
gamedesigninitiative
at cornell university

the

The Graphics Pipeline

Lecture 10

gamedesigninitiative
at cornell university

the

Caveat About Today’s Lecture

� Today’s focus is on OpenGL
� The cross-platform graphics API for Indie games
� Vulkan may take over, but not there yet

� CUGL uses OpenGLES 3 for rendering
� Is a proper subset of OpenGL 3.x
� Designed with mobile devices in mind

� Much of what we say is true in other APIs
� But the pipeline will be slightly different
� In the case of Vulkan, a lot different

The Graphics Pipeline2

gamedesigninitiative
at cornell university

the

Graphics Cards Draw Triangles

The Graphics Pipeline3

gamedesigninitiative
at cornell university

the

Triangles Can Be Colored

The Graphics Pipeline4

gamedesigninitiative
at cornell university

the

Triangles Can Be Textured

The Graphics Pipeline5

gamedesigninitiative
at cornell university

the

Triangles Can Be Both

The Graphics Pipeline6

gamedesigninitiative
at cornell university

the

A Sprite is (Often) Two Triangles

The Graphics Pipeline7

gamedesigninitiative
at cornell university

the

Triangles are Drawn with Shaders

The Graphics Pipeline8

Vertex
Shader

Fragment
Shader

Vertex
Data

Pixel
Data

Image

Uniforms

gamedesigninitiative
at cornell university

the

Vertex Data Defines the Triangle

The Graphics Pipeline9

(0,0) (0,50)

(25,43)Position (Required)

gamedesigninitiative
at cornell university

the

Vertex Data Defines the Triangle

The Graphics Pipeline10

(0,0)
(0,0,1,1)

(0,50)
(0,1,0,1)

(25,43)
(1,0,0,1)

Position (Required)
Color (Optional)

gamedesigninitiative
at cornell university

the

Vertex Shader Interpolates Pixels

The Graphics Pipeline11

(0,0)
(0,0,1,1)

(0,50)
(0,1,0,1)

(25,43)
(1,0,0,1)

Position (Required)
Color (Optional)

(12,21)
(0.49,0,0.48,1)

(25,14)
(0.33,0.33,0.33,1)

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Colors
in vec4 aColor;
out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position and color
void main(void) {

gl_Position = uCamera*aPosition;
outColor = aColor;

}

The Graphics Pipeline12

A Very Simple Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Color result from vertex shader
in vec4 outColor;

// Just use color computed
void main(void) {

frag_color = outcolor;
}

Input

Input Input

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Colors
in vec4 aColor;
out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position and color
void main(void) {

gl_Position = uCamera*aPosition;
outColor = aColor;

}

The Graphics Pipeline13

A Very Simple Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Color result from vertex shader
in vec4 outColor;

// Just use color computed
void main(void) {

frag_color = outcolor;
}

Input

Input Input

Output

Output

Output

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Colors
in vec4 aColor;
out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position and color
void main(void) {

gl_Position = uCamera*aPosition;
outColor = aColor;

}

The Graphics Pipeline14

A Very Simple Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Color result from vertex shader
in vec4 outColor;

// Just use color computed
void main(void) {

frag_color = outcolor;
}

Input

Input Input

Output

Output

Output

gamedesigninitiative
at cornell university

the

Uniforms “Never” Change

� We stream vertex data to the shader
� Put all vertex data into a giant array
� Send it all to graphics card at once

� Changing a uniform breaks the stream
� Have to break up the array into parts
� Send one part with first value of uniform
� Send next part with second value of the uniform

� This can slow down the framerate
� Unlikely in this class unless lots of sprites
� But should be aware of the cost

The Graphics Pipeline15

gamedesigninitiative
at cornell university

the

Uniforms “Never” Change

� We stream vertex data to the shader
� Put all vertex data into a giant array
� Send it all to graphics card at once

� Changing a uniform breaks the stream
� Have to break up the array into parts
� Send one part with first value of uniform
� Send next part with second value of the uniform

� This can slow down the framerate
� Unlikely in this class unless lots of sprites
� But should be aware of the cost

The Graphics Pipeline16

Will the camera
ever change?

gamedesigninitiative
at cornell university

the

Images Have Texture Coordinates

The Graphics Pipeline17

(0,0) (1,0)

(0,1) (1,1)

gamedesigninitiative
at cornell university

the

Vertex Data Can Include Texture Data

The Graphics Pipeline18

(0,0)
(-0.37,1)

(50,0)
(1.37,1)

(25,43)
(0.5,-0.5)

Position (Required)
Texture Coords
(Optional)

gamedesigninitiative
at cornell university

the

Vertex Shader Interpolates Pixels

The Graphics Pipeline19

(0,0)
(-0.37,1)

(50,0)
(1.37,1)

(25,43)
(0.5,-0.5)

Position (Required)
Texture Coords
(Optional)

(12,21)
(0.048,0.27)

(25,14)
(0.5,0.51)

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline20

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,
outCoord);

}

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline21

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,
outCoord);

}

texture
+

coord
=

color

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline22

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,
outCoord);

}

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline23

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,
outCoord);

}

Changing the texture
stalls the stream

gamedesigninitiative
at cornell university

the

� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline24

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline25

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline26

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline27

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

� Idea: Never switch textures
� Sprite sheet is many images
� We can draw part of texture
� One texture for everything?

