Git and GitHub Walkthrough for Common Open-Source Workflows

Ross Tate
January 28, 2019

1 Getting a Repo

Generally there will be an orgranization account (as opposed to individual account) that owns the repo
you want to contribute to. For example, my research group has an account called Tateology, and in that
organization I have created a repo called cs5152playground for you to play around with in order to learn git
and GitHub. Here is how you get a copy of that repo. Note that this works even if the repo is owned by an
individual rather than an organization. (I assume you have created and are logged into your own individual
GitHub account, and that you have given me your account so that I can give you access to the repo.)

1.1 Forking a repo

If all you want to do is get the contents of the repo onto your computer, you can skip this step. But if
you want to actually contribute changes to the repo, typically major repos are configured so that you are
not allowed to directly “push” changes to them from your computer. Instead, you must request that an
administrator of the repo “pull” your changes from your online repo into the main repo. This means you
need to have a version of the repo on GitHub from which they can pull the changes. So generally the first
thing you do is “fork” the repo you want to change, which prompts GitHub to make a copy of the current
state of that repo and associate that copy solely with your individual account.

Go to https://github.com/Tateology/cs5152playground and click the “Fork” button in the top-
right corner and let GitHub do its thing. Now there will be a repo at https://github.com/YourUsername/
csb152playground.

1.2 Cloning a repo

Now you have an online repo that you want to get onto your physical computer. For this, you need to
“clone” the repo. If you're using GitHub Desktop, then you can do so through the appropriate “Clone a
repository from the Internet...” button. If not, execute git clone https://github.com/YourUsername/
csb152playground. This will copy all the current contents of your online cs5152playground fork into a
(newly created) subdirectory named cs5152playground.’

Make sure that you use YourUsername rather than Tateology in the URL; both will work, but the
latter will configure the repo to push its changes to Tateology’s repo rather than your own online fork, and
Tateology’s repo has been configured to disallow such direct pushes. Of course, this can all be reconfigured
after the fact.

If you feel you screwed up, you can just delete the newly created folder and try again. Deleting the folder
won’t affect anything anywhere else.

Move into the new folder when you’re happy with your clone.

1.3 What comes with a clone?

Note that cloning a repo doesn’t just copy all the files in the repo onto your computer. It in fact copies the
entirety of the repo, including things like its full history. For example, you can execute git log to see the
recent history of the repo.

1Use git clone https://github.com/YourUsername/cs5152playground dir if you want it go into some (newly created)
subdirectory named dir rather than cs5152playground.


https://github.com/Tateology/cs5152playground
https://github.com/YourUsername/cs5152playground
https://github.com/YourUsername/cs5152playground
https://github.com/YourUsername/cs5152playground
https://github.com/YourUsername/cs5152playground
https://github.com/YourUsername/cs5152playground

2 Getting Updates

You now have a copy of the repo on your own hard drive! But before we worry about making changes to the
repo, let’s worry about keeping up to date with changes that others are making to the main repo. git and
GitHub don’t do any sort of automatic syncing; if you want to get the up-to-date version of the main repo,
you have to manually “fetch” or “pull” those changes.

2.1 Simulating a change

Go back to Tateology’s repo on GitHub (not your own). Click the “Create New File” button. Generally
this isn’t how files are added to a repo, but GitHub provides it as a convenience feature, so we’ll use it to
simulate someone making a change. Name the file YourName.md (where md stands for Markdown, a language
for easily writing nicely displayed text files). Type whatever you want into the body of the file.

Scroll down to the “Commit new file” section. You'll be “committing” a change that adds this new file
to the repo, so give the commit a short description of what it’s doing, e.g. “Create YourName.md”. Notice
that this short description is in the imperative mood. That is, it’s “Do something”, rather than “Something
was done”, “Did something”, or “Your Name did something”. This is the convention for describing commits.
You can also give a longer, more detailed description in the box below, one that might include references to
issues that are being addressed by the commit or what not, but ignore that for now.

Finally, click the “Commit new file” button. You’ve now directly changed the main repo! Again, this
isn’t normally how changes are made, but it’s an easy way to simulate someone making a change to the repo
that you want to pull.

Now if you go to your own fork of the repo or to your computer, you’ll notice that the new file isn’t there.
Even though git and GitHub know that you’re the one who made the change, they don’t automatically
propagate that change anywhere beyond the repo you made it in.

2.2 Adding the upstream remote repo

You might sensibly think that the way you’d get that new change onto your computer is to first press some
button somewhere on GitHub to sync it to your own fork online and then pull that change from your own
fork onto your physical clone, but you’d be wrong. In fact, you have to fetch that change onto your computer
directly from the main repo and then push the change to your own fork yourself. But right now your physical
clone has no convenient access to the main repo, just to your fork!

To fix this, you have to register a new “remote” with your physical clone, unless you used GitHub Desktop
to clone the repo, in which case this step may have automatically been done for you. Execute git remote
-v and you’ll see origin https://github.com/YourUsername/cs5152playground listed twice: once with
(fetch) and once with (push). origin is the conventional name for the remote repo that is your own
online fork. Its configuration comes from the fact that that’s the repo you cloned. But notice that there’s
no mention of Tateology’s repo anywhere.

To fix this, execute git remote add upstream https://github.com/Tateology/cs5152playground.
Now if you execute git remote -v again, you'll also see Tateology’s repo listed twice, but with name
upstream. upstreanm is the conventional name for the remote repo that is the real home of the project.

2.3 Fetching changes from upstream

Now your clone has a pointer named upstream pointing to the main online repo for the project. To update
your repo with all the changes in that project, execute git fetch upstream.

Git will say a bunch of stuff indicating that it has downloaded various “objects” from the remote repo.
But if you look at your directory you still won’t see your new file in there. Why is that?

Recall that I said that a clone isn’t just a copy of all the files of a repo. Rather, it is a copy of the repo
itself. One thing a repo is comprised of is a forest of commits. One of these commits is your new file. The
first thing fetch does is copy over new commits that have been added to the remote repo.? However, it

2Technically, it copies over just the commits (and their histories) that are necessary to make the particular branch pointers
that were fetched be valid.


https://github.com/YourUsername/cs5152playground
https://github.com/Tateology/cs5152playground

doesn’t actually change your local files to use those commits; it just makes them available so that you can
use them.

