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Caveat About Today’s Lecture

� Today’s focus is on OpenGL
� The cross-platform graphics API for Indie games
� Vulkan may take over, but not there yet

� CUGL uses OpenGLES 3 for rendering
� Is a proper subset of OpenGL 3.x
� Designed with mobile devices in mind

� Much of what we say is true in other APIs
� But the pipeline will be slightly different
� In the case of Vulkan, a lot different

The Graphics Pipeline2
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Graphics Cards Draw Triangles

The Graphics Pipeline3
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Triangles Can Be Colored

The Graphics Pipeline4
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Triangles Can Be Textured

The Graphics Pipeline5
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Triangles Can Be Both

The Graphics Pipeline6
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A Sprite is (Often) Two Triangles

The Graphics Pipeline7
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Triangles are Drawn with Shaders

The Graphics Pipeline8

Vertex
Shader

Fragment
Shader
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Image
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Vertex Data Defines the Triangle

The Graphics Pipeline9

(0,0) (0,50)

(25,43)Position (Required)
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Vertex Data Defines the Triangle

The Graphics Pipeline10

(0,0)
(0,0,1,1)

(0,50)
(0,1,0,1)

(25,43)
(1,0,0,1)

Position (Required)
Color (Optional)
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Vertex Shader Interpolates Pixels

The Graphics Pipeline11

(0,0)
(0,0,1,1)

(0,50)
(0,1,0,1)

(25,43)
(1,0,0,1)

Position (Required)
Color (Optional)

(12,21)
(0.49,0,0.48,1)

(25,14)
(0.33,0.33,0.33,1)
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Vertex Shader

// Positions
in vec4 aPosition;

// Colors
in vec4 aColor;
out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position and color
void main(void) {

gl_Position = uCamera*aPosition;
outColor = aColor;

}

The Graphics Pipeline12

A Very Simple Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Color result from vertex shader
in vec4 outColor;

// Just use color computed
void main(void) {

frag_color = outcolor;
}

Input

Input Input
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Vertex Shader

// Positions
in vec4 aPosition;

// Colors
in vec4 aColor;
out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position and color
void main(void) {

gl_Position = uCamera*aPosition;
outColor = aColor;

}

The Graphics Pipeline13

A Very Simple Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Color result from vertex shader
in vec4 outColor;

// Just use color computed
void main(void) {

frag_color = outcolor;
}

Input

Input Input

Output

Output

Output
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Vertex Shader

// Positions
in vec4 aPosition;

// Colors
in vec4 aColor;
out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position and color
void main(void) {

gl_Position = uCamera*aPosition;
outColor = aColor;

}

The Graphics Pipeline14

A Very Simple Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Color result from vertex shader
in vec4 outColor;

// Just use color computed
void main(void) {

frag_color = outcolor;
}

Input

Input Input

Output

Output

Output
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Uniforms “Never” Change

� We stream vertex data to the shader
� Put all vertex data into a giant array
� Send it all to graphics card at once

� Changing a uniform breaks the stream
� Have to break up the array into parts
� Send one part with first value of uniform
� Send next part with second value of the uniform

� This can slow down the framerate
� Unlikely in this class unless lots of sprites
� But should be aware of the cost

The Graphics Pipeline15
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Uniforms “Never” Change

� We stream vertex data to the shader
� Put all vertex data into a giant array
� Send it all to graphics card at once

� Changing a uniform breaks the stream
� Have to break up the array into parts
� Send one part with first value of uniform
� Send next part with second value of the uniform

� This can slow down the framerate
� Unlikely in this class unless lots of sprites
� But should be aware of the cost

The Graphics Pipeline16

Will the camera 
ever change?
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Images Have Texture Coordinates

The Graphics Pipeline17

(0,0) (1,0)

(0,1) (1,1)
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Vertex Data Can Include Texture Data

The Graphics Pipeline18

(0,0)
(-0.37,1)

(50,0)
(1.37,1)

(25,43)
(0.5,-0.5)

Position (Required)
Texture Coords
(Optional)
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Vertex Shader Interpolates Pixels

The Graphics Pipeline19

(0,0)
(-0.37,1)

(50,0)
(1.37,1)

(25,43)
(0.5,-0.5)

Position (Required)
Texture Coords
(Optional)

(12,21)
(0.048,0.27)

(25,14)
(0.5,0.51)
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Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline20

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,      
outCoord);

}
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Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline21

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,      
outCoord);

}

texture
+

coord
=

color
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Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline22

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,      
outCoord);

