different
� Needs its own functionality 

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children

Architecture Revisited21

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior



gamedesigninitiative
at cornell university

the

� Games have lots of classes
� Each game entity is different
� Needs its own functionality 

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children

Architecture Revisited22

Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

ArcherWarrior

NPC

Redundant Behavior

No Help



gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide

Architecture Revisited23

Model-Controller Separation (Standard)

Redundant Behavior

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC



gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

Architecture Revisited24

Model-Controller Separation (Alternate)

Controller

� Process game actions
� Determine from input or AI
� Find all objects effected
� Apply action to objects

� Process interactions
� Look at current game state
� Look for “triggering” event
� Apply interaction outcome

In this case, models 
are lightweight



gamedesigninitiative
at cornell university

the

Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

Architecture Revisited25

Model-Controller Separation (Alternate)

Controller

� Process game actions
� Determine from input or AI
� Find all objects effected
� Apply action to objects

� Process interactions
� Look at current game state
� Look for “triggering” event
� Apply interaction outcome

In this case, models 
are lightweight

Motivation for the
Entity-Component Model



gamedesigninitiative
at cornell university

the

� Code correctness a concern
� Methods have specifications
� Must use according to spec

� Check correctness via typing
� Find methods in object class
� Example: orc.flee()
� Check type of parameters
� Example: force_to_flee(orc)

� Logical association with type
� Even if not part of class

Architecture Revisited26

Does Not Completely Solve Problem

Can I 
flee?



gamedesigninitiative
at cornell university

the

Issues with the OO Paradigm

� Object-oriented programming is very noun-centric
� All code must be organized into classes
� Polymorphism determines capability via type

� OO became popular with traditional MVC pattern
� Widget libraries are nouns implementing view 
� Data structures (e.g. CS 2110) are all nouns
� Controllers are not necessarily nouns, but lightweight

� Games, interactive media break this paradigm
� View is animation (process) oriented, not widget oriented
� Actions/capabilities only loosely connected to entities

Architecture Revisited27



gamedesigninitiative
at cornell university

the

Classes/Types are Nouns

� Methods have verb names

� Method calls are sentences
� subject.verb(object)
� subject.verb()

� Classes related by is-a
� Indicates class a subclass of
� Example: String is-a Object

� Objects are class instances

Architecture Revisited28

Programming and Parts of Speech

Actions are Verbs

� Capability of a game object

� Often just a simple function
� damage(object)
� collide(object1,object1)

� Relates to objects via can-it
� Example: Orc can-it attack
� Not necessarily tied to class
� Example: swapping items



gamedesigninitiative
at cornell university

the

� “Type” determined by its
� Names of its methods 
� Names of its properties
� If it “quacks like a duck”

� Python has this capability
� hasattr(<object>,<string>)
� True if object has attribute 

or method of that name

� This has many problems
� Correctness is a nightmare

Java:
public boolean equals(Object h) {

if (!(h instanceof Person)) {
return false;}

Person ob= (Person)h;
return name.equals(ob.name);

}

Python:
def __eq__(self,ob):

if (not (hasattr(ob,'name’))
return False

return (self.name == ob.name)

Architecture Revisited29

Duck Typing: Reaction to This Issue



gamedesigninitiative
at cornell university

the

� “Type” determined by its
� Names of its methods 
� Names of its properties
� If it “quacks like a duck”

� Python has this capability
� hasattr(<object>,<string>)
� True if object has attribute 

or method of that name

� This has many problems
� Correctness is a nightmare

Java:
public boolean equals(Object h) {

if (!(h instanceof Person)) {
return false;}

Person ob= (Person)h;
return name.equals(ob.name);

}

Python:
def __eq__(self,ob):

if (not (hasattr(ob,'name’))
return False

return (self.name == ob.name)

Architecture Revisited30

Duck Typing: Reaction to This Issue

Similar to C++ templates



gamedesigninitiative
at cornell university

the

� “Type” determined by its
� Names of its methods 
� Names of its properties
� If it “quacks like a duck”

� Python has this capability
� hasattr(<object>,<string>)
� True if object has attribute 

or method of that name

� This has many problems
� Correctness is a nightmare

Java:
public boolean equals(Object h) {

if (!(h instanceof Person)) {
return false;}

Person ob= (Person)h;
return name.equals(ob.name);

}

Python:
def __eq__(self,ob):

if (not (hasattr(ob,'name’))
return False

return (self.name == ob.name)

Architecture Revisited31

Duck Typing: Reaction to This Issue

� What do we really want?
� Capabilities over properties
� Extend capabilities without 

necessarily changing type
� Without using new languages

� Again, use software patterns



gamedesigninitiative
at cornell university

the

Reference to
base object

New
Functionality

Architecture Revisited32

Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality



gamedesigninitiative
at cornell university

the

Java I/O Example

InputStream input = System.in;

Reader reader = new InputStreamReader(input);

BufferedReader buffer = new BufferedReader(reader);

Architecture Revisited33

Built-in console input

Make characters easy to read

Read whole line at a time
Most of java.io
works this way



gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited34

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern



gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited35

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

Delegate
Object 2



gamedesigninitiative
at cornell university

the

Example: Sort Algorithms
public class SortableArray extends ArrayList{

private Sorter sorter = new MergeSorter();

public void setSorter(Sorter s) { sorter = s; }

public void sort() {
Object[] list = toArray();
sorter.sort(list);
clear(); 
for (o:list) { add(o); }

}
}

Architecture Revisited36

public interface Sorter {

public void sort(Object[] list);

}

new QuickSorter();



gamedesigninitiative
at cornell university

the

Decoration

� Pattern applies to decorator
� Given the original object
� Requests through decorator

� Monolithic solution
� Decorator has all methods
� “Layer” for more methods

(e.g. Java I/O classes)

� Works on any object/class

Architecture Revisited37

Comparison of Approaches

Delegation

� Applies to original object
� You designed object class
� All requests through object

� Modular solution
� Each method can have own 

delegate implementation
� Like higher-order functions

� Limited to classes you make



gamedesigninitiative
at cornell university

the

Architecture Revisited38

The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior



gamedesigninitiative
at cornell university

the

Summary

� Games naturally fit a specialized MVC pattern
� Want lightweight models (mainly for serialization)
� Want heavyweight controllers for the game loop
� View is specialized rendering with few widgets

� CUGL view is handled in scene graphs

� Proper design leads to unusual OO patterns
� Subclass hierarchies are unmanageable
� Component-based design better models actions

Architecture Revisited39