2.4 Merging changes from upstream

So how do we get git to actually change the local files? Well the second thing fetch does is update
some local pointers into this forest of commits. In particular, it updates the “remote branches” associ-
ated with upstream. Execute git branch -r -v, and you’ll see in the resulting list an entry of the form
upstream/master <alphanum> <commit-message>. The commit message should be the message you pro-
vided when you committed your file, unless someone else made another change between the time you made
your commit and executed the fetch. Regardless, the short alphanumeric sequence in that entry is the
pointer to the commit that was the “head” of the “master” branch of the upstream remote at the time of
your fetch, and that commit will contain at least your new file. That alphanumeric sequence is called the
SHA (pronounced “shaw”) of the commit, and in fact it is an abbreviated prefix of the full 40-character
SHA of the commit—a prefix that no other commit in the repo currently happens to share. You can directly
reference this (abbreviated) SHA yourself if ever you want, rather than indirectly referencing it through a
named pointer like a branch.

Now if you execute git branch -a -v, you'll see that the (local) branch master is currently pointing
to a different commit than upstream/master was, illustrating that the local master (which happens to be
the current “branch” of your local files) is out of sync with upstream’s master. To fix this, execute git
merge upstream/master. What merge does is update your current local branch and files to incorporate the
changes in the referenced commit. It’s useful to understand what “incorporate the changes in the referenced
commit” means in more detail.

First of all, you shouldn’t think of a commit as a collection of changes; rather a commit should be thought
of as an entire snapshot of the file system along with a (non-linear) history of past commits. So the first
thing merge does is look through the histories of the current local commit and the commit to merge to see
when they were last in common. Then it goes forward through time and incorporates any changes that were
made in either commit since that last common point in time. It tries do so automatically, but sometimes one
commit might change a line in a file one way and the other commit might change that same line in another
way, in which case merge doesn’t know how to incorporate both changes into the same line. If this happens,
it’ll make you resolve the conflict yourself. If not, it’ll make a new commit that is the snapshot of how it
automatically combined the two commits. It’ll then update the current local branch to point to this new
commit.

Of course, in this particular case, the commit you’re merging in is a direct future of the current local
branch. In this case, all merge does is update the local files to reflect the contents of the commit being
merged in, and then updates the local branch to point to the commit that was merged in. In particular, no
new commit is made. This is known as fast-forwarding.

2.5 Getting changes into your GitHub fork

Now if you look in your directory, you'll see your new file! But take a look at your GitHub fork online. Even
if you reload, you still won’t see your new file there. In fact, you won’t see any changes there. You have only
pulled those changes from upstream onto your local clone, which has no effect on your GitHub fork.

Execute git status. It first tells you that you are “on branch master”, indicating that your current
local branch is master—more on that later. It then tells you that “your branch is ahead of ‘origin/master’
by (some number) of commit(s).” This is saying that you have local changes that are not on your GitHub
fork, a.k.a. origin. Note that it does not tell you that your branch is in sync with upstream/master. This
is because your current branch was configured by git clone to conceptually connect to origin/master by
default—more on that later.

To get these changes onto your GitHub fork, you need to “push” your local commit to your GitHub fork.
Do so by executing git push origin master, which indicates to push the current commit (and its history)
of the local master branch to the master branch of the origin remote repo. Git will do its thing, and now
if you look at your GitHub fork online you’ll see your file there!



2.6 Streamlining the process

This is called a “triangular workflow” and is very common in the open-source community. You will be doing
this a lot, so let’s streamline the process a bit.

First of all, you can execute git pull upstream master to fetch the current commit for upstream’s
master branch and merge it into the current local branch. This is almost like executing git fetch
upstreanm followed by git merge upstream/master except that the only remote branch it updates is
upstream/master.

Secondly, recall that executing git status told you how out of sync your local master branch was
with origin/master. But, since you have full control over origin, you often care more about how out
of sync your local master is with upstream’s master rather than origin’s. You actually can configure
which remote branch corresponds to a given local branch, unfortunately called its “upstream branch”. By
default, when you create a local branch it has no upstream branch, but clone sets up specifically master
to correspond to the master branch of the repo that was cloned. To change or initialize the current local
branch to use, say, upstream’s master branch, execute git branch -u upstream/master. Note that this
only reconfigures the current local branch, so it won’t affect any other branches you might have—more on
that later. Now execute git status and you’ll see that it tells you how out of sync your current local branch
is with upstream/master.

The other effect of this change is that whenever you do git pull without any other arguments while the
current branch has an upstream branch, it defaults to git pull <upstream-remote> <upstream-branch>.

That covers pulling, now for pushing. Unfortunately, this change also makes it so that git push without
any other arguments also pushes to that remote branch. But even if you're allowed to push directly to
upstream, you typically don’t want to, at least not by default. Fortunately this can be changed. First,
execute git config remote.pushdefault origin to change it so that, whenever a repo is not specified
for git push, it defaults to origin. Second, execute git config push.default current to change it so
that, whenever a branch is not specified for git push, it defaults to the name of the current local branch.
Altogether, this means that git push will now push to origin’s branch corresponding (by name) to the
current local branch regardless of whether the current local branch has an upstream branch.

Lastly, if you want to see how out of sync your current local branch is with its counterpart (by name)
on your GitHub fork, execute git log {push}.. (with the two periods). This will list all the commits that
are in the current local branch but not in the branch that you would currently push to by default.

3 Proposing Changes

Now that we’ve learned how to fetch and propagate changes from the main repo, let’s go over how to make
changes locally and propose them to the main repo.

3.1 Making a branch

Generally, you don’t actually want to make direct changes to files while in the master branch. The master
branch is typically reserved for stable stuff and not used for work in progress. Instead, you generally want
to make a new branch and do your work in there.

Execute git branch chutes, which creates a new branch called chutes. Now execute git branch, to
get a list of your local branches. You'll see chutes and master, and there will be a * to the left of master,
indicating that master is the current local branch. Thus, all git branch chutes did was create a new
branch; it didn’t change which branch is the current local branch.

