Cornell University
Computing and Information Science

CS 5150 Software Engineering

Design Patterns

William Y. Arms

Design Patterns

Sources:

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994

The following discussion of design patterns is based on Gamma, et al.,
1994, and Bruegge and Dutoit, 2004.

Wikipedia has good discussion of many design patterns, using UML and
other notation, with code samples.

Design Pattern

Design patterns are template designs that can be used in a variety of
systems. They are particularly appropriate in situations where classes are
likely to be reused in a system that evolves over time.

e Name

[Some of the names used by Gamma, et al. have become standard
software terminology.]

e Problem description

Describes when the pattern might be used, often in terms of modifiability
and extensibility.

e Solution
Expressed in terms of classes and interfaces.
e Consequences

Trade-offs and alternatives.

Notation

ClassName class name in italic indicates an
abstract class

----------------------- > dependency
delegation
= inheritance
/<> \ whole/part association

whole part

Abstract Classes

Abstract class

Abstract classes are superclasses which contain abstract methods and are
defined such that concrete subclasses extend them by implementing the
methods. Before a class derived from an abstract class can become concrete,
i.e. a class that can be instantiated, it must implement particular methods for all
the abstract methods of its parent classes.

The incomplete features of an abstract class are shared by a group of subclasses
which add different variations of the missing pieces.

Wikipedia 4/2/08

Adapter (Wrapper): Wrapping Around Legacy Code

Problem description:

Convert the interface of a legacy class into a different interface expected
by the client, so that the client and the legacy class can work together
without changes.

This problem often occurs during a transitional period, when the long-
term plan is to phase out the legacy system.

Example:

How do you use a web browser to access an information retrieval
system that was designed for a different client?

Adapter Design Pattern: The Problem

NewClient OldClient

. dependency ——-——

v v
NewClass LegacyClass
request() existingRequest()

During the transition, how can
NewClient be used with LegacyClass?

Adapter Design Pattern: Solution Class Diagram

Chen,t abstract class shown
| in italic
v
ClientInterface LegacyClass
request() existingRequest()
Adapter delegation
inheritance

request()

Adapter Design Pattern: Consequences

The following consequences apply whenever the Adapter
design pattern is used.

e Client and LegacyClass work together without modification of
either.

e Adapter works with LegacyClass and all of its subclasses.

e A new Adapter needs to be written if Client is replaced by a
subclass.

Bridge: Allowing for Alternate Implementations

Name: Bridge design pattern
Problem description:

Decouple an interface from an implementation so that a different
implementation can be substituted, possibly at runtime (e.g.,
testing different implementations of the same interface).

Bridge: Class Diagram

Client

alternative
implementations

ConcretelmplementorA

ConcretelmplementorB

Bridge: Class Diagram

Client

Implementor

T

ConcretelmplementorA

ConcretelmplementorB

Bridge:
Class Diagram

Client whole/part
: association
V /
Abstraction <> Implementor

T

Note the similarity to
the strategy design
pattern (described
later)

ConcretelmplementorA

ConcretelmplementorB

Bridge: Allowing for Alternate Implementations

Solution:

The Abstraction class defines the interface visible to the client.
Implementor is an abstract class that defines the lower-level methods
available to Abstraction. An Abstraction instance maintains a reference
to its corresponding Implementor instance.

Abstraction and Implementor can be refined independently.

Bridge:
Class Diagram

Client
v
Abstraction <> Implementor
RefinedAbstraction

/ ConcretelmplementorA

new abstraction

ConcretelmplementorB

Bridge: Consequences

Consequences:
Client is shielded from abstract and concrete implementations

Interfaces and implementations can be tested separately

Strategy: Encapsulating Algorithms

Name: Strategy design pattern
Example:

A mobile computer can be used with a wireless network, or connected
to an Ethernet, with dynamic switching between networks based on
location and network costs.

Problem description:

Decouple a policy-deciding class from a set of mechanisms, so that
different mechanisms can be changed transparently.

Strategy Example: Class Diagram for Mobile Computer

Application

| Networkinterface
\4

open()
close()
send()

T

Ethernet WirelessNet

open() open()
close() close()
send() send()

Strategy Example: Class Diagram for Mobile Computer

use location information to

Application LocationManager
. . «— select network
7 7 Networkinterface
NetworkConnection
open()
open() close()
close() <> send()
send()
setNetworklInterface() T

Ethernet

WirelessNet

open()
close()
send()

open()
close()
send()

Strategy: Encapsulating Algorithms

Solution:
A Client accesses services provided by a Context.

The Context services are realized using one of several mechanisms, as
decided by a Policy object.

The abstract class Strategy describes the interface that is common to all
mechanisms that Context can use. Policy class creates a
ConcreteStrategy object and configures Context to use it.

Strategy: Class Diagram

Policy class selects

Client Policy «— ConcreteStrategy
v v
Context
-~ Strategy
contextintertface() algorithminterface()

Note the similarity to
the bridge design

T

pattern (described

ConcreteStrategyl

above)

ConcreteStrategy?2

Strategy: Consequences

Consequences:

ConcreteStrategies can be substituted transparently from Context.

Policy decides which Strategy is best, given the current
circumstances.

New policy algorithms can be added without modifying Context or
Client.

Facade: Encapsulating Subsystems

Name: Facade design pattern
Problem description:

Reduce coupling between a set of related classes and the rest of the system.
Example:

A Compiler is composed of several classes: LexicalAnalyzer, Parser,
CodeGenerator, etc. A caller invokes only the Compiler (Facade) class, which
invokes the contained classes.

