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Performance of Computer Systems

In most computer systems

The cost of people is much greater than the cost of hardware
Yet performance is important

A single bottleneck can slow down an entire system

Future loads may be much greater than predicted



When Performance Matters

Real time systems when computation must be fast enough to support
the service provided, e.g., fly-by-wire control systems have tight
response time requirements.

Very large computations where elapsed time may be measured in
days, e.g., calculation of weather forecasts must be fast enough for
the forecasts to be useful.

User interfaces where humans have high expectations, e.g., mouse
tracking must appear instantaneous.

Transaction processing where staff need to be productive and
customers not annoyed by delays, e.g., airline check-in.



High-Performance Computing

High-performance computing:

e Large data collections (e.g., Amazon)
e Huge numbers of users (e.g., Google)
e Large computations (e.g., weather forecasting)

Must balance cost of hardware against cost of software development
e Some configurations are very difficult to program and debug

e Sometimes it is possible to isolate applications programmers from the system
complexities

CS/Info 5300, Architecture of Large-Scale Information Systems



Performance Challenges for all Software Systems

Tasks

e Predict performance problems before a system is implemented.

e Design and build a system that is not vulnerable to performance
problems.

e |dentify causes and fix problems after a system is implemented.



Performance Challenges for all Software Systems

Basic techniques

e Understand how the underlying hardware and networks components
interact with the software when executing the system.

e For each subsystem calculate the capacity and load. The capacity is a
combination of the hardware and the software architecture.

e |dentify subsystems that are near peak capacity.
Example

Calculations indicate that the capacity of a search system is 1,000 searches
per second. What is the anticipated peak demand?



Interactions between Hardware and Software

Examples

In a distributed system, what messages pass between nodes?

How many times must the system read from disk for a single
transaction?

What buffering and caching is used?
Are operations in parallel or sequential?

Are other systems competing for a shared resource (e.g., a
network or server farm)?

How does the operating system schedule tasks?



Look for Bottlenecks

Usually, CPU performance is not the limiting factor.
Hardware bottlenecks

e Reading data from disk

e Shortage of memory (including paging)

e Moving data from memory to CPU

e Network capacity

Inefficient software

e Algorithms that do not scale well

e Parallel and sequential processing



Look for Bottlenecks

CPU performance is a limiting constraint in certain domains, e.g.:
e large data analysis (e.g., searching)

e mathematical computation (e.g., engineering)

e compression and encryption

e multimedia (e.g., video)

e perception (e.g., image processing)



Timescale of Different Components

Operations per second

CPU instruction: 1,000,000,000
Disk latency: 100

read: 25,000,000 bytes
Network LAN: 10,000,000 bytes

Actual performance may be considerably less than the
theoretical peak




Look for Bottlenecks: Utilization

Utilization is the proportion of the capacity of a service that is
used on average.

utilization = proportion of capacity of service that is used

_ mean service time for a transaction
mean inter-arrival time of transactions

When the utilization of any hardware component exceeds 0.3,
be prepared for congestion.

Peak loads and temporary increases in demand can be much
greater than the average.



Predicting System Performance

e Direct measurement on subsystem (benchmark)
e Mathematical models (queueing theory)

e Simulation

All require detailed understanding of the interaction between
software and hardware systems.



Mathematical Models

Queueing theory

Good estimates of congestion can be made for single-server
gueues with:

e arrivals that are independent, random events (Poisson
process)

e service times that follow families of distributions (e.g.,
negative exponential, gamma)

Many of the results can be extended to multi-server queues.

Much of the early work in queueing theory by Erlang was to model
congestion in telephone networks.