Before we learn how to switch between local branches, let’s look at the current branches a little closer.
Execute git branch -v and you’ll get that same list, but now it also tells you the SHA and short description
of the “head” commit of each branch. Note that they’re the same, because when you execute git branch
chutes, by default it makes the head of the new branch the same as the head of the current branch.

But git branch chutes doesn’t copy all aspects of the current branch to the new branch. To see an
example, execute git branch -vv (where the double v is intentional). This provides that same list and
indicates the upstream branch for each branch. Note that master’s upstream branch is upstream/master,
as we set up before, but that chutes has no upstream branch. This means that executing git pull without



any additional arguments while chutes is the current branch won’t work because it won’t know where to
pull from.

We'll fix that manually later, but for now let’s make yet another new branch (keeping around chutes
for later) in such a way that it is configured to pull from upstream/master. Execute git branch ladders
upstream/master, which creates a new branch called ladders whose head is whatever upstream/master is,
and, because upstream/master is a remote branch, configures the new branch so that upstream/master is
its upstream branch.

But the current branch is still master. To change the current branch to ladders, execute git checkout
ladders. Note that this sequence of creating a new branch and then checking it out is very common,
so as a convenience you could have used git checkout -b ladders upstream/master as a shorthand for
git branch ladders upstream/master followed by git checkout ladders. Before moving on, you might
want to execute git branch -vv to check that everything is configured as you expect, i.e. ladders is the
current branch and has upstream/master as its upstream branch.

3.2 Making a commit

Now add a line to YourName.md with the text “I like ladders.” and save the file. Then execute git status.
It’ll tell you that there are “changes not staged for commit” and then indicate that YourName.md has been
modified. Understanding this properly takes a bit of explaining, but it’s well worth understanding properly,
especially when you have to start doing more complex things like git reset.

On your computer, there are conceptually three “trees” that git keeps track of, in addition to branches
(and stashes) and such. One tree is known as the “working directory”. This tree is the actual files on
your computer. Another tree is known as the “HEAD”. This tree is the head commit of the current branch.
And, conceptually in the middle, there is another tree known as the “Index”. This tree is the snapshot you
currently are proposing for your next commit, and as such it is also referred to as the “staging area”. This
means there can be a difference between changes you have made in your working directory, i.e. changes you
have made to the actual files on your computer, and changes that you have specified should be incorporated
into your next commit, i.e. the next snapshot you want to add to the repo to share with others.

Going back to the output of git status, it is saying that there are changes in your working directory
that are not in your Index, i.e. staging area. In other words, there are changes in your working directory
that have not been “staged”. Since the goal is to make a change that will eventually be incorporated into
the master repo, you need to stage the change to your file.

To do so, execute git add YourName.md. This “adds” all changes you have made to YourName.md to
the staging area. Note that sometimes you only want to add some of the changes in a given file to the
staging area. For this you can execute git add -p YourName.md, i.e. git add --patch YourName.md, and
interactively select which “hunks” of changes you want to add, or you can use GitHub Desktop to select lines
with a more discoverable interface.

Now if you execute git status, it’ll say “changes to be committed” rather than “changes not staged
for commit”. So let’s commit those staged changes by executing git commit -m "Add ladder preference
to YourName.md". This makes a new commit comprised of the contents of Index, gives that commit the
descriptor in the quotation marks following -m, and changes the HEAD of the current branch to point to the
new commit. Alternatively, you could just execute git commit, in which case it’ll pop up a text editor and
have you provide a descriptor. You must provide a descriptor; if you leave it blank, git will abort the commit.
This is because descriptors are very useful for looking back through history. See this article for advice and
motivation on writing good descriptors: https://chris.beams.io/posts/git-commit/. For now, use -m
when all you need is the short descriptor, or elide -m when you want to provide a more detailed descriptor,
but then still provide a short descriptor as the first line, followed by a blank line, followed by the detailed
descriptor.

Now execute git status and it will tell you that you are 1 commit ahead of upstream/master (the
upstream branch of the current branch ladders). If others have made changes to upstream/master in the
meanwhile, it will also tell you that you are behind so many commits, but don’t worry about that right now.
As we'll see, you don’t always need to be completely up to date, and constantly updating unnecessarily can
create a bunch of “merge” commits that clog up the repo history.


https://chris.beams.io/posts/git-commit/

Next execute git log, and the first thing it will list is your new commit because that is now the HEAD
of the current branch.

3.3 Uploading a commit

Now you’'ve made a commit whose snapshot contains your file, but that commit is sitting on your computer
and nowhere else. Typically, no one has remote access to your computer, which means no one has a way of
getting this new commit at the moment. You need to share it.

You could try executing git push upstream ladders:master to push from the local 1adders branch to
the main repo’s master branch to share your commit, but you will get an error because, as with most open-
source projects, Tateology/csb152playground is configured to disallow non-administrators from directly
pushing to it. So to make a change to the main repo, you must instead get an administrator of the main
repo to pull your changes from you. For that to happen, you must get those changes somewhere they can
pull them from, which typically does not include your computer. That is why you have your own fork of the
repo on GitHub.

Remember that we used git config to make it so that git push by default pushes to the origin
remote repo, i.e. your fork on GitHub, and specifically to the branch on origin with the same name as the
current branch, i.e. the branch you currently have checked out on your computer. Right now there is no
branch named ladders on your GitHub fork, but that’s okay; git push by default will just create one for
you. So simply execute git push, or git push origin ladders if you didn’t choose to change the default
configurations for push, and your changes will now be available on your GitHub fork.

To witness this fact, go to https://github.com/YourUsername/cs5152playground. If you try to look
at YourName.md right now, you won’t see your changes. That’s because you pushed your changes to the
ladders branch, and currently you’re looking at the master branch—more on that later. On the main page
for your fork, i.e. https://github.com/YourUsername/cs5152playground, find the dropdown that says
“Branch: master”, and change it to ladders. Now if you look at YourName.md on your fork, you’ll see the
new line of text you added.

3.4 Making a pull request

Go back to the main page for your fork. You should see a yellowish box mentioning ladders and containing
a green button labeled “Compare & pull request”. Click that button!