Solution:

A single Facade class implements a high-level interface for a subsystem by
invoking the methods of the lower-level classes.

Facade: Class Diagram

Facade
Facade
service()
Classl Class2 Class3

servicel() service2() service3()

Facade: Consequences

Consequences:
e Shields a client from the low-level classes of a subsystem.

e Simplifies the use of a subsystem by providing higher-level methods.

e Enables lower-level classes to be restructured without changes to
clients.

Note. The repeated use of Facade patterns yields a layered system.

Composite: Representing Recursive Hierarchies

Name: Composite design pattern
Problem description:

Represent a hierarchy of variable width and depth, so that the leaves and
composites can be treated uniformly through a common interface.

Composite: Class Diagram

Client

S N Component

=

Leaf Composite

Composite: Representing Recursive Hierarchies

Solution:

The Component interface specifies the services that are shared
between Leaf and Composite. A Composite has an aggregation
association with Components and implements each service by

iterating over each contained Component. The Leaf services do the
actual work.

Composite: Consequences

Consequences:
Client uses the same code for dealing with Leaves or Composites.
Leaf-specific behavior can be changed without changing the hierarchy.

New classes of Leaves can be added without changing the hierarchy.

Proxy: Encapsulating Expensive Objects

Name: Proxy design pattern

Problem description:

Improve performance or security of a system by delaying expensive

computations, using memory only when needed, or checking access before
loading an object into memory.

Solution:

The ProxyObject class acts on behalf of a RealObject class. Both implement
the same interface. ProxyObject stores a subset of the attributes of
RealObject. ProxyObject handles certain requests, whereas others are

delegated to RealObject. After delegation, the RealObject is created and
loaded into memory.

Proxy: Example

An abstract class SortStrings defines an interface for sorting lists of
strings.

ProxySortStrings is a class that sorts lists of strings very quickly in
memory and delegates larger lists.

RealSortStrings is a class that sorts very large lists of strings, but is
expensive to create and execute on small lists.

Proxy: Class Diagram

Client
5 Object
filename
_________________),
op1()
op2()

ProxyObiject 1 0.1 RealObject
filename data:byte|]
op1() op1()
op2() op2()

Proxy: Consequences

Consequences:
Adds a level of indirection between Client and RealObject.

The Client is shielded from any optimization for creating RealObjects.

Abstract Factory: Encapsulating Platforms

Name: Abstract Factory design pattern
Problem description:

Shield the client from different platforms that provide different
implementations of the same set of concepts

Example:

A user interface must have versions that implement the same set of concepts
for several windowing systems, e.g., scroll bars, buttons, highlighting, etc.

Abstract Factory: Encapsulating Platforms

Solution:

A platform (e.g., the application for a specific windowing system) is
represented as a set of AbstractProducts, each representing a concept (e.g.,
button). An AbstractFactory class declares the operations for creating each
individual product.

A specific platform is then realized by a ConcreteFactory and a set of
ConcreteProducts.

Abstract Factory: Class Diagram

Client | > AbstractFactory
createProductA
createProductB

v
AbstractProductB
v

AbstractProductA

Abstract Factory: Class Diagram

Client

---------------------- > AbstractFactory

7

AbstractProductA

i

createProductA

ConcreteFactoryl

createProductA

There could be several
ConcreteFactory
classes, each a subclass

ProductA

of AbstractFactory

Abstract Factory: Class Diagram

Client ~ froeeemeemmmmmmmeeeees > AbstractFactory

4

AbstractProductB

createProductA

createProductB
-~

—

AbstractProductA

3

ConcreteFactoryl

createProductA
createProductB

ProductB

ProductA D

There could be several
ConcreteFactory
classes, each a subclass

of AbstractFactory

Abstract Factory:
Consequences

Consequences:
Client is shielded from concrete products classes
Substituting families at runtime is possible

Adding new products is difficult since new realizations must be created
for each factory

Abstract Factory: Discussion

Discussion
See the interesting discussion in Wikipedia (October 25, 2010):

"Use of this pattern makes it possible to interchange concrete
classes without changing the code that uses them, even at
runtime. However, employment of this pattern, as with similar
design patterns, may result in unnecessary complexity and extra
work in the initial writing of code."

An Old Exam Question

A company that makes sports equipment decides to create a system for selling
sports equipment online. The company already has a product database with
specification, marketing information, and prices of the equipment that it
manufactures.

To sell equipment online the company will need to create: a customer database,
and an ordering system for online customers.

The plan is to develop the system in two phases. During Phase 1, simple
versions of the customer database and ordering system will be brought into
production. In Phase 2, major enhancements will be made to these
components.

An Old Exam Question

Carefully design during Phase 1 will help the subsequent development of new
components in Phase 2.

(a) For the interface between the ordering system and the customer database:

i Select a design pattern that will allow a gradual transition from Phase 1
to Phase 2.

Bridge design pattern

ii Draw a UML class diagram that shows how this design pattern will be
used in Phase 1.

If your diagram relies on abstract classes, inheritance, delegation or
similar properties be sure that this is clear on your diagram.

[See next slide]

An Old Exam Question

Ordering System | «<— Client

4

OrderingAbstraction

T

< DBImplementor

T

RefinedOrderingAbstraction

ConcreteDBImplementorA

ConcreteDBImplementorB

An Old Exam Question

(c) How does this design pattern support:
i Enhancements to the ordering system in Phase 2?
By subclassing OrderingAbstraction
ii A possible replacement of the customer database in Phase 27?

By allowing several ConcreteDBImplementor classes

