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Recall: The Game Loop

Update

Draw
Cull non-visible objects
Transform visible objects

Display backing buffer
Draw to backing buffer

60 times/s

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

=
16.7 ms
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� Almost everything is in loop
� Except asynchronous actions
� Is enough for simple games

� How do we organize this loop?
� Do not want spaghetti code
� Distribute over programmers

Architecture Revisited3

The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions
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Model
• Defines/manages 

the program data
• Responds to the 

controller requests

View
• Displays model 

to the user/player
• Provides interface 

for the controller

Controller
• Updates model in 

response to events
• Updates view with 

model changes

Architecture Revisited4

Model-View-Controller Pattern

Calls the 
methods of
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The Game Loop and MVC

� Model: The game state
� Value of game resources
� Location of game objects

� View: The draw phase
� Rendering commands only
� Major computation in update

� Controller: The update phase
� Alters the game state
� Vast majority of your code

Update

Draw
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels



gamedesigninitiative
at cornell university

the

Architecture Revisited7

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

App 
Configuration

Memory policy
(future lecture)
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

View

Controller(s)
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onStartup()

� Handles the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioChannels

� Creates any player modes
� But does not launch yet
� Waits for assets to load
� Like GDXRoot in 3152

Architecture Revisited10

The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes
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onStartup()
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The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes

Does not draw!

Handled separatelyonShutdown()

cleans this up
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Application Structure
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Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Ownership

Collaboration
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Application Structure
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Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Collaboration

� Collaboration
� Must import class/interface
� Instantiates an object OR
� Calls the objects methods

� Ownership
� Instantiated the object
� Responsible for disposal
� Superset of collaboration

Ownership
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Avoid Cyclic Collaboration

Y X

collaborates with Y X

Z

collaborates
with

Controller

collaborates with
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Scene Structure
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Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

?
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CUGL Views: Scene Graphs
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Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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CUGL Views: Scene Graphs
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Root Node

Scene

Node Node

Node Node Node Node

Model

Model

Topic for Another Lecture
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Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide
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Model-Controller Separation (Standard)

Controller

� Process user input
� Determine action for input
� Example: mouse, gamepad
� Call action in the model

Traditional controllers 
are “lightweight”
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Classic Software Problem: Extensibility

� Given: Class with some base functionality
� Might be provided in the language API
� Might be provided in 3rd party software

� Goal: Object with additional functionality
� Classic solution is to subclass original class first
� Example: Extending GUI widgets (e.g. Swing)

� But subclassing does not always work…
� How do you extend a Singleton object?

Architecture Revisited20
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� Games have lots of classes
� Each game entity is different
� Needs its own functionality 

(e.g. object methods)

� Want to avoid redundancies
� Makes code hard to change
� Common source of bugs

� Might be tempted to subclass
� Common behavior in parents
� Specific behavior in children

Architecture Revisited21

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior
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(e.g. object methods)

� Want to avoid redundancies
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Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

ArcherWarrior

NPC

Redundant Behavior

No Help
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Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object

� Implements object logic
� Complex actions on model
� May affect multiple models
� Example: attack, collide
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Model-Controller Separation (Standard)

Redundant Behavior

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC
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Model

� Store/retrieve object data
� Limit access (getter/setter)
� Preserve any invariants
� Only affects this object
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Model-Controller Separation (Alternate)

Controller

� Process game actions
� Determine from input or AI
� Find all objects effected
� Apply action to objects

� Process interactions
� Look at current game state
� Look for “triggering” event
� Apply interaction outcome

In this case, models 
are lightweight
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Model

� Store/retrieve object data
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Model-Controller Separation (Alternate)

Controller

� Process game actions
� Determine from input or AI
� Find all objects effected
� Apply action to objects

� Process interactions
� Look at current game state
� Look for “triggering” event
� Apply interaction outcome

In this case, models 
are lightweight

Motivation for the
Entity-Component Model
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� Code correctness a concern
� Methods have specifications
� Must use according to spec

� Check correctness via typing
� Find methods in object class
� Example: orc.flee()
� Check type of parameters
� Example: force_to_flee(orc)