This’ll bring you to a new page. Near the top there will be four dropdown menus with a leftwards-pointing
arrow in the middle, i.e. <target-repo> <target-branch> <« <source-repo> <source-branch>. These
dropbowns indicate that you are in the process of creating a request to pull the contents of the <source-branch>
of the <source-repo> on GitHub into the <target-branch> of the <target-repo> on GitHub. That is,
you're conceptually asking an administrator of the <target-repo> to execute git pull <source-repo>
<source-branch> while the <target-branch> is currently checked out.

Currently the left boxes should specify the master branch of Tateology/cs5152playground, and the
right boxes should specify the ladders branch of YourUsername/cs5152playground. If you click on the
rightmost box, you’ll see that you could alternatively select master, but you’ll also notice that chutes isn’t
there. This is because although you created a chutes branch on your local machine, you never pushed that
branch to your GitHub fork.

Scrolling down to the bottom, you’ll see a summary of the changes that accepting your pull request would
cause at the moment. This summary includes the commits that are currently in the branch to be pulled
from that are not currently in the branch to be pulled into. It also includes diffs of the files that would be
changed by incorporating these commits.

Scrolling to the middle, you’ll see a field where you specify the title of your pull request. By default this
is generated from the description of the most recent commit in the pull request. Often that default isn’t
what you want because usually pull requests are larger scale, so you'll want to change the title to summarize
the high-level purpose of the pull request. But for this case, the default title is fine. Note, though, that this
title can’t be changed once the pull request is created!

Below that field you can provide a more detailed description (in Markdown) of the pull request. One
particularly common thing to do here is reference GitHub issues that the pull request is addressing, but we


https://github.com/YourUsername/cs5152playground
https://github.com/YourUsername/cs5152playground

won’t get into that here. For now, just leave that blank.

Below that there is a checkbox labeled “Allow edits from maintainers.” This makes it possible for others
to modify your pull request. Sometimes this is useful because the administrators of the target repo can
facilitate the process; other times this is bad because your pull request can become out of sync with your
local clone(s). We’ll discuss this more with your next pull request, but for now unclick that box, which
makes it so that only you can revise your pull request.

Finally, click the green “Create pull request” button. You’ve just proposed your first change to the main
repo! But it’s up to them to decide if they actually want your proposed change. Often they do, but very
often they first want you to revise your proposal. We’ll simulate that process next.

4 Revising Proposals

After you clicked the “Create pull request” button, you were taken to a new page—the page of the pull
request you just created. Notice that this page is in Tateology’s repo, not yours. This is because the
administrators of Tateology want to easily manage what pull requests are being asked of them. Also, if the
pull request is accepted, it’s Tateology’s repo that gets changed, not yours.

4.1 Reviewing the proposed changes

You actually have been given write access to Tateology’s cs5152playground repo. That means you can
accept, i.e. merge, the pull request right now if you want to. But don’t do that. Instead pretend you have
changed roles and you are now an administrator who wants to make sure the contents of Tateology’s repo
are in good order.

After reading the description to find out what the pull request is about, one of the first things you’ll want
to do is actually look at the changes the pull request would make to the files. To see this, click the “Files
changed” tab.

This tab presents you with the changes the pull request would make to the files. In particular, you’ll see
that the pull request would add the line “I like ladders.” to the YourName .md file.

Let’s suppose you're fine with the intent of the change, but maybe you want more clarity. After all,
everybody likes ladders. They’re super useful! So let’s ask the contributor to clarify their documentation.

Hover your mouse over the new line of text in the diff and you’ll see a blue plus sign appear to the left
of the line. Click it, making an interface appear that lets you comment that line in the pull request. This
comment will have no effect on the actual files, but anyone looking through the diff in the pull request will
see your comment, and anyone reading through the “Conversation” tab will see your comment along with
a snippet around the line you commented on. Plus once you make the comment, presumably the people
involved in the pull request will be notified. Make a comment asking the contributor to clarify what it is
they like about ladders; for simplicity, do so by clicking “Add single comment” rather than “Start a review”
after you’ve composed your text.

4.2 Revising your pull request

Now switch back to the role of the contributor requesting the change. Let’s go into how to make the
requested clarification. On your computer, you should still have the ladders branch checked out. Reopen
YourName.md and change that line of text to “I like to play on ladders.” and save. Stage the change,
i.e. execute git add YourName.md, commit the change, i.e. execute git commit -m "Clarify why Your
Name likes ladders", and push the new commit to the ladders branch of your GitHub fork, i.e. execute
git push or git push origin ladders.

Now go to the page for your pull request and, if necessary, refresh. You’ll see your new commit appear in
the “Conversation” tab and the “Commits” tab. This is because a pull requests asks to pull from a particular
branch, not from a particular commit, and so updating the contents of that branch on your fork effectively
updates the pull request—yet another reason to use branches!

Next if you look at the “Files changed” tab, you’ll see that the diff is updated to reflect the changed line.
Notice, though, that the diff doesn’t mention that your last commit effectively deleted the old version of
that line and inserted a new one; it just shows the end result of all the commits together. Also notice that



the comment is gone from the diff, since it was associated with a line that was deleted. You can still see
that comment in the conversation, though, and in the diff for the original commit if you click on it in the
“Commits” tab.

4.3 Reviewing the proposed commits

Switch roles to administrator again and suppose you are reviewing the revised pull request. The changes to
the files look good now, but there’s more to a repo than just its files. You also care about the history of the
commits, since one of the points of version control is to be able to look back through the history of the repo
and do things like identify the point in time where a new error was introduced.

If you go to the “Commits” tab, you’ll see that there are two commits. But this pull request is just
adding a single line of text. The older commit just shows an intermediate point that no one cares about
anymore. As such, it’ll simply muck up the history.

Go to the “Discussion” tab, scroll down to the bottom, and make the comment “Please squash your
commits.”

4.4 Squashing commits

Now switch back to the role of contributor. Squash? What does squash mean? It means to compress
your commits together into one commit comprised of all their changes (or to at least compress away the
insignificant commits, leaving only a few commits marking the major steps).

There are two ways to do this, each with their own pros and cons. Right now we’ll go over the “safer”
method, which is to “rebase” your branch.