� Called a texture atlas
� Supported in CUGL
� See file loading.json
� Ideal for interface design

� Has some disadvantages
� Textures cannot repeat
� Recall texture size limits

The Graphics Pipeline28

Optimizing Performance: Atlases

gamedesigninitiative
at cornell university

the

� Each Font creates an atlas
� Reason you must specify size
� Atlas limited to 512x512
� Multiple atlases if necessary

� TextLayout makes vertices
� Quads made from font metrics
� Includes kerning, alignments
� Vertices include texture cords

� This makes text very fast
� Generating vertices is quick
� Actual font cached in atlas(es)

The Graphics Pipeline29

Aside: This is How Fonts Work

gamedesigninitiative
at cornell university

the

� Provides support for
� Solid/vertex colors
� Color gradients (linear, radial)
� Textures/texture coords
� Gaussian blur
� Scissoring/masking

� Not “user-serviceable”
� Do not try to replace this
� Will break all the UI code

� Want a custom shader?
� Make a new pipeline

The Graphics Pipeline30

The SpriteBatch Shader

gamedesigninitiative
at cornell university

the

The Shader Class

� Shader::alloc(const string vsrc, const string fsrc)
� Returns nullptr if shader compilation fails
� Also gives helpful error message in output

� The shaders are strings, not files
� You could load files and read into strings
� But this means pipeline waits on asset loading
� Better to put directly in your source code

� CUGL approach: raw strings
� Write shader code into a header file
� Special include assigns contents to a variable

The Graphics Pipeline31

gamedesigninitiative
at cornell university

the

Using a Shader Object

� Activate it with bind() command
� Can only have one shader at a time
� This method makes it the active shader
� Call unbind() to release it.
� Like begin/end with SpriteBatch

� Assign uniforms to shader with setters
� s->setUniformMat4("uCamera",cam->getCombined());
� Support for primitives and all CUGL math objects
� Applies to both vertex and fragment uniforms
� But not texture; that is special

The Graphics Pipeline32

gamedesigninitiative
at cornell university

the

Make a Vertex Type

� Can be any class of your making
� Should have position (Vec2, Vec3, or Vec4)
� Can have anything else that you want
� There are (almost) no restrictions

� Example: SpriteVertex2
� Position (Vec2)
� Color (unsigned int)
� Texture coords (Vec2)
� Gradient coords (Vec2)

The Graphics Pipeline33

gamedesigninitiative
at cornell university

the

� Need two things to define shape
� An array of vertices
� An array of indices

� Indices refer to array positions
� Used to create triangles
� Meaning depends on command

� Poly2 does all of this for you!
� But it only has position data
� Only supports triangle lists

� For more, see class Mesh<T>
The Graphics Pipeline34

Create a Geometry

gamedesigninitiative
at cornell university

the

Create a VertexBuffer Object

� VertexBuffer::alloc(sizeof(VertexClass))
� sizeof tells it number of bytes per vertex
� Stream size is determined when you load vertices

� v->setupAttribute("var",bytes,type1,type2,loc)
� Maps shader variable to slot in vertex class
� See documentation/example for how to do this

� v->attach(shader)
� Tell vertex buffer to send data to the shader
� This is how the shader gets the vertex data!

The Graphics Pipeline35

gamedesigninitiative
at cornell university

the

VertexBuffer vs Shader

The Graphics Pipeline36

Have a many-one relationship

Shader

VBuffer

VBuffer

VBuffer

gamedesigninitiative
at cornell university

the

VertexBuffer vs Shader

The Graphics Pipeline37

Have a many-one relationship

Shader

VBuffer

VBuffer

VBufferSet active VertexBuffer
with bind/unbind

gamedesigninitiative
at cornell university

the

Loading Data Into Vertex Buffer

� v->loadVertexData(array,size)
� Loads the array of vertices
� Remembers until you load new data

� v->loadIndexData(array,size)
� Loads the array of indices
� Should be updated when the vertices are

� v->draw(command,index_count,index_start)
� Tells how to interpret the indices (list, strip, fan)
� Does the actual drawing at this time (not delayed)

