
Install and Configuration
Guide

Developer Release 3.01
June 2000

ii Developer Release 3.01, June 2000

COPYRIGHT NOTICE

© 2000 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this document is provided "AS IS" WITH NO EXPRESS OR
IMPLIED WARRANTY: permission to copy, modify, and distribute this document for any purpose
is hereby granted without fee, provided that the above copyright notice and this notice appear in all
copies, and that the name of Hewlett-Packard Company not be used in advertising or publicity
pertaining to distribution of this document without specific, written prior permission. Hewlett-
Packard Company makes no representations about the suitability of this document for any purpose.

Contents
Chapter 1 Introduction .1

How E-speak Works . 2

About This Guide . 8

Where to Get More Information . 9

Chapter 2 Installing and Configuring 11

Windows NT Installation . 12

HP-UX Installation . 20

Linux Installation . 29

Chapter 3 Expanding E-speak Functionality37

WebAccess . 37

Security . 48

System Deployment Console . 51

Configuration for Persistence . 53

Configuring Integrated Development Environments 56

Chapter 4 Running E-speak Standard Services 59
Developer Release 3.01, June 2000 i

Event Distribution Service . 60

Advertising Service . 61

Management Services . 70

Chapter 5 Working With Applications 77

How Applications Work in E-speak 77

Distributed Applications . 86

Chapter 6 Using Security in E-speak 93

The Basic Security Model . 93

Bootstrap Process for Testing . 95

Configuration Files . 97

Security Examples . 101

Appendix A SysLoader Utility 105

SysLoader Utility . 105

Controlling the Classes Loaded at Start-Up 106

Appendix B ‘espeak’ Utility 109

Help Page for espeak . 109

Appendix C Introduction to PSE Manager 113
ii Developer Release 3.01, June 2000

The PSE Manager . 116

Certificates . 120

Using PSE Manager as an Attribute Certificate Issuer . 125

Service Metadata and tag files . 130
Developer Release 3.01, June 2000 iii

iv Developer Release 3.01, June 2000

Chapter 1 Introduction
Hewlett-Packard’s e-speak is a platform for developing, managing, and accessing
Internet-based services (e-services). It is based on open standards. With e-speak,
e-services can communicate securely at will—even across firewalls—and can
combine to perform an unlimited number of functions without the user being
involved.

For example, suppose you are planning a business trip. You use various websites to
book a flight, rental car, and hotel room. Each time you must re-enter your itinerary.
You could use an all-in-one travel website to simplify matters, but that can limit your
choices. More importantly, all you find out from each website is what that company
is willing to sell you. It’s up to you to decide which arrangements best meet your
needs.

In an e-speak environment, you tell a travel e-service provider about your needs,
such as your itinerary, budget, personal preferences, and any special needs you
have. Then, the e-service provider finds the right services and broker among them
to get the best possible travel arrangements that meet your needs. With e-speak,
your needs drive the process.

Let’s take the example a step further. What if the unexpected happens, like the
airline cancelling your flight? You might get where you’re going but have no rental
car waiting for you or no hotel room for the night. But, an e-speak-enabled travel
service can adjust the other elements of your trip automatically.
Developer Release 3.01, June 2000 1

How E-speak Works Introduction
How E-speak Works A

E-speak is a programming structure for creating and running global distributed
e-services. In e-speak, services seek out needed resources and communicate with
all kinds of machines, from large data center servers to portable handheld devices,
and even appliances. E-speak-enabled services can communicate through public
networks, past network firewalls, and to non-networked devices through low-level
serial protocols. An e-speak service can call on other services to perform a task, and
it can be called on by clients in specialized environments.

After a service has been written to communicate in e-speak, it can be used as a
client or a server for a new service being developed—without changing a line of
code in the original service. Unlike most connectivity tools, e-speak mediates
communications between client and server. This makes it possible to add new
services by inserting an adapter to translate the protocols that each side speaks.
Client and server can evolve independently.

E-speak provides four key e-service functions:

• Discovery— Finding the right services

• Brokering—Negotiating among competing services to find the best solution

• Composition—Dynamically creating higher-level services by combining
lower-level component services

• Mediation—Continuously monitoring and managing changes

Structure and Components A

E-speak consists of four main components — a service engine called the Core,
e-speak Application Programming Interfaces (APIs), a collection of standard
services, and contributed applications.
2 Developer Release 3.01, June 2000

Introduction How E-speak Works
Figure 1 identifies the various pieces of software that form the e-speak environment
and shows how they relate to each other.

Figure 1 E-speak components: Software included in this release is in bold text; software in white italics
will be supported in a future release.
Developer Release 3.01, June 2000 3

How E-speak Works Introduction

(one
te.

ove

s

sses.
Core
Core is the central piece of software in e-speak. It provides basic capabilities, such
as messaging, mediation, naming, and monitoring for the e-speak environment.
Cores can be interconnected to form a distributed e-speak environment.

APIs
E-speak APIs act as system call interfaces to the Core and the standard services.
The API examples in this guide are written in Java, but the architecture of e-speak
is language independent. So, APIs can be written in other languages. For more infor-
mation, see the e-speak Programmer’s Guide.

Standard Services
Standard services provide communication, security, discovery, and other functions
that most e-services require. Programmers can build upon the standard services or
replace them as needed. Standard services in this release and their main purposes
are:

• Advertising Service — locates and imports services that are not present in a
local core.

• Event Distribution Service — notifies different subscribers (applications
interested in receiving events) of significant events.

• System Management Services — a suite of services for managing e-speak
applications. The following system management services are included in this
release:

• Logging Service — provides simple API to log messages in persistent store
per e-speak Core), so that they can be analyzed meaningfully at a later da

• Policy Manager — a user environment in which a user may set, get, or rem
policies.

• Service Manager — tracks managed services and any management event
generated by a managed service.