Generally speaking, rebasing involves revising your branch to pretend that history played out slightly
differently. In this case, we want to pretend that the changes in those two commits were made at the same
time as part of one commit. Since we happen to know precisely how far back in time we want to go, we could
do this by executing git rebase -i HEAD"2, which indicates to rebase the commits made since HEAD"2,
which is notation that calculates the commit that is 2 steps back in time from the HEAD of the current branch.
However, since our current branch has an upstream branch, we can also do this by simply executing git
rebase -i. This will automatically figure out the most recent commit in the history that the current branch
and its upstream branch have in common, and then it will let you rebase all the commits made since then
on top of the contents of the upstream branch. This is very useful for pull requests, presuming that you’ve
set the upstream branch of the current branch to be whatever branch you're requesting to pull into, because
it will have you rebase precisely the commits that appear in your pull request.

Regardless of which command you executed, a text editor will appear prompting you to describe how to
rebase those commits. If you close that file right away, nothing will happen; the default contents of that file
will leave things as is. But we in fact do want to make a change.

Note that the file lists the commits with the oldest commit at the top and the most recent commit at
the bottom. After you edit and close the file, git will walk down this list and execute the commands you
specified in order.

In this case, you want the rebase to use the file changes of both of your commits but to elide one of the
actual commits from the history. The commands squash and fixup both incorporate a commit’s changes
without incorporating it into the history, but they do so by modifying the previous commit that was picked
rather than the next commit that gets picked. So that means in this case you want to at least pick the
first (i.e. topmost) commit and squash or fixup the second commit.

The difference between squash and fixup is small but important. With squash, the description of the
commit being squashed is appended to the picked commit’s description. With fixup, the description of
the commit being fixuped is simply ignored. Since we no longer care about the description of the second
commit, change the rebase to fixup the second commit.

While we’re at it, let’s improve the description of the compressed commit we’re creating. The description
of our first commit is fairly low level, so let’s make it a little more high level. Rather than pick the first
commit, change the rebase to reword the first commit. For all other purposes, these two commands do the
same thing, but reword will also prompt you to change the description of the commit.



Now save and close the prompt. Because you used reword, you’ll be prompted to give a new description for
the commit you chose to reword. Change that description to Add Your Name’s preference for ladders,
then save and close the prompt.

Now execute git log and you’ll see that you've “changed history”. That is, not only will your new
compressed commit with its new message be listed first, but also the old commits will no longer be around.
You're considered to have “changed history” if ever you make a branch point to something that is not a
future commit of what it pointed to before, where future is in the sense of the commit histories and not in
the sense of physical time.

4.5 Changing history remotely

Now that you’ve squashed your commits locally on your computer, you need to change your pull request
to use the squashed commit. Try to execute git push; you’ll get an error. The problem is that, because
you used rebase to change history, your squashed commit is not considered to be a future of the current
contents of your fork’s ladders branch. In order to avoid accidentally losing changes, git push doesn’t let
you push anything that isn’t considered to be a future of what’s there currently.

But in this case, the whole point is to change history so that the unnecessary intermediate commit isn’t
mucking up the log. So execute git push -f, i.e. git push --force, to force the change despite the fact
that it changes history. But beware: if someone else had changed that branch in the meanwhile, their changes
would be lost by this and no one would even know (for a while). In this case, this is your own personal
GitHub repo, so you know this isn’t a problem. But in general people are very hesitant to force push to the
main repo, which is why any desirable changes to history are strongly preferred to be done before the pull
request is merged.

4.6 Merging a pull request

Now if you go to the page for your pull request (and refresh), you'll see that the “Discussion” has been
updated to indicate that you force-pushed a change to the pull request. If you go to the “Commits” tab,
you’ll see that there’s just one commit there, and it has your revised description. And if you go the “Files
changed” tab, you'll see that the overall changes to the files are the same.

Thus, if you change roles to the administrator reviewing the pull request, everything looks good! So click
the “Merge pull request” button. You’ll be prompted to give a short description and a long description for
the commit that will be made to merge the pull request (even if no one else made changes in the meanwhile).
Different teams have different conventions for what to do here, so ask your mentors what they would like
if ever they have you be the one to merge the pull request. Just go with the defaults for now and click
“Confirm merge”.

Once you complete the merge, go to https://github.com/Tateology/cs5152playground and click
YourName.md and you’ll see your change!

4.7 Cleaning up branches

Now to clean up. The branches you made are no longer necessary; they’ve served their purpose. So let’s
delete them before you forget why they’re there.

On your computer, first execute git checkout master so that your current branch is no longer the
branch you want to delete. While you’re at it, reopen YourName.md on your computer. Your change to the
file is gone! That’s because, although Tateology’s master branch has been updated with the change, you
haven’t yet pulled that change to your local master branch. And when you check out a branch, by default
it changes the contents of your files to reflect the contents of the branch you checked out (with important
caveats regarding uncommitted changes, which we won’t go into here).

Although you could pull those changes now, hold off on that to illustrate a point. Execute git branch
-d ladders to try to delete your local ladders branch. It doesn’t work! The reason is that you have a
commit in that branch that isn’t in its upstream branch (or, if it has no upstream branch, in the currently
checkout out branch), so git is preventing you from accidentally losing work. Wait, that doesn’t seem right?
Didn’t we just pull those changes in? Well, yes, but you never fetched the update, so the clone on your


https://github.com/Tateology/cs5152playground

computer still things upstream/master is pointing to the commit before you modified the fill. So execute
git fetch to get those changes and let git know that they’ll be preserved. Now execute git branch -d
ladders again; the local branch will successfully be deleted.?

But this only deletes the local ladders branch; the ladders branch is still there on your GitHub fork.
If you go to the page for the (now merged) pull request, you'll see a “Delete branch” button to delete the
branch from your GitHub fork. But for educational purposes, rather than press that button let’s do it from
the command line. Simply execute git push origin --delete ladders, and the branch will be removed
from your GitHub fork. And now your no-longer-necessary branches have all been cleaned up! You're all
done making your change to the main repo.

Lastly, while you have the master branch checked out, execute git pull or git merge upstream/master
so that your change is actually in your local master branch, and then execute git push so that it’s in your
GitHub fork’s master branch.