}
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Vertex Shader

// Positions
in vec4 aPosition;

// Texture Coords
in vec4 aCoord;
out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position and coords
void main(void) {

gl_Position = uCamera*aPosition;
outCoord = aCoord;

}

The Graphics Pipeline23

A Texture Shader

Fragment Shader

// The output color
out vec4 frag_color;

// Texture coord from vertex shader
in vec4 outCoord;

uniform sampler2D uTexture;

// Use texture to compute color
void main(void) {

frag_color = texture(uTexture,      
outCoord);

}

Changing the texture
stalls the stream
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� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline24

How Does a SpriteBatch Work?
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� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline25

How Does a SpriteBatch Work?
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� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline26

How Does a SpriteBatch Work?
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� SpriteBatch has a shader
� Methods create vertices
� Vertices have color, texture
� Sends vertices to shader

� Groups data by uniforms
� Adds all vertices to a set
� Breaks set into batches
� Uniforms fixed each batch

� Each texture is a new batch
� How often do you switch?

The Graphics Pipeline27

How Does a SpriteBatch Work?
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� Idea: Never switch textures
� Sprite sheet is many images 
� We can draw part of texture
� One texture for everything?

� Called a texture atlas
� Supported in CUGL
� See file loading.json
� Ideal for interface design

� Has some disadvantages
� Textures cannot repeat
� Recall texture size limits

The Graphics Pipeline28

Optimizing Performance: Atlases
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� Each Font creates an atlas
� Reason you must specify size
� Atlas limited to 512x512
� Multiple atlases if necessary

� TextLayout makes vertices
� Quads made from font metrics
� Includes kerning, alignments
� Vertices include texture cords

� This makes text very fast
� Generating vertices is quick
� Actual font cached in atlas(es)

The Graphics Pipeline29

Aside: This is How Fonts Work
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� Provides support for
� Solid/vertex colors
� Color gradients (linear, radial)
� Textures/texture coords
� Gaussian blur
� Scissoring/masking

� Not “user-serviceable”
� Do not try to replace this
� Will break all the UI code

� Want a custom shader?
� Make a new pipeline

The Graphics Pipeline30

The SpriteBatch Shader



gamedesigninitiative
at cornell university

the

The Shader Class

� Shader::alloc(const string vsrc, const string fsrc)
� Returns nullptr if shader compilation fails
� Also gives helpful error message in output

� The shaders are strings, not files
� You could load files and read into strings
� But this means pipeline waits on asset loading
� Better to put directly in your source code 

� CUGL approach: raw strings
� Write shader code into a header file
� Special include assigns contents to a variable

The Graphics Pipeline31
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Using a Shader Object

� Activate it with bind() command
� Can only have one shader at a time
� This method makes it the active shader
� Call unbind() to release it.
� Like begin/end with SpriteBatch

� Assign uniforms to shader with setters
� s->setUniformMat4("uCamera",cam->getCombined());
� Support for primitives and all CUGL math objects
� Applies to both vertex and fragment uniforms
� But not texture; that is special

The Graphics Pipeline32
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Make a Vertex Type

� Can be any class of your making
� Should have position (Vec2, Vec3, or Vec4)
� Can have anything else that you want
� There are (almost) no restrictions

� Example: SpriteVertex2
� Position (Vec2)
� Color (unsigned int)
� Texture coords (Vec2)
� Gradient coords (Vec2)

The Graphics Pipeline33
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� Need two things to define shape
� An array of vertices
� An array of indices

� Indices refer to array positions
� Used to create triangles
� Meaning depends on command

� Poly2 does all of this for you!
� But it only has position data
� Only supports triangle lists

� For more, see class Mesh<T>
The Graphics Pipeline34

Create a Geometry
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Create a VertexBuffer Object

� VertexBuffer::alloc(sizeof(VertexClass))
� sizeof tells it number of bytes per vertex
� Stream size is determined when you load vertices

� v->setupAttribute("var",bytes,type1,type2,loc)
� Maps shader variable to slot in vertex class
� See documentation/example for how to do this

� v->attach(shader)
� Tell vertex buffer to send data to the shader
� This is how the shader gets the vertex data!