• Process Manager — provides a uniform way for remotely managing proce
4 Developer Release 3.01, June 2000

Introduction How E-speak Works
Contributed Applications
Contributed applications supplement the functionality provided by the Core and
standard services. One contributed application—VFS—is included in this release. It
was created to use all the features of e-speak and in doing so provide a complete
test application.

VFS is a virtual file system that allows users to create a workspace of file cabinets
containing the folders and files that interest them. This workspace is unique to each
user, available from any computer connected to the e-speak infrastructure, and can
be shared with other users. Unlike a web browser, e-speak allows you to take all of
your file references with you when you change locations. For more information on
VFS, see the e-speak Contributed Services Guide.

Current E-speak Release Components A

Major components included in the current release of e-speakand their directory
locations are:

• Service Engine — the source files, which are written in Java, and the corre-
sponding class files are part of the escore.jar file available under the lib
subdirectory of the installation directory.

• Web Programming Model and Networked Object Model class files — these files
are bundled together in the esclient.jar file available under the lib subdi-
rectory of the installation directory. This includes APIs for accessing the e-speak
Service Engine and services over the World Wide Web (WebAccess) or a local
area network (J-ESI).

• Advertising Service, Management Services, and Event Distribution Service class
files — these files are bundled into the esclient.jar file.

• External components — the following files, which are freely available and
distributed “as-is,” are located under the extern directory of the installation
directory: ldapjdk.jar, cryptix.jar, xerces.jar, webmacro.jar,
and classes111.zip (for Oracle-JDBC interface).

• VFS source code and class files — these files are located under the contrib
subdirectory of the installation directory.
Developer Release 3.01, June 2000 5

How E-speak Works Introduction
• Sample application source code and utility scripts — these files are located in
the samples subdirectory of the installation directory.

• Class files and sample programs for E-speak Service Framework programming
interface is located in <installDir>/contrib/servicebus directory.

• Source code for the tutorial — these files are located in the tutorial subdirec-
tory of the installation directory. The tutorial runs on the NT platform only.

• Security component — these files are integrated with the main system files.

• Online JAVADOC APIs — these files are located in the html subdirectory of the
doc subdirectory.

• Configuration files — the following files are located in the config subdirectory
of the installation directory: repository.ini (for specifying persistence
parameters), espeak.cfg (contains trace options and security-related
options), and default.ini (includes all services needed to be started).
6 Developer Release 3.01, June 2000

Introduction How E-speak Works
Release Directory Structure
The installed e-speak directory looks like this:

<installDir>

bin e-speak batch utilities

config Co files and ini files

management Management co files and ini files

contrib Contributed applications

lib Contrib class files and jar files

vfs Virtual file system application

doc e-speak documentation

html On-line e-speak API

lib e-speak product jar files and shared libraries

samples contains e-speak samples

PrintServer Print client/server sample

echo Simple echo program
ESChat Chat client/server sample

tutorial Sources for Tutorial

sharebroker Share Broker tutorial (NT only)

extern External components

oracle-lib Oracle class files location

cryptix Class files for cryptix package

ldap LDAP jar file location

parser XML parser

webmacro Templates for webaccess xml files

servicebus Programming library for service framework

slsgateway Gateway for secure firewall traversal

htdocs HTML files for WebAccess

genamics Utilities used by VFS Browser application
Developer Release 3.01, June 2000 7

About This Guide Introduction
About This Guide A

The Installation Guide gives you the information you need to get started with
e-speak. It includes installation and configuration instructions as well as informa-
tion about compiling and running a simple e-speak program to verify the installa-
tion.

This guide is designed to get you started. It is not a comprehensive reference to the
APIs or the e-speak architecture. Application programmers who need detailed
information about e-speak APIs should read the e-speak Programmer’s Guide. For
complete information about the structure of e-speak, see the e-speak Architecture
Specification.

This guide is organized as follows:

• Chapter 1 contains an overview of e-speak and an introduction to this guide.

• Chapter 2 contains procedures for installing and configuring e-speak on
Windows NT, HP-UX, and Linux platforms.

• Chapter 3 contains configuration information for expanding e-speak’s function-
ality, including web programming (WebAccess), system management, the
SysLoader utility, persistence, and integrated development environments.

• Chapter 4 contains instructions for configuring and running the standard
e-speak services included in this release.

• Chapter 5 contains instructions for using Echo, a sample program included with
this release.

• Chapter 6 contains instructions for configuring the security component of
e-speak. By default, the installation of e-speak is configured for testing and is not
secure.
8 Developer Release 3.01, June 2000

Introduction Where to Get More Information
Where to Get More Information A

E-speak includes a complete set of reference documentation. After you install the
software, you can find the following documents in the doc subdirectory of your
installation directory:

• E-speak Install and Configuration Guide

• E-speak Architecture Specification

• E-speak Programmer’s Guide

• E-speak Contributed Services Guide

• E-speak System Management User Guide

• E-speak WebAccess User Guide

• E-speak Tutorial

• Online API documents

Updated documents are available online at http://www.e-speak.net.
Developer Release 3.01, June 2000 9

Where to Get More Information Introduction
10 Developer Release 3.01, June 2000

Chapter 2 Installing and Configuring
This e-speak release is designed to run on Windows NT, HP-UX, and Red Hat Linux
platforms. However, Hewlett-Packard encourages programmers to build e-speak
environments for other platforms by offering source files for download from the
http://www.e-speak.net website.

This chapter is divided into three subsections. You can find the information you
need as follows:

NT — see “Windows NT Installation” on page 12

HP-UX —see “HP-UX Installation” on page 20

Linux — see “Linux Installation” on page 29
Developer Release 3.01, June 2000 11

Windows NT Installation Installing and Configuring
Windows NT Installation B

System Requirements B

Optimum

Minimum

Before You Begin B

Before you install e-speak, you should:

• Make sure you are installing the latest version

• Install the external components that e-speak requires to run the desired func-
tions or extensions.