5 Resolving Conflicts

In all of this, you shouldn’t have had to deal with any “conflicts”, meaning independent simultaneous
changes that git was unable to resolve automatically. This is because you only modified the file with your
name, and likewise others should have only modified files with their names, and git can automatically merge
simultaneous changes made in separate files. But real-world development doesn’t always work out so nicely,
so let’s cause a conflict to resolve.

Remember that chutes branch we made and then ignored? In all this time, it was never updated. So
it still refers to the original version of YourName.md. We’ll take advantage of that, pretending that you
started to modify YourName.md in chutes and, in the meanwhile, someone else did the same and even had
the change pulled into the main repo.

Check out chutes, i.e. execute git checkout chutes, but don’t do anything else. In particular, don’t
merge or pull in any updates. Open YourName.md and you’ll see that your new line of text is once again
gone. Add the line of text “I like chutes.” (rather than “ladders”) and save. Stage the change, make a
commit, and push the commit to your fork (specifically the chutes branch of your fork, though remember
we configured our clone so that that would be the default behavior).

Now go to your fork online and start to make a new pull request from chutes. You might notice the
warning indicating that your current proposal can’t automatically be merged. Ignore that warning; we’ll
pretend the conflicting pull request was merged in after you opened your pull request. This time, leave the
checkbox “Allow edits from maintainers.” filled; although we won’t technically take advantage of that, down
the line we’ll pretend we're a maintainer revising the pull request. Click “Create pull request”.

5.1 Resolving a conflict

Okay, suppose you now notice that your pull request can’t be merged because “this branch has conflicts that
must be resolved”. Technically, the branch doesn’t have any conflicts within itself—rather the branch has
changes that conflict with the changes that have been made to the target branch. Regardless, you need to
“resolve” the conflict, meaning you need to manually tell git how to combine the two changes.

Note that you don’t always want to do this immediately because the main repo will continue to change
as you revise your pull request. Often resolving conflicts is done as a last step when everyone’s decided the
pull request is otherwise good to go. But even if that’s the plan, it’s good to check what the conflict is once
in a while to gauge whether it’s something that should really be addressed earlier rather than later.

First, pull in the conflicting changes. Remember we didn’t configure chutes to have a remote branch, so
you’ll have to execute the full git pull upstream master command.

Notice that it tells you that “automatic merge failed”. Execute git status. It’ll mention that “you have
unmerged paths”, and indicate that YourName.md has (unstaged) modifications. So something happened,
but what?

3If ever you want to delete a local branch despite it having commits not in the corresponding remote branch, say because
the local branch was experimental and the experiment didn’t pan out, you can use git branch -D ladders (with a capital D)
to force the local branch to be deleted.

10



Open YourName.md. There will be a line with <<<<<<< HEAD, followed by a line of text, followed by
======= followed by another line of text, followed by >>>>>>> and a SHA. The lines between <<<<<<< and
======= are what you had in your local branch, and the lines between ======= and >>>>>>> are what was
in the changes you just pulled in. This is the conflict you need to resolve.

Now if you had just wanted to see the conflict in order to gauge whether it should be resolved now or
later, you can execute git merge --abort and everything will go back to the way it was before. Remember
this command! There will be many times where you will pull and your reaction will be something like “Ah!
I wasn’t expecting this! I'm not prepared for this! What do I do?!” The answer to your panicked question
is git merge --abort.

But we were expecting this, so let’s resolve the conflict. Do so by replacing the <<<<<<< and >>>>>>>
lines and everything in between with what you believe should be there after the merge. To figure out what
that should be, you probably want to research why the change was made to begin with. So copy the SHA
after >>>>>>> and execute git log <sha>. You'll see the most recent commits that led to that change.
In particular, there should be a mention of a pull request, and you can go on GitHub to look at that pull
request and all of its discussion.

After reading the pull request, you might surmise that the appropriate resolution is to replace the texts
with “I like to play chutes and ladders.”. Do so and save the file.

Execute git status and you’'ll see that the status hasn’t changed. You still have (unstaged) modifications
to YourName.md. So stage them by executing the familiar git add YourName.md. Execute git status again
and it will tell you “all conflicts fixed but you are still merging.”

To finish the merge, execute git merge --continue. It’ll prompt you to provide a description. The
default is rather long, so shorten it to “Merge ‘Tateology/master’ into ‘YourUsername/chutes” and then
save and close the prompt. Now execute git log and you’ll see your merging commit, along with your
commits from chutes, along with the recent commits that were pulled in.

Lastly, execute git push and then look at your pull request on GitHub and you’ll see the merge commit.
GitHub should now say that your pull request can be merged, but don’t merge it yet!

5.2 Fetching someone else’s pull request

Now suppose you're an administrator reviewing this updated pull request. The diffs look good, but you look
at the commits and you see that the last commit was simply a merge from the main repo. When you merge
this pull request in, then, the history will have a merge of the pull request into the main repo preceded by
a merge of the main repo into the pull request. That back and forth seems pointless and will muck up the
history.

Normally you’d ask the contributor to fix the history, but suppose you’re in a rush and you decide to
do it yourself. Fixing pull requests just before merging is generally fine, but this particular fix that you're
going to do is considered to be bad form. The reason is that you're going to be changing history, and you
don’t know what other branches the contributor has made off of this pull request, so your change to history
will essentially cause those other branches to be on an entirely separate and hard-to-merge timeline. For
this reason, you should only change history for branches that you have control over and that you have full
knowledge of how it’s been branched off of.

But for the sake of this walkthrough, there will be times where you want to fix someone else’s pull
request, and there will be times where you want to change history to avoid this back-and-forth merging, so
I've combined the two into one lesson.

First, on your machine, check out master so that you don’t accidentally change the contents of the local
chutes branch, which is supposedly on someone else’s machine. Next, execute git remote -r -v just to
review the list of remote branches your clone knows about. This list is not necessarily all of the branches
that exist in your registered remote repos. They are the ones that fetch (and pull) have retrieved, but
by default fetch (and pull) are configured to only retrieve certain sorts of remote branches. In particular,
your upstream repo actually has remote branches for each of its pull requests. This includes all the closed
pull requests, so this list of remote branches can get quite long, which is why they are not fetched by default.

