the gamedesigninitiative at cornell university

Lecture 5

Nondigital Prototypes

Review: Prototypes

- An *incomplete* model of your product
 - Implements small subset of the final features
 - Features chosen are the most important **now**
- Prototype helps you visualize **gameplay**
 - Way for you to test a new game mechanic
 - Allows you to tune mechanic parameters
 - Can also test (some) user interfaces

Software Prototypes

- Gameplay Prototype (3/2)
 - Throw-away prototype (not in final submission)
 - Does not have to be on device
 - Should demonstrate core gameplay
- Technical Prototype (3/14)
 - Evolutionary Prototype (part of final submission)
 - Should be on a device except in extreme cases
 - Should demonstrate important mobile challenge

Next Week: Nondigital Prototype

- No software involved at all
 - Board game
 - Card game
 - Something different?

- Goal is to **model gameplay**
 - How? Nondigital/digital is very different
 - Model will be far removed from final result
 - What can we hope to learn from this?

Understanding Game Progression

- Level design about *progress*
 - Sense of closeness to goal
 - Choice of "paths" to goal (dilemma challenge)
 - Path choice can relate to play style and/or difficult
- Easier to design if *discrete*
 - Flow-chart out progression
 - Edges are mechanic(s)
- But game state values are continuous (sort of)

Discrete Progression

- Design is discretization
 - Impose flow chart on state
 - Each box is an equivalence class of game states
- Spatial Discretization
 - Contiguous zones
 - **Example**: past a doorway
- Resource Discretization
 - Range of resource values
 - **Example**: build threshold

Spatial Discretization

at cornell university

7

Spatial Discretization

Spatial Discretization

Nature of Discretization

- State must be unambiguous
 - Must be an accurate, precise way to determine state
 - **Example**: string to measure distance in a wargame
- Actions must be **significant**
 - May correspond to several animation frames
 - **Example**: movement and attack in single turn
- Mechanics must have compact interactions
 - Avoid mechanics that depend on iterated interactions
 - **Example**: physics is *iterative* and hard to discretize

Discretization and Turns

- Discretization requires *turns*
 - Represent a unit of action
 - When done, game "at rest"
- Turns can be **multistep**
 - Multiple actions in a turn
 - Evironmental interactions
- Turns can alternate
 - between other players
 - with a gamemaster
 - not at all (one player?)

Discretization and Reaction Time

- Allow opponent to **interrupt**
 - Action that reacts to yours
 - Played after you act, but before action takes an effect
 - Core mechanic in *Magic:TG*
- Make play asynchronous
 - Players still have turns
 - But take turns as fast as can
 - Conflicts resolved via speed
 - Often need a referee for aid

Case Study: Runaway Rails

Reaction Time as Hidden Information

What Can We Do Discretely?

• Evaluate emergent behavior

- Allow player to commit simultaneous actions
- Model interactions as "board elements"
- Model player cost-benefit analyses
 - Model all resources with sources and sinks
 - Focus on economic dilemma challenges
- Test player difficulty/usability
 - Ideal for puzzle games (or puzzle elements)
 - Can also evaluate unusual interfaces

What Can We Do Discretely?

Evaluating Emergent Behavior

- **Recall**: coupled, context-dependent interactions
 - Requires an action and interaction
 - Or (alternatively) multiple actions
- Model interactions as "board elements"
 - Rules to follow after your action
 - May follow several in succession
 - Examples: Chutes & Ladders, Bonkers, RoboRally

Case Study: RoboRally

- Player "programs" robot
 - Picks 5 movement cards
 - Committed to that choice
- After each card
 - Obey board elements in order
 - Check robot collisions
- Move = board elements
 + cards + collisions

Cost-Benefit Analysis

- Where nondigital prototypes really shine
 - Resources are very easy to discretize
 - Economic choices easily map to turns
 - Understanding dilemma challenges is important
- Some believe this is *all* of game design
 - Claim everything can be reduced to a resource
 - Common in board game adaptations of other media
 - **Example**: balance game with instability resource

Case Study: Bounce

Tracking Oxygen as a Resource

Case Study: Trino

Measuring Shapeshifting Resources

Usability Analysis

• Unusual user-interfaces

- Recall that actions correspond to inputs
- Some inputs are not simple buttons
- Example: touch gestures, motion controls

• Puzzle-style games

- Create a game with module elements (e.g. cards)
- Laying out levels creates a new game level
- Allows you to quickly change and test levels

Case Study: Angry Bunny

Modeling Movement Controls

Case Study: Coalide

Modeling Flick Controls

Case Study: Family Style

PASS INGREDIENTS FROM PHONE TO PHONE

Mobile Prototypes

Modeling Multiplayer Restrictions

Case Study: Operation Bitwise

Configurable Protoype from Elements

Case Study: Magic Moving Mansion

Configurable Puzzles at Scale

Experiential Prototypes

- Some prototypes do not test gameplay
 - They test an experience or feeling
 - You determine if the feeling is enjoyable
 - Then go back and design gameplay for that
- Be very *careful* with this!
 - A very advanced design technique
 - Can easily end up with worthless prototype
 - Have only seen a few successes at this

Case Study: Gathering Sky

Feel of Movement Controls

The Experience of Threat

Most Important Thing: Progression

- Do not want a **one-level** game
 - Major problem with "flick" games in this course
 - Endless runners also have this problem
- We want some evidence of a **progression**
 - What is an easy level?
 - What is a medium level?
 - What is a hard level?
- Your prototype should be *reconfigurable*

Easy

Medium

Hard

The Difficulty Curve

Easy

Medium

Hard

Case Study: *Iridescence*

Easy: Iridescence

Medium: Iridescence

Hard: Iridescence

Case Study: Project Apollo

Prototype is a Puzzle Sandbox

Reflecting on What You Have Learned

- Your prototype should teach you *something*
 - About one of the things covered today
 - Even if it is "this design will not work"
- You will be asked about this at **presentation**
 - Must be prepared to answer
 - Write-up as part of submission
- Lesson matters more than **physical artifact**
 - You are not going to sell this prototype

Case Study: Flourish

Case Study: Flourish

Our game seemed unclear at the beginning for some players because [they had to conceptually] balance growth above ground and below ground.

In general, we learned about the **specificity we need for different rules that we had thought needed less explanation.**