This section assists you in those tasks.

Operating system Windows NT 4.0/SP4

Free disk space 35 MB at runtime (75 MB or more while installing)

RAM 256 MB or higher

Java Java Development Kit 1.1.8 or later

Operating system Windows NT 4.0/SP3

Free disk space 35 MB at runtime (75 MB or more while installing)

RAM 64 MB

Java Java Development Kit 1.1.8 (or an equivalent Java
runtime and development environment)
12 Developer Release 3.01, June 2000

Installing and Configuring Windows NT Installation
Getting the Latest Version
The latest version of e-speak source files and their corresponding binary release
versions are available freely at http://www.e-speak.net. If you download the binary
release from the e-speak website, you can skip to the “Installing E-speak on
Windows NT” section.

For Windows NT, the files come as a self-extracting InstallShield executable file.
The file, es_x0301.exe, can be downloaded from http://www.e-speak.hp.com/
developers.

External Module Dependencies
This table lists the various e-speak components and the external modules and prod-
ucts they depend upon to run properly. If you decide to use a certain e-speak
component, make sure you have the corresponding external modules installed on
your machine before you begin the e-speak installation process.

E-speak Component External Modules Required

Advertising Service LDAP Server (See “Advertising Service” on page 61 for
more information.) If available, the Advertising Service
uses an LDAP server, when suitably configured.

E-speak Core in Persis-
tent mode

Oracle 8.0.x as a backend database (accessible using
JDBC)

Oracle Database Server with thin client JDBC driver

(See the Release Notes for information on the version
of the Database Server, JDBC driver, and Operating
System supported by the current release.)

Management services Java™ Servlet Development Kit (JSDK) 2.0, available
at http://java.sun.com/products/servlet

WebAccess solution Java Servlet Development Kit (JSDK) 2.0

Apache web server and Apache Jserv

PrintServer sample Swing classes (come bundled with JDK1.2)
Developer Release 3.01, June 2000 13

Windows NT Installation Installing and Configuring
Installing E-speak on Windows NT B

NOTE: You see this symbol: <installDir> throughout these instructions.
Wherever you see this symbol, substitute the actual directory name or pathname for
that component as it exists on your machine.

To install e-speak

1 Download the es_x0301.exe installation file.

2 Run the es_x0301.exe installation file. You can run the file by double-click-
ing it in Windows Explorer or by typing run es_x0301.exe into a command
prompt.

3 At the Installation window, follow the install wizard’s prompts to input the
necessary information.

NOTE: The default installation location is C:\E-speak.

To un-install e-speak

1 In the E-speak programs menu, click Uninstall E-speak.

2 The uninstall GUI starts and the application is uninstalled automatically.

3 Check the e-speak folders and delete any remaining files manually.

Configuring e-speak for Windows NT B

After installation, follow the instructions in this section to configure the e-speak
environment. This is necessary to run the e-speak Core and services and to build
and run the sample applications included with this release.
14 Developer Release 3.01, June 2000

Installing and Configuring Windows NT Installation
E-speak Environment Variables
Find and make a note of the pathnames for these variables, which you use to config-
ure your e-speak installation:

If you are using Microsoft Java, find and make a note of the pathnames for these
variables in addition to or instead the above variables:

Setting the Environment Variables

You can set the environment variables permanently by using the Environment tab
of the System Control Panel or by using a command shell.

To Use the System Control Panel

1 Open the System Control Panel and click the Environment tab.

2 Enter the pathnames for these variables where indicated. Remember to use the
alternate instructions if using Microsoft JVC:

• JRE

Variable Pathname Description

JRE Points to the Java runtime environment. This pathname
should point to the executable file named java. Do not point
this to the jre file (Sun JDK installations only).

CLASSPATH Points to your other classes (e.g. swing, jsdk).

JAVAC Points to the Java compiler (for compilation only).

ESPEAK_HOME Points to the e-speak installation directory.

PATH Should contain <installDir>\lib.

Variable Pathname Description

JRE Points to Microsoft’s JVM (jview).

JVC Points to the Microsoft VJ++ compiler (usually jvc.exe).

VJ++ To use Microsoft VJ++, set this variable to true (all lower-
case).
Developer Release 3.01, June 2000 15

Windows NT Installation Installing and Configuring
• JAVAC

• CLASSPATH

• ESPEAK_HOME

• PATH

3 Click Apply or OK.

To Use a Command Shell

1 In a command shell, you can use these commands to set the variables:

set JRE=<installDir>\java
set JAVAC=<installDir>\javac
set ESPEAK_HOME=<installDir>
set CLASSPATH=<actual path>\jsdk.jar;<actual path>\swingall.jar

If you use JDK 1.2, you do not need to add swingall.jar in the CLASSPATH.

2 If you use Microsoft Visual J++, you need to set these additional variables:

set JRE=C:\WINNT\jview.exe

set JVC=”C:\Microsoft Visual Studio\VJ98\JVC.exe”

set VJ++=true

To Set the CLASSPATH Environment Variable Automatically

1 The envmake.bat script should be located in the directory <install-
Dir>\bin\.

2 Run the envmake.bat script. The script sets the CLASSPATH environment
variable, which contains all necessary e-speak jar files.

E-speak Runtime Variables
A lot of e-speak’s runtime behavior can be configured using the espeak.cfg file.
Aspects that can be configured through this file include web proxy configurations,
core performance tuning parameters, and security.
16 Developer Release 3.01, June 2000

Installing and Configuring Windows NT Installation
This section explains some major parameters of web proxy and core connections.
Security configurations are documented in the "Security" section of Chapter 3 and
in Chapter 6.

Web-Proxy Configuration

If you need engine-engine connection through a web-proxy for firewall traversal
purpose. The following information should be included in the espeak.cfg configura-
tion file:

• net.espeak.infra.core.connector.webproxyname=proxyhost.yourdo-
main.com

This parameter is a single value being the fully qualified hostname of the http-
proxy used to pierce a firewall.