To fetch pull request #<pr>, execute git fetch upstream pull/<pr>/head:pr-<pr>. This fetches
the commits referred to by the remote branch pull/<pr>/head and then makes the (new) local branch
pr-<pr> point to whichever commit that remote branch is pointing to. In general, when you execute

11



git fetch <remote-repo> <remote-branch>:<local-branch>, it grabs the contents of <remote-repo>’s
<remote-branch> and makes the <local-branch> on your computer point to the appropriate commit. So if
you wanted to update just your local master branch without checking it out, you could execute git fetch
upstream master:master.’

Now you have the contents of the pull request in the pr-<pr> branch on your computer, so just check
out that branch to look at those contents.

5.3 Referring to the past

We are going to fix the pull request by going back in time and redoing the merge the way we wish it had
been done. After revising the merge, we will need to resolve the conflicts. Rather than do so manually, we
will reuse the resolutions currently in the pull request.

This means we need to keep the current pull request around. So we will start our fix by checking out a
new branch from here. Execute git checkout -b pr-<pr>-fix.

Next we need to go back in time in this branch to before the merge was done. The first step to this is
referring back in time.

Execute git show HEAD. Recall that HEAD refers to the current head of the current branch. Because the
last commit in the pull request was a merge, there will be a line Merge: <SHA1> <SHA2>. Those two SHAs
are the two “parents” of the commit that were merged together. We could use these SHAs to refer to the
past, but there is a better way.

Typically the notation HEAD™ refers to the parent of the HEAD commit. But the current HEAD commit has
two parents, so which one is the parent? The mathematical answer is neither, but the conventional answer
is the first one. The reason is that when a merge is done, the first parent will refer to what was the local
HEAD before the merge, and the second parent will refer to the (head) commit that was merged in. Thus
typically the first parent of a merge will be the commits that are more relevant to whatever the purpose of
the local branch is.

For this reason, HEAD" is actually shorthand for HEAD~1, which denotes the first parent, as opposed to
HEAD"2, which denotes the second parent. Similarly, HEAD~2 is shorthand for HEAD~ ", which is shorthand
for HEAD"1"1. For this document I will assume that the first parent is the head of the pull request before
the merge was done, and that the second is the head commit that was merged in. But you should execute
git show HEAD"1 and git show HEAD"2 just to check if something weird happened and you need to swap
the numbers as you go forward.

5.4 Resetting to the past

Now that we know that HEAD"1 refers to the pull request before the undesirable merge was done, we need to
revert to that past point. You may have heard of git revert, but that is not what we want. git revert
makes a new commit that changes files in a way that undoes the changes made by an eariler commit, but
it still keeps the old commit around. This is useful when you don’t want to change history, but completely
useless when you are trying to clean up history, as we are now.

The tool we’re going to use is git reset. But before we go into git rest, it is useful to recall the three
trees: the working directory (the files on your computer), the Index (the staged changes), and the HEAD
(the commit that the branch points to). What git reset does is change these trees, and different modes
of git reset change these trees in different ways. Note that git reset isn’t the only thing that changes
these trees: modifying your files in a text editor changes the working directory, git add adds changes in the
working directory into the Index, and git commit makes the Index into a new HEAD. So more precisely, git
reset changes these trees in the reverse direction.

You can find a good in-depth overview of what git reset does with this trees at https://git-scm.
com/book/en/v2/Git-Tools-Reset-Demystified. Here we’ll go over the most common use case where you
specify a degree——-soft, —-mixed (the default), or -~—~hard—and a commit to reset to. In the --soft case,
HEAD is changed to the specified commit. In the --mixed (default) case, furthermore the contents of Index

4This will fail if it would change the local master’s history. If you want it to succeed regardless of changes to history, add
a + asin git fetch upstream +master:master.

12


https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified
https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified

are changed to the contents of the specified commit. In the --hard case, further-furthermore the contents
of the working directory are changed to the contents of the specified commit.

So suppose all three trees are in sync, as they are now in your current branch. Then --soft would
change the head of the branch but would leave the files and staging area unchanged; thus git status would
indicate you have a bunch of staged modifications to be committed. Note that this gives you another way
to squash your commits that works well in many situations: just git reset --soft ... to back when you
first started making the changes in your pull request, then git commit to put all of those changes into a
single commit. Moving on, —-mixed would change the head of the branch and the staging area but leave the
files unchanged; thus git status would indicate you have a bunch of modifications that need to be staged.
Lastly, -—-hard would change everything to reflect the specified commit, leaving the three trees in sync in
a new state. Note that this includes forgetting all modifications you had in progress, regardless of whether
they were staged and even including new files you had made, so be careful about using this.

In this case, we want to completely go back in time, so —-hard is the mode we want to use. Execute
git reset --hard HEAD"1 to reset everything back in time to the state of the pull request before the merge
was done. Note that we could have skipped all this by just executing git checkout -b pr-<pr>-fix HEAD"1
when we first created the branch, but that would have denied us an educational opportunity.

5.5 Rebasing rather than merging

Now we need to incorporate all the changes that have happened in the main repo, or at least the changes
that led up to the conflict with the pull request. We could pull from upstream’s master, but that would
just reintroduce the problem we are trying to address. Furthermore, more changes may have been made
to the main repo, so it might even introduce new problems. On that note, realize that pr-<pr>~2 refers
to the exact state of upstream’s master when it was merged into the pull request. So we could execute
git merge pr-<pr>"2 to merge in the exact same changes. Once again, this would reintroduce the problem
we are trying to address, but at least it wouldn’t introduce any new problems.

Fortunately there is another way to incorporate changes (and history). It has the downside that it
changes history locally, but in this case that is okay. Instead of merging, execute git rebase pr-<pr>~2.
If we think of each local commit as a delta from some starting point rather than a snapshot, this command
makes a new timeline in which each of these deltas instead started from pr-<pr>~2.