Mathematical Models: Queues

Single server queue

arrive wait in line service depart

- OO0 00 |0

Examples

e Requests to read from a disk (with no buffering or
other optimization)

e (Customers waiting for check in at an airport, with a
single check-in desk



Queues

Multi-server queue

service

arrive wait in line O depart

- 0 0O000|0
O

e Tasks being processed on a computer with several
processors

Examples

e Customers waiting for check in at an airport, with
several check-in desks



Techniques: Simulation

Build a computer program that models the system as set of states
and events

advance simulated time
determine which events occurred
update state and event list
repeat

Discrete time simulation: Time is advanced in fixed steps (e.g., 1
millisecond)

Next event simulation: Time is advanced to next event

Events can be simulated by random variables (e.g., arrival of next
customer, completion of disk latency), or by using data collected from
an operational system



Behavior of Queues: Utilization

The exact shape of the curve depends on the
type of queue (e.g., single server) and the
statistical distributions of arrival times and

service times.
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0) 1 service




Measurements on Operational Systems

e Benchmarks: Run system on standard problem sets, sample
inputs, or a simulated load on the system.

e [nstrumentation: Clock specific events.

If you have any doubt about the performance of part of a system,
experiment with a simulated load.



Example: Web Laboratory

Benchmark: throughput v. number of CPUs on a symmetric multiprocessor
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Case Study: Performance of Disk Farm

When many transaction use a disk farm, each transaction must:

wait for specific disk

wait for I/O channel

send signal to move heads on disk
wait for 1/0 channel

pause for disk rotation (latency)
read data

Close agreement between: results from queuing theory, simulation,
and direct measurement (within 15%).



Fixing Bad Performance

If a system performs badly, begin by identifying the cause:

e |nstrumentation. Add timers to the code. Often this will reveal that delays
are centered in a specific part of the system.

e Testloads. Run the system with varying loads, e.g., high transaction rates,
large input files, many users, etc. This may reveal the characteristics of
when the system runs badly.

e Design and code reviews. Team review of system design, program design,
and suspect sections of code. This may reveal an algorithm that is running
very slowly, e.g., a sort, locking procedure, etc.

Find the underlying cause and fix it or the problem will return!



Predicting Performance Change: Moore's Law

Original version:

The density of transistors in an integrated circuit will double every year.
(Gordon Moore, Intel, 1965)

Current version:

Cost/performance of silicon chips doubles every 18 months.



Moore's Law: Rules of Thumb

Planning assumptions

Silicon chips: cost/performance improves 30% / year
in 12 years = 20:1
in 24 years = 500:1

Magnetic media: cost/performance improves 40% / year
in 12 years = 50:1
in 24 years = 3,000:1

These assumptions are conservative. During some periods, the increases
have been considerably faster.

Note: Recently, the rate of performance increase in individual
components, such as CPUs, has slowed down, but the overall rate of
increase has been maintained by placing many CPU cores on a single chip.

[This is a revised version of this slide. A CS 5150 student
noticed that the original version had numeric errors.]



Moore's Law and System Design

Feasibility study: 2013

Production use: 2016

Withdrawn from production: 2026
Processor speeds 1 2.2 30
Memory sizes: 1 2.2 30
Disk capacity: 1 2.7 80
System cost: 1 0.4 0.03

[This is a revised version of this slide. A CS 5150 student
noticed that the original version had numeric errors.]




Moore's Law Example

Will this be a typical laptop?

<« or100

processors?

2013 2023
Processors 2 x 2.5 GHz 8 x 10 GHz
Memory 4 GB 100 GB
Disc 500 GB 15TB
Network 1 Gb/s 25 Gb/s

Surely there will be some fundamental changes in how this this power
is packaged and used.

[This is a revised version of this slide. A CS 5150 student
noticed that the original version had numeric errors.]



Parkinson's Law

Original:

Work expands to fill the time available. (C. Northcote
Parkinson)

Software development version:
(a) Demand will expand to use all the hardware available.
(b) Low prices will create new demands.

(c) Your software will be used on equipment that you
have not envisioned.



False Assumptions from the Past

Be careful about the assumptions that you make

Here are some past assumptions that caused problems:

Unix file system will never exceed 2 GBytes (232 bytes).

AppleTalk networks will never have more than 256 hosts (22 bits).
e GPS software will not last more than 1024 weeks.

e Two bytes are sufficient to represent a year (Y2K bug).



Moore's Law and the Long Term

1965 Today



Moore's Law and the Long Term

What [y
level? | |

Within your working
life?

1965 Ten years When?
from now?