• net.espeak.infra.core.connector.webproxyport=8088

This parameter is the port on which the proxy listens.

• net.espeak.infra.core.connector.noproxydomain=yourdomain.com

This parameter is the domain for the direct connection that should be made.
Currently, only one entry is supported. Syntax is the end of the domain that
should be matched, such as hp.com. The ’*’ wildcard is not supported.

Core Connection Polling Configuration

The connectivity of the engine is improved significantly using the new JNI-based
polling mechanism. Precompiled shared libraries are distributed for Windows NT
4.0, Redhat Linux 6.1+, and HP-UX 11.0. A pure Java reference implementation is
also available for other platforms.

Configuration parameters for the Polling mechanism can be added to
espeak.cfg. The parameters are listed below with their default values:

• net.espeak.infra.core.thread.WorkerThreadFactory.min=10

This parameter is the minimum number of threads that must be available for
message processing at all times. The default setting is 10.

• net.espeak.infra.core.thread.WorkerThreadFactory.max=500
Developer Release 3.01, June 2000 17

Windows NT Installation Installing and Configuring
This parameter is the maximum number of threads that will be available for
message processing. The default setting is 500.

• net.espeak.infra.core.thread.WorkerThreadFactory.time-
out=2000

This parameter is how long a thread must be idle before it is removed from the
thread pool and killed, provided there are more than the minimum number of
threads in existence at the time. The default setting is 2000 milliseconds.

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.useNativeSelect=true

This parameter indicates whether the JNI polling library should be used instead
of the pure Java version of the polling library. The default setting is true. (Set this
to false to NOT use JNI.)

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.numDedicated=32

This parameter indicates the number of connections which will be serviced by
dedicated threads. For these connections, polling is not performed, and a dedi-
cated thread continuously processes messages. The default setting is 32.

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.maxConnections=200

This parameter indicates the maximum number of connections that the core can
handle at any given time. The default setting is 200.

Starting Basic Services B

You can quickly test that e-speak is installed correctly and that the basic environ-
ment is set up with the espeak utility. This utility starts the e-speak Core and the
basic services. If you need help with the espeak utility, type espeak -h to view
the espeak utility help page.

1 Change to the <installDir>\bin directory.

2 Enter .\espeak to start the Core and basic services.
18 Developer Release 3.01, June 2000

Installing and Configuring Windows NT Installation
You see output similar to this:

**

* Running: Core CoreDistributor ServiceDistributor

AdvertisingService ManagementDistributor

**

ES Core starting with an In-Memory Repository.

coreId = "6bf5c260ca031e38246bdf23e2f9eded"

Starting ES Core Server with Rendezvous of "TCP:12346". Started.

Connection Object: mapped localhost to 15.81.93.137

-- WARNING: Serializing class

com.hp.es.intercorecom.confactory.co.ConnectionObject with slow,

Java-dependent Java serialization

Created the BaseDistributorVocabulary vocabulary

Advertising service not running

Started Core distributor

switching to no-backend version...

advertising service is ready

Warning: Pls check LDAP configuration if you intended to use LDAP.

Switching to non-LDAP mode now

3 Press Ctrl+C in the same command shell if you want to stop these services.

CAUTION: Make sure that all JVMs terminate, because if some JVMs continue
running, the TCP ports remain occupied. You can do this by opening the Task
Manager window and killing all JVM processes.
Developer Release 3.01, June 2000 19

HP-UX Installation Installing and Configuring
HP-UX Installation B

NOTE: You see this symbol: <installDir> throughout these instructions.
Wherever you see this symbol, substitute the actual directory name or pathname for
that component as it exists on your machine.

System Requirements B

Optimum

Operating system
HP-UX 11.00

OS Kernel Parameters
Use these guidelines for tuning the following
kernel parameters:

maxfiles should be 256 (default 60)

maxuprc should be 1024 (default 75)

maxusers should be 1024 (default 32)

NPTY should be 512 (default 60)

max_thread_proc should be 2048 (default 64)

Some of the values depend on each other. So, if
you cannot assign a value, skip it and retry after
setting the other parameters.
20 Developer Release 3.01, June 2000

Installing and Configuring HP-UX Installation
Before You Begin B

Before you install e-speak, you should:

• Make sure you are installing the latest version

• Install the components that e-speak requires to run the desired functions or
extensions.

This section assists you in those tasks.

Operating system patches
For HP-UX 11.00 JDK, these patches are required:
PHCO_20765, PHKL_20202, PHCO_19666,
PHKL_20016, PHKL_18543, PHKL_21624,
PHCO_19047, PHKL_21392, PHKL_20674, and
PHCO_20882.

For applications that use AWT, these patches are
required: PHSS_20275, PHSS_17535, PHSS_20864,
PHNE_21433, PHSS_20863, and PHNE_21493.

Note: Consult http://www.hp.com/go/java for an
up-to-date list of necessary and recommended
patches. To determine which patches are already
installed on your machine, log in as root and enter
this command:
/usr/sbin/swlist -l product.

Free disk space
30 MB at runtime (60 MB or more while installing)

Java Java Development Kit 1.2.2.04, which can be
downloaded from http://
www.unixsolutions.hp.com/products/java
Developer Release 3.01, June 2000 21

HP-UX Installation Installing and Configuring
Getting the Latest Version
The latest version of e-speak source files and their corresponding binary release
versions are available freely at http://www.e-speak.net. If you download the binary
release from the e-speak website, you can skip to the “Installing E-speak on HP-UX”
section.

External Module Dependencies
This table lists the various e-speak components and the external modules and prod-
ucts they depend upon to run properly. If you decide to use a certain e-speak
component, make sure you have the corresponding external modules installed on
your machine before you begin the e-speak installation process.