� Logical association with type
� Even if not part of class
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Does Not Completely Solve Problem

Can I 
flee?
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Issues with the OO Paradigm

� Object-oriented programming is very noun-centric
� All code must be organized into classes
� Polymorphism determines capability via type

� OO became popular with traditional MVC pattern
� Widget libraries are nouns implementing view 
� Data structures (e.g. CS 2110) are all nouns
� Controllers are not necessarily nouns, but lightweight

� Games, interactive media break this paradigm
� View is animation (process) oriented, not widget oriented
� Actions/capabilities only loosely connected to entities

Architecture Revisited27
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Classes/Types are Nouns

� Methods have verb names

� Method calls are sentences
� subject.verb(object)
� subject.verb()

� Classes related by is-a
� Indicates class a subclass of
� Example: String is-a Object

� Objects are class instances
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Programming and Parts of Speech

Actions are Verbs

� Capability of a game object

� Often just a simple function
� damage(object)
� collide(object1,object1)

� Relates to objects via can-it
� Example: Orc can-it attack
� Not necessarily tied to class
� Example: swapping items
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� “Type” determined by its
� Names of its methods 
� Names of its properties
� If it “quacks like a duck”

� Python has this capability
� hasattr(<object>,<string>)
� True if object has attribute 

or method of that name

� This has many problems
� Correctness is a nightmare

Java:
public boolean equals(Object h) {

if (!(h instanceof Person)) {
return false;}

Person ob= (Person)h;
return name.equals(ob.name);

}

Python:
def __eq__(self,ob):

if (not (hasattr(ob,'name’))
return False

return (self.name == ob.name)

Architecture Revisited29

Duck Typing: Reaction to This Issue



gamedesigninitiative
at cornell university

the

� “Type” determined by its
� Names of its methods 
� Names of its properties
� If it “quacks like a duck”

� Python has this capability
� hasattr(<object>,<string>)
� True if object has attribute 

or method of that name

� This has many problems
� Correctness is a nightmare

Java:
public boolean equals(Object h) {

if (!(h instanceof Person)) {
return false;}

Person ob= (Person)h;
return name.equals(ob.name);

}

Python:
def __eq__(self,ob):

if (not (hasattr(ob,'name’))
return False

return (self.name == ob.name)

Architecture Revisited30

Duck Typing: Reaction to This Issue

Similar to C++ templates
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Duck Typing: Reaction to This Issue

� What do we really want?
� Capabilities over properties
� Extend capabilities without 

necessarily changing type
� Without using new languages

� Again, use software patterns
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Reference to
base object

New
Functionality
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Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality
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Java I/O Example

InputStream input = System.in;

Reader reader = new InputStreamReader(input);

BufferedReader buffer = new BufferedReader(reader);
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Built-in console input

Make characters easy to read

Read whole line at a time
Most of java.io
works this way
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Reference to
delegate
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Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern
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delegate
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Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

Delegate
Object 2
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Example: Sort Algorithms
public class SortableArray extends ArrayList{

private Sorter sorter = new MergeSorter();

public void setSorter(Sorter s) { sorter = s; }

public void sort() {
Object[] list = toArray();
sorter.sort(list);
clear(); 
for (o:list) { add(o); }

}
}
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public interface Sorter {

public void sort(Object[] list);

}

new QuickSorter();
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Decoration

� Pattern applies to decorator
� Given the original object
� Requests through decorator

� Monolithic solution
� Decorator has all methods
� “Layer” for more methods

(e.g. Java I/O classes)

� Works on any object/class
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Comparison of Approaches

Delegation

� Applies to original object
� You designed object class
� All requests through object

� Modular solution
� Each method can have own 

delegate implementation
� Like higher-order functions

� Limited to classes you make
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The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior
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Summary

� Games naturally fit a specialized MVC pattern
� Want lightweight models (mainly for serialization)
� Want heavyweight controllers for the game loop
� View is specialized rendering with few widgets

� CUGL view is handled in scene graphs

� Proper design leads to unusual OO patterns
� Subclass hierarchies are unmanageable
� Component-based design better models actions
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