Occasionally, though, it will be unclear how to apply a particular delta for a commit due to some
conflicting difference in pr-<pr>~2. When this happens, the rebase will pause and ask you to resolve the
conflict in much the same manner as a merge conflict. After you resolve the conflict, you then execute git
rebase --continue to continue applying the remaining deltas. Note that this means you might be asked to
resolve conflicts multiple times because subsequent deltas might have further conflicts. On the other hand,
git merge has you resolve all conflicts at once, which is a major advantage of merging over rebasing. You
can also execute git rebase --abort if you just want to bail out of the process entirely and go back to the
way things were.

5.6 Reusing resolutions

In this case, there is only one local commit, and so only one delta to be applied. But this delta has a conflict
for the same reason the pull request had a conflict to begin with. Now we need to resolve this conflict. We
could do so ourselves, but remember that the pull request had already resolved this same conflict.

We want to reuse that resolution, but it is inside the merge commit that we do not want to have in our
history. Fortunately, git provides a way to grab the contents of a file from a commit without grabbing the
commit itself. Execute git checkout pr-<pr> YourName.md, which will replace YourName .md in the Index
and the working directory with the version of YourName.md in pr-<pr>. So if you look at YourName .md you’ll
see the resolution to the conflict we made before, and if you execute git status you’ll see that you have
one staged modification and all conflicts have been resolved. So lastly execute git rebase --continue to
move on and finish the rebase.

13



5.7 Checking your work

Before we push the fix, we should check it. Execute git show, which is short for git show HEAD, and you
will see you've made a commit that replaces the line added by your previous pull request with the new
version that effectively combines both pull requests. Furthermore, if you execute git log, you will see that
your previous pull request is already in the history. This means this new commit won’t be considered to be
in conflict with your previous pull request because your previous pull request is in this new commit’s history.

But let us make sure we actually recreated your new pull request. Execute git diff HEAD pr-<pr>
to get a comparison of the contents of the files (but not the histories) of the current commit with the pull
request. You should see nothing, indicating that there is no difference, just as we wanted.

So finally we can push the commit. But we cannot push it to upstream’s pull/<pr>/head branch because
it is a read-only view of the pull request. Thankfully, because the pull request was configured to allow edits
from maintainers, we can directly commit to the branch on the fork that the pull request is pulling from.
But there’s a caveat to keep in mind.

5.8 Safely changing remote history

We are changing history, so we have to force-push our change. However, it is possible that, while making
our fix, the pull request has been updated by the original contributor, so our force-push would throw away
updates we didn’t intent to throw away. Even if we were to check it now, the pull request could get updated
between the time we check it and the time our push goes through. This is a classic concurrency problem
that we managed to avoid before by knowing that we were the only one modifying that remote branch.

Thankfully, git provides a way to conditionally force-push a change, analogous to compare-and-swap if
you are familiar with that operation. To use this, execute git push --force-with-lease=chutes:pr-<pr>
https://github.com/YourUsername/cs5152playgroud pr-<pr>-fix:chutes, using the URL simply be-
cause conceptually this is a one-time push to this contributor’s fork (that typically wouldn’t be your origin
remote). The flag -—~force-with-lease=chutes:pr-<pr> indicates to push if and only if the remote repo’s
chutes branch currently points to the head commit of the local clone’s pr-<pr> branch. The final argument
pr-<pr>-fix:chutes indicates to push the contents of the local clone’s pr-<pr>-fix branch to the remote
repo’s chutes branch. If you only said pr-<pr>-fix, it would attempt to create a new branch of that name
on the remote repo, though that might fail due to lack of permissions. If you just said chutes, it would
push the contents of the local clone’s chutes branch to the remote repo’s chutes branch, which are already
coincidentally in sync.

Supposing that worked, which it should in this exercise, you are now happy with the pull request and
can merge it in. Don’t forget to delete the local pr-<pr> and pr-<pr>-fix branches you no longer need,
using the -D flag instead of -d to ignore the check that the commits have been merged. And changing roles
to the contributor, your pull request has been pulled in, so delete the chutes branch on your fork and your
clone.

5.9 A problematic alternative solution

An alternative solution to the above fix would be to do the following after checking out pr-<pr>-fix as
above. First, execute git reset --soft HEAD"2. This will change the head of the branch to point to the
commit that was merged in, but it will leave the local files and Index unchanged. Thus if you execute git
status, it will say that there are staged modifications ready to be committed, where those modifications
are precisely the changes to the main repo that the pull request would incur. So then you could execute
git commit and provide an appropriate message. Finally, you could force-with-lease-push the fix to the pull
request as above.

This may seem simpler, but it has a huge downside: it erases the commit history of the pull request.
In particular, even if there were only one commit and you made sure to recreate its message, the new
commit would be signed by you rather than the original contributor. So you've essentially stolen credit
for their work. The more complex solution above, on the other hand, will both preserve the commit his-
tory (in a relative sense) and preserve the authors of the commits. If you don’t care about preserving
the relative commit history, you can manually preserve the author by adding the --author="Their Name
<their-email@their-domain.com>" flag when you execute git commit.

14


https://github.com/YourUsername/cs5152playgroud

5.10 Preventing the problem

Of course, this could have all been prevented in the first place had the contributor used git pull --rebase
upstream master to incorporate the conflicting changes from the main repo by rebasing rather than merging.
In fact, some developers configure this to be their default. But remember that this changes history locally,
which can cause problems when you have other branches off of the current branch already in play, so one
has to be very careful to use it as their default.

15



	Getting a Repo
	Forking a repo
	Cloning a repo
	What comes with a clone?

	Getting Updates
	Simulating a change
	Adding the upstream remote repo
	Fetching changes from upstream
	Merging changes from upstream
	Getting changes into your GitHub fork
	Streamlining the process

	Proposing Changes
	Making a branch
	Making a commit
	Uploading a commit
	Making a pull request

	Revising Proposals
	Reviewing the proposed changes
	Revising your pull request
	Reviewing the proposed commits
	Squashing commits
	Changing history remotely
	Merging a pull request
	Cleaning up branches

	Resolving Conflicts
	Resolving a conflict
	Fetching someone else's pull request
	Referring to the past
	Resetting to the past
	Rebasing rather than merging
	Reusing resolutions
	Checking your work
	Safely changing remote history
	A problematic alternative solution
	Preventing the problem