E-speak Component External Modules Required

Advertising Service LDAP Server (See “Advertising Service” on page 61 for
more information.) If available, the Advertising Service
uses an LDAP server, when suitably configured.

E-speak Core in Persis-
tent mode

Oracle 8.0.x as a backend database (accessible using
JDBC)

Oracle Database Server with thin client JDBC driver

Oracle Server

Oracle Thin JDBC Driver

(See the Release Notes for information on the version
of the Database Server, JDBC driver, and Operating
System supported by the current release.)

Management services Java Servlet Development Kit (JSDK) 2.0, available at
http://java.sun.com/products/servlet

WebAccess solution Java Servlet Development Kit (JSDK) 2.0

Apache web server

espeak utility perl 5.003 or later.

PrintServer sample Swing classes (bundled with JDK1.2)
22 Developer Release 3.01, June 2000

Installing and Configuring HP-UX Installation
Installing E-speak on HP-UX B

The HP-UX installation is a Software Distribution (SD) depot file named
ex_x0301.Z. You can download this file from http://www.e-speak.hp.com/devel-
opers.

For this installation, you need the swinstall(1M) program. You also need super-user
privileges. For details on swinstall and other SD utilities, refer to the
swinstall man pages.

To install e-speak

1 Download the es_x0301.Z file.

2 Log in as a super user.

3 Move the installation file to a temporary directory, such as /tmp, with enough
disk space to hold both the compressed and uncompressed versions of the file.

4 Change to that directory using this command: cd /tmp

5 Uncompress the file using this command: uncompress ES_x0301.Z

6 Install the software using this command:

/usr/sbin/swinstall -s $PWD/es_x0301

7 Follow the instructions to complete installation. The default file installation
location is

/opt/e-speak.

To un-install e-speak

1 Log in as a super user.

2 Use the following command to un-install the package without the GUI appear-
ing: swremove @ <installDir>

Or, run swremove without any arguments, which starts the uninstallation GUI.

3 The uninstallation process starts after you confirm the operation.
Developer Release 3.01, June 2000 23

HP-UX Installation Installing and Configuring
4 Check for any e-speak directories or files which did not get deleted and remove
them manually.

Configuring e-speak for HP-UX B

After installation, follow the instructions in this section to configure the e-speak
environment. This is necessary to run the e-speak Core and services and to build
and run the sample applications included with this release.

You need to research the pathnames of several environment variables and then set
the variables for e-speak to find and access them properly. This section contains
instructions for finding and setting the environment variables, along with a utility
program for automatically configuring one of the variables.
24 Developer Release 3.01, June 2000

Installing and Configuring HP-UX Installation
E-speak Environment Variables
Find and make a note of the pathnames for these variables, which you use to config-
ure your e-speak installation:

Setting the Environment Variables

You set the above mentioned environment variables permanently in your
.profile (or .cshrc if you use the C shell) file. Although there are slight differ-
ences in command styles between shells, the basic commands for the Bourne/K
shell are:

export JRE=/<actual pathname>/java

export JAVAC=/<actual pathname>/javac

export CLASSPATH=/<actual pathname>/jsdk.jar

export ESPEAK_HOME=<installDir>

E-speak Runtime Variables
A lot of e-speak’s runtime behavior can be configured using the espeak.cfg file.
Aspects that can be configured through this file include web proxy configurations,
core performance tuning parameters, and security.

This section explains some major parameters of web proxy and core connections.
Security configurations are documented in the “Security” on page 48 and in Chapter
6, “Using Security in E-speak”.

Variable Pathname Description

JRE Points to the Java runtime environment. This pathname
should point to the executable file named java. Do not point
this to the jre file (Sun JDK installations only).

CLASSPATH Points to your classes (jsdk.jar for example).

JAVAC Points to the Java compiler (for compilation only).

ESPEAK_HOME Points to the e-speak installation directory.

SHLIB_PATH Should contain <installDir>/lib.
Developer Release 3.01, June 2000 25

HP-UX Installation Installing and Configuring
Web-Proxy Configuration

If you need engine-engine connection through a web-proxy for firewall traversal
purpose. The following information should be included in the espeak.cfg configura-
tion file:

• net.espeak.infra.core.connector.webproxyname=proxyhost.yourdo-
main.com

This parameter is a single value being the fully qualified hostname of the http-
proxy used to pierce a firewall.

• net.espeak.infra.core.connector.webproxyport=8088

This parameter is the port on which the proxy listens.

• net.espeak.infra.core.connector.noproxydomain=yourdomain.com

This parameter is the domain for the direct connection that should be made.
Currently, only one entry is supported. Syntax is the end of the domain that
should be matched, such as hp.com. The ’*’ wildcard is not supported.

Core Connection Polling Configuration

The connectivity of the engine is improved significantly using the new JNI-based
polling mechanism. Precompiled shared libraries are distributed for Windows NT
4.0, Redhat Linux 6.1+, and HP-UX 11.0. A pure Java reference implementation is
also available for other platforms.

Configuration parameters for the Polling mechanism can be added to
espeak.cfg. The parameters are listed below with their default values:

• net.espeak.infra.core.thread.WorkerThreadFactory.min=10

This parameter is the minimum number of threads that must be available for
message processing at all times. The default setting is 10.

• net.espeak.infra.core.thread.WorkerThreadFactory.max=500

This parameter is the maximum number of threads that will be available for
message processing. The default setting is 500.

• net.espeak.infra.core.thread.WorkerThreadFactory.time-
out=2000
26 Developer Release 3.01, June 2000

Installing and Configuring HP-UX Installation
This parameter is how long a thread must be idle before it is removed from the
thread pool and killed, provided there are more than the minimum number of
threads in existence at the time. The default setting is 2000 milliseconds.

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.useNativeSelect=true

This parameter indicates whether the JNI polling library should be used instead
of the pure Java version of the polling library. The default setting is true. (Set this
to false to NOT use JNI.)