The Graphics Pipeline35
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VertexBuffer vs Shader

The Graphics Pipeline36

Have a many-one relationship

Shader

VBuffer

VBuffer

VBuffer
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VertexBuffer vs Shader

The Graphics Pipeline37

Have a many-one relationship

Shader

VBuffer

VBuffer

VBufferSet active VertexBuffer
with bind/unbind
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Loading Data Into Vertex Buffer

� v->loadVertexData(array,size)
� Loads the array of vertices
� Remembers until you load new data

� v->loadIndexData(array,size)
� Loads the array of indices
� Should be updated when the vertices are

� v->draw(command,index_count,index_start)
� Tells how to interpret the indices (list, strip, fan)
� Does the actual drawing at this time (not delayed)

The Graphics Pipeline38
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Static Draw

� Vertex buffer is fixed
� Object altered via uniforms
� Example: Transform matrix

� Used if lots of vertices
� Uniform changes stall drawing
� But reloading vertices is worse

� Common in 3d rendering
� Models are large meshes
� Each model its own buffer

The Graphics Pipeline39

Aside: Static Draw vs Stream Draw

Stream Draw

� Vertex buffer changes often
� Always updating position
� Always updating geometry

� Used if low complexity
� Few vertices per object (quads)
� Can’t give each sprite a buffer

� Common in 2d rendering
� Data is very heterogeneous
� How SpriteBatch works
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Last Step: Textures

� Textures are not set by a shader method
� Data is way too big for normal uniforms
� All data is stored in a Texture object

� This object has its own bind/unbind
� Call bind to make it the active texture
� Call unbind to remove it/have no texture

� Possible to have more than one texture
� Each shader texture variable has a slot (0-10)
� Can call bind(slot) to put it in a slot

The Graphics Pipeline40
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Putting It All Together

shader->bind();
vbuffer->bind();   // Binds shader if necessary
texture->bind();   // Make active texture in slot 0
vbuffer->draw(mesh.command,mesh.indices.size(),0);
…  // More drawing commands
texture->unbind();  // If need to change texture
… // More drawing commands
vbuffer->unbind();  // If need to change buffer
shader->unbind();  // If need to change shader

The Graphics Pipeline41
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Putting It All Together

shader->bind();
vbuffer->bind();   // Binds shader if necessary
texture->bind();   // Make active texture in slot 0
vbuffer->draw(mesh.command,mesh.indices.size(),0);
…  // More drawing commands
texture->unbind();  // If need to change texture
… // More drawing commands
vbuffer->unbind();  // If need to change buffer
shader->unbind();  // If need to change shader

The Graphics Pipeline42

See Pipeline Demo
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Combining With Scene Graphs
void CustomNode::draw(const std::shared_ptr<SpriteBatch>& batch,   

const Affine2& transform, Color4 tint) {

// Stop the previous graphics pipeline 
batch->end(); 

// Adjust pipeline camera by the node transform
Mat4 camera = _scene->getCombined()*transform;

// Custom drawing code
…
…

// Restart the sprite batch 
batch->begin(_scene->getCombined());

}

The Graphics Pipeline43
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UniformBuffer

� Used if many uniforms
� Setting each uniform slow
� Put uniforms in byte array
� Set pointer to byte array

� Permits uniform streaming
� Dual of VertexBuffer

� Used by SpriteBatch
� Holds gradients, scissors
� See code for usage

The Graphics Pipeline44

Two Final Classes

RenderTarget

� Used to render offscreen
� Draw to a special buffer
� Turn buffer into a texture
� Apply texture to shapes

� Great for special effects
� Render screen to texture
� Apply 2nd shader to texture

� Used in Scene2Texture
� See documentation
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Summary

� CUGL uses OpenGLES 3 for rendering
� Uses shaders to produces triangles on screen
� SpriteBatch makes all of this very easy

� Custom shaders require a separate pipeline 
� Need a Shader to output to screen
� Need a Mesh to define the geometry
� Need a VertexBuffer to pass Mesh to Shader
� (Optional) Need a Texture to fill in triangles

� Want more?  Take CS 5625

The Graphics Pipeline45



gamedesigninitiative
at cornell university

the

Advanced Technique

The Graphics Pipeline46
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Triangles Have Hard Edges

The Graphics Pipeline47
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Sometimes Want Softer Edges

The Graphics Pipeline48
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Sometimes Want Softer Edges

The Graphics Pipeline49

OpenGLES does NOT
support multisampling
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Extrude The Triangle Boundary

The Graphics Pipeline50
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Extrude The Triangle Boundary

The Graphics Pipeline51
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Use Alpha to Fade Out Extrusion

The Graphics Pipeline52

Alpha = 0
(transparent)Alpha = 255

(opaque)
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Use Alpha to Fade Out Extrusion

The Graphics Pipeline53

Alpha = 0
(transparent)Alpha = 255

(opaque)

See Pipeline Demo