The Graphics Pipeline38

gamedesigninitiative
at cornell university

the

Static Draw

� Vertex buffer is fixed
� Object altered via uniforms
� Example: Transform matrix

� Used if lots of vertices
� Uniform changes stall drawing
� But reloading vertices is worse

� Common in 3d rendering
� Models are large meshes
� Each model its own buffer

The Graphics Pipeline39

Aside: Static Draw vs Stream Draw

Stream Draw

� Vertex buffer changes often
� Always updating position
� Always updating geometry

� Used if low complexity
� Few vertices per object (quads)
� Can’t give each sprite a buffer

� Common in 2d rendering
� Data is very heterogeneous
� How SpriteBatch works

gamedesigninitiative
at cornell university

the

Last Step: Textures

� Textures are not set by a shader method
� Data is way too big for normal uniforms
� All data is stored in a Texture object

� This object has its own bind/unbind
� Call bind to make it the active texture
� Call unbind to remove it/have no texture

� Possible to have more than one texture
� Each shader texture variable has a slot (0-10)
� Can call bind(slot) to put it in a slot

The Graphics Pipeline40

gamedesigninitiative
at cornell university

the

Putting It All Together

shader->bind();
vbuffer->bind(); // Binds shader if necessary
texture->bind(); // Make active texture in slot 0
vbuffer->draw(mesh.command,mesh.indices.size(),0);
… // More drawing commands
texture->unbind(); // If need to change texture
… // More drawing commands
vbuffer->unbind(); // If need to change buffer
shader->unbind(); // If need to change shader

The Graphics Pipeline41

gamedesigninitiative
at cornell university

the

Putting It All Together

shader->bind();
vbuffer->bind(); // Binds shader if necessary
texture->bind(); // Make active texture in slot 0
vbuffer->draw(mesh.command,mesh.indices.size(),0);
… // More drawing commands
texture->unbind(); // If need to change texture
… // More drawing commands
vbuffer->unbind(); // If need to change buffer
shader->unbind(); // If need to change shader

The Graphics Pipeline42

See Pipeline Demo

gamedesigninitiative
at cornell university

the

Combining With Scene Graphs
void CustomNode::draw(const std::shared_ptr<SpriteBatch>& batch,

const Affine2& transform, Color4 tint) {

// Stop the previous graphics pipeline
batch->end();

// Adjust pipeline camera by the node transform
Mat4 camera = _scene->getCombined()*transform;

// Custom drawing code
…
…

// Restart the sprite batch
batch->begin(_scene->getCombined());

}

The Graphics Pipeline43

gamedesigninitiative
at cornell university

the

UniformBuffer

� Used if many uniforms
� Setting each uniform slow
� Put uniforms in byte array
� Set pointer to byte array

� Permits uniform streaming
� Dual of VertexBuffer

� Used by SpriteBatch
� Holds gradients, scissors
� See code for usage

The Graphics Pipeline44

Two Final Classes

RenderTarget

� Used to render offscreen
� Draw to a special buffer
� Turn buffer into a texture
� Apply texture to shapes

� Great for special effects
� Render screen to texture
� Apply 2nd shader to texture

� Used in Scene2Texture
� See documentation

gamedesigninitiative
at cornell university

the

Summary

� CUGL uses OpenGLES 3 for rendering
� Uses shaders to produces triangles on screen
� SpriteBatch makes all of this very easy

� Custom shaders require a separate pipeline
� Need a Shader to output to screen
� Need a Mesh to define the geometry
� Need a VertexBuffer to pass Mesh to Shader
� (Optional) Need a Texture to fill in triangles

� Want more? Take CS 5625

The Graphics Pipeline45

gamedesigninitiative
at cornell university

the

Advanced Technique

The Graphics Pipeline46

gamedesigninitiative
at cornell university

the

Triangles Have Hard Edges

The Graphics Pipeline47

gamedesigninitiative
at cornell university

the

Sometimes Want Softer Edges

The Graphics Pipeline48

gamedesigninitiative
at cornell university

the

Sometimes Want Softer Edges

The Graphics Pipeline49

OpenGLES does NOT
support multisampling

gamedesigninitiative
at cornell university

the

Extrude The Triangle Boundary

The Graphics Pipeline50

gamedesigninitiative
at cornell university

the

Extrude The Triangle Boundary

The Graphics Pipeline51

gamedesigninitiative
at cornell university

the

Use Alpha to Fade Out Extrusion

The Graphics Pipeline52

Alpha = 0
(transparent)Alpha = 255

(opaque)

gamedesigninitiative
at cornell university

the

Use Alpha to Fade Out Extrusion

The Graphics Pipeline53

Alpha = 0
(transparent)Alpha = 255

(opaque)

See Pipeline Demo