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.numDedicated=32

This parameter indicates the number of connections which will be serviced by
dedicated threads. For these connections, polling is not performed, and a dedi-
cated thread continuously processes messages. The default setting is 32.

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.maxConnections=200

This parameter indicates the maximum number of connections that the core can
handle at any given time. The default setting is 200.

Starting Basic Services B

You can quickly test that e-speak is installed correctly and that the basic environ-
ment is set up with the espeak utility. This utility starts the e-speak Core and the
basic services. If you need help with the espeak utility, type espeak -h to view
the espeak utility help page.

1 Change to the <installDir>/bin directory.

2 Enter ./espeak to start the Core and basic services.

You see output similar to this:

**

* Running: Core CoreDistributor ServiceDistributor

AdvertisingService ManagementDistributor
Developer Release 3.01, June 2000 27

HP-UX Installation Installing and Configuring
**

ES Core starting with an In-Memory Repository.

coreId = "6bf5c260ca031e38246bdf23e2f9eded"

Starting ES Core Server with Rendezvous of "TCP:12346". Started.

Connection Object: mapped localhost to 15.81.93.137

-- WARNING: Serializing class

com.hp.es.intercorecom.confactory.co.ConnectionObject with slow,

Java-dependent Java serialization

Created the BaseDistributorVocabulary vocabulary

Advertising service not running

Started Core distributor

switching to no-backend version...

advertising service is ready

Warning: Pls check LDAP configuration if you intended to use LDAP.

Switching to non-LDAP mode now

3 Press Ctrl+C in the same command shell if you want to stop these services.

CAUTION: Make sure that all JVMs terminate, because if some JVMs continue
running, the TCP ports remain occupied.
28 Developer Release 3.01, June 2000

Installing and Configuring Linux Installation
Linux Installation B

NOTE: You see this symbol: <installDir> throughout these instructions.
Wherever you see this symbol, substitute the actual directory name or pathname for
that component as it exists on your machine.

System Requirements B

E-speak has been tested on Red Hat Linux 6.1.

Before You Begin B

Before you install e-speak, you should:

• Make sure you are installing the latest version

• Install components that e-speak requires to run the desired functions or exten-
sions.

This section assists you in those tasks.

Getting the Latest Version
The latest version of e-speak source files and their corresponding binary release
versions are available freely at http://www.e-speak.net. If you download the binary
release from the e-speak website, you can skip to the “Installing E-speak on Linux”
section.

Operating system Red Hat Linux 6.1

Free disk space 30 MB at runtime (60 MB or more while installing)

Java Java Development Kit 1.1.8. The Linux JDK can be down-
loaded from http://www.blackdown.org/java-linux.html.
Developer Release 3.01, June 2000 29

Linux Installation Installing and Configuring
External Module Dependencies
This table lists the various e-speak components and the external modules and prod-
ucts they depend upon to run properly. If you decide to use a certain e-speak
component, make sure you have the corresponding external modules installed on
your machine before you begin the e-speak installation process.

Installing E-speak on Linux B

The Linux installation is a compressed rpm package, es_x0301.rpm ,which can be
installed using RPM on Red Hat Linux. You can download this file from http://
www.e-speak.hp.com/developers.

You need super-user privileges to perform the installation.

E-speak Component External Modules Required

Advertising Service LDAP Server (See “Advertising Service” on page 61 for
more information.) If available, the Advertising Service
will use an LDAP server, when suitably configured.

E-speak Core in Persis-
tent mode

Oracle 8.0.x as a backend database (accessible using
JDBC)

Oracle Database Server with thin client JDBC driver

Oracle Server

Oracle Thin JDBC Driver

(See the Release Notes for information on the version
of the Database Server, JDBC driver, and Operating
System supported by the current release.)

Management services Java Servlet Development Kit (JSDK) 2.0, available at
http://java.sun.com/products/servlet

WebAccess solution Java Servlet Development Kit (JSDK) 2.0

Apache web server

PrintServer sample Swing classes (bundled with JDK1.2)
30 Developer Release 3.01, June 2000

Installing and Configuring Linux Installation
To install e-speak as the root user

1 Download the es_x0301.rpm file.

2 Log in as the root user.

3 Locate the es_x0301.rpm file.

4 Use rpm to install the software. By default, e-speak is installed under the /usr/
local directory; however, you can specify a different directory with this
command:

rpm -i --relocate /usr/local=<installDir> es_x0301.rpm

To install e-speak as a normal user

1 Download the es_x0301.rpm file.

2 Log in as the root user.

3 Locate the es_x0301.rpm file.

4 Use rpm to install the software. By default, e-speak is installed under the /usr/
local directory; however, you can specify a different directory with this
command:

rpm --initdb --dbpath /tmp

rpm --relocate /usr/local=<installDir> --dbpath /tmp es_x0301.rpm

To un-install e-speak

1 Login as the root user.

2 Query all the installed packages using this command:

rpm -qa

3 Select the package you want to un-install.

4 Use the following rpm command to uninstall e-speak.

rpm -e <e-speak package name>
Developer Release 3.01, June 2000 31

Linux Installation Installing and Configuring
5 Check for any e-speak directories or files which did not get deleted and remove
them manually.

Configuring e-speak for Linux B

After installation, follow the instructions in this section to configure the e-speak
environment. This is necessary to run the e-speak Core and services and to build
and run the sample applications included with this release.

E-speak Environment Variables
Find and make a note of the pathnames for these variables, which you use to config-
ure your e-speak installation:

Setting the Environment Variables

You set the above mentioned environment variables permanently in your
.profile (or .cshrc if you use the C shell) file. Although there are slight differ-
ences in command styles between shells, the basic commands for the Bourne/K
shell are:

export JRE=<actual path>/java
export JAVAC=<actual path>/javac
export CLASSPATH=<actual path>/swingall.jar:<actual path>/jsdk.jar
export ESPEAK_HOME=<installDir>

Variable Pathname Description

JRE Points to the Java runtime environment. This pathname
should point to the executable file named java. Do not point
this to the jre file (Sun JDK installations only).

CLASSPATH Points to your classes. (e.g. swingall.jar and jsdk.jar)

JAVAC Points to the Java compiler (for compilation only).

ESPEAK_HOME Points to the e-speak installation directory.

LD_LIBRARY_PATH Should contain <installDir>/lib.
32 Developer Release 3.01, June 2000

Installing and Configuring Linux Installation
E-speak Runtime Variables
A lot of e-speak’s runtime behavior can be configured using the espeak.cfg file.
Aspects that can be configured through this file include web proxy configurations,
core performance tuning parameters, and security.

This section explains some major parameters of web proxy and core connections.
Security configurations are documented in “Security” on page 48 and in Chapter 6,
“Using Security in E-speak”.

Web-Proxy Configuration

If you need engine-engine connection through a web-proxy for firewall traversal
purpose. The following information should be included in the espeak.cfg configura-
tion file:

• net.espeak.infra.core.connector.webproxyname=proxyhost.yourdo-
main.com

This parameter is a single value being the fully qualified hostname of the http-
proxy used to pierce a firewall.

• net.espeak.infra.core.connector.webproxyport=8088

This parameter is the port on which the proxy listens.

• net.espeak.infra.core.connector.noproxydomain=yourdomain.com

This parameter is the domain for the direct connection that should be made.
Currently, only one entry is supported. Syntax is the end of the domain that
should be matched, such as hp.com. The ’*’ wildcard is not supported.

Core Connection Polling Configuration

The connectivity of the engine is improved significantly using the new JNI-based
polling mechanism. Precompiled shared libraries are distributed for Windows NT
4.0, Redhat Linux 6.1+, and HP-UX 11.0. A pure Java reference implementation is
also available for other platforms.

Configuration parameters for the Polling mechanism can be added to
espeak.cfg. The parameters are listed below with their default values:

• net.espeak.infra.core.thread.WorkerThreadFactory.min=10
Developer Release 3.01, June 2000 33

Linux Installation Installing and Configuring
This parameter is the minimum number of threads that must be available for
message processing at all times. The default setting is 10.

• net.espeak.infra.core.thread.WorkerThreadFactory.max=500

This parameter is the maximum number of threads that will be available for
message processing. The default setting is 500.

• net.espeak.infra.core.thread.WorkerThreadFactory.time-
out=2000

This parameter is how long a thread must be idle before it is removed from the
thread pool and killed, provided there are more than the minimum number of
threads in existence at the time. The default setting is 2000 milliseconds.

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.useNativeSelect=true

This parameter indicates whether the JNI polling library should be used instead
of the pure Java version of the polling library. The default setting is true. (Set this
to false to NOT use JNI.)

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.numDedicated=32

This parameter indicates the number of connections which will be serviced by
dedicated threads. For these connections, polling is not performed, and a dedi-
cated thread continuously processes messages. The default setting is 32.

• net.espeak.infra.core.comm.poll.ConnectionsQueueMan-
ager.maxConnections=200

This parameter indicates the maximum number of connections that the core can
handle at any given time. The default setting is 200.
34 Developer Release 3.01, June 2000

Installing and Configuring Linux Installation
Starting Basic Services B

You can quickly test that e-speak is installed correctly and that the basic environ-
ment is set up with the espeak utility. This utility starts the e-speak Core and the
basic services. If you need help with the espeak utility, type espeak -h to view
the espeak utility help page.

1 Change to the <installDir>/bin directory.

2 Enter ./espeak to start the Core and basic services.

You see output similar to this:

**

* Running: Core CoreDistributor ServiceDistributor

AdvertisingService ManagementDistributor

**

ES Core starting with an In-Memory Repository.

coreId = "6bf5c260ca031e38246bdf23e2f9eded"

Starting ES Core Server with Rendezvous of "TCP:12346". Started.

Connection Object: mapped localhost to 15.81.93.137

-- WARNING: Serializing class

com.hp.es.intercorecom.confactory.co.ConnectionObject with slow,

Java-dependent Java serialization

Created the BaseDistributorVocabulary vocabulary

Advertising service not running

Started Core distributor

switching to no-backend version...

advertising service is ready

Warning: Pls check LDAP configuration if you intended to use LDAP.

Switching to non-LDAP mode now

3 Press Ctrl+C in the same command shell to stop these services.

CAUTION: Make sure that all JVMs terminate, because if some JVMs continue
running, the TCP ports remain occupied.
Developer Release 3.01, June 2000 35

Linux Installation Installing and Configuring
36 Developer Release 3.01, June 2000

Chapter 3 Expanding E-speak
Functionality
E-speak has many advanced features that must be configured separately from the
main installation of the Core and Standard Services. These features include:

• WebAccess — activates e-speak over the Internet

• Security — establishes a secure communication environment

• System Deployment Console — monitors and controls system activity

• SysLoader — controls the services and classes to be loaded

• Integrated Development Environments — allows the establishment of complex
e-speak environments

This chapter helps you learn about how these features work and how to install and
configure the necessary components to use these features in an e-speak develop-
ment environment.

WebAccess C

E-speak WebAccess allows users to interact with the e-speak Core and services
through a standard web-based document exchange model. WebAccess internally
uses XML and also provides an interface for XML-enabled applications. It currently
provides XML mappings for the whole set of e-speak’s Core functionality and a
subset of the Core functionality for browser access. Interaction between the
browser, XML clients, and WebAccess is based on HTTP protocol.
Developer Release 3.01, June 2000 37

WebAccess Expanding E-speak Functionality
Restrictions on Implementation C

Some restrictions apply for the current implementation. WebAccess services are
currently required to be installed as servlets. It is tested with Apache1.3.12 / Jserv1.1
only. Only a single e-speak Core is currently supported.

This section explains the installation and setup of Apache/Jserv.

WebAccess Features C

The e-speak WebAccess interface supports all the critical features of e-speak using
a document-based interface:

• Service Registration

• Vocabulary Definition

• Service Invocation (synchronous interactions only)

• Client Login Session handling

• Service URL lookup (HTTP post)

Installation C

The e-speak WebAccess interface runs as a servlet within a Java enabled web
server. The following packages are needed to run WebAccess:

• E-speak Core (comes with the release)

• Apache Web server (to be installed separately, available from http://
www.apache.org/dist/binaries/win32) version 1.3.12

• Apache/JServ servlet extension for Apache (available also from http://
java.apache.org/jserv/dist) version 1.1

• JSDK20, Java Servlet Developer’s Kit (available from http://www.sun.com)

• Xerces XML parser (comes with the release)

• Webmacro template package (comes with the release)
38 Developer Release 3.01, June 2000

Expanding E-speak Functionality WebAccess
• JavaCC package (comes with the release)

NOTE: In the following sections, <installDir> is the e-speak installation directory,
<APACHE> is the Apache installation directory, <JSERV> is the Apache JServ
installation directory, <JDK> is the installation directory of your JDK, <JSDK>
is the Java Servlet Development Kit installation directory, and <JAVACC> is the
directory for Java Compiler Compiler software.

Installing Apache Web Server on NT

1 Download apache_1_3_12_win32.exe from www.apache.org and follow
the installation procedure to install Apache.

2 Edit the <Apache>/conf/httpd.conf file to change the DocumentRoot
and Directory values as follows:

DocumentRoot “<installDir>/config/htdocs”

...

<Directory “<installDir>/config/htdocs”>

...

Order allow,deny

Allow from all

</Directory>

You may also need to specify the ServerName if you are running on NT or are using
a server cluster. For more information, see the Apache server documentation.

NOTE: Examples of configuration files for Apache and JServ are in
<installDir>/config/htdocs.

Installing Apache JServ on NT

1 Download ApacheJServ-1.1.exe from http://java.apache.org and follow the
installation procedure to set up JServ.

2 During setup, JServ prompts for the locations of the following components:

• your JDK

• your Apache and its httpd.conf file
Developer Release 3.01, June 2000 39

WebAccess Expanding E-speak Functionality
• your JSDK

3 Select yes when JServ installation prompts for changing Apache’s
httpd.conf file.

4 Check the Apache httpd.conf file to ensure that the line for Apache JServ
configuration is present. If not, enter it manually or correct it, if necessary:

Include “<JSERV>/conf/jserv.conf”

5 After installation, the following JServ configuration files need to be adapted in
order to work with WebAccess:

• <JSERV>/conf with jserv.properties

• <JSERV>/servlets with zone.properties

• <JSERV>/conf with jserv.conf if you want to enable logging

6 Use the procedures below to make the required changes to the two configura-
tion files.

Changes in jserv.properties

1 Locate the following sections in the jserv.properties file and ensure that
the paths are valid:

The Java Virtual Machine interpreter.

wrapper.bin=<jdk>/118/bin/java.exe

CLASSPATH environment value passed to the JVM

wrapper.classpath=<JSERV>/ApacheJServ.jar

wrapper.classpath=<JSDK>/lib/jsdk.jar

2 Add following lines at appropriate places, for path and classpath:

PATH environment value passed to the JVM {ONLY FOR NT}

wrapper.path=<installDir>/lib

Additional CLASSPATH to be added

wrapper.classpath=<installDir>/lib

wrapper.classpath=<installDir>/lib/esclient.jar
40 Developer Release 3.01, June 2000

Expanding E-speak Functionality WebAccess
wrapper.classpath=<installDir>/lib/escore.jar

wrapper.classpath=<installDir>/extern/webmacro/webmacro.jar

wrapper.classpath=<installDir>/extern/webmacro

wrapper.classpath=<installDir>/extern/parser/xerces.jar

wrapper.classpath=<installDir>/extern/cryptix/cryptix.jar

wrapper.classpath=<installDir>/extern/cryptix

wrapper.classpath=<installDir>/extern/ldap/ldapjdk.jar

wrapper.classpath=<installDir>/extern/oracle-lib/

classes111.zip

wrapper.classpath=<JAVACC>/javacc.zip

Changes in zone.properties

1 Locate the zone.properties file under your <JSERV>/servlets directory.

2 Add the following lines at appropriate places in the file:

Startup Servlets

servlets.startup=net.espeak.webaccess.WebAccess

Servlet Aliases

servlet.WebAccess.code=net.espeak.webaccess.WebAccess

servlet.IsItWorking.code=net.espeak.webaccess.htdocs.servlets.IsIt

Working

servlet.BookBroker.code=net.espeak.webaccess.htdocs.servlets.BookB

roker

servlet.ProxyFatBrain.code=net.espeak.webaccess.htdocs.servlets.Pr

oxyFatBrain

servlet.ProxyBarnes.code=net.espeak.webaccess.htdocs.servlets.Prox

yBarnes

servlet.ProxyAmazon.code=net.espeak.webaccess.htdocs.servlets.Prox

yAmazon

servlet.Forms.code=net.espeak.webaccess.htdocs.servlets.Forms

servlet.Login.code=net.espeak.webaccess.htdocs.servlets.Login
Developer Release 3.01, June 2000 41

WebAccess Expanding E-speak Functionality
When Apache is started, the servlets are accessible at http://<your-machine>/serv-
lets/WebAccess and the BookBroker example is accessible as http://<your-
machine>/index.html

Changes in Webmacro.properties

1 Locate the <installDir>/extern/webmacro/Webmacro.properties
file.

2 Change the TemplatePath to point to <installDir>/config/htdocs/
templates. The template files are used for internally generating XML
messages and for templating HTML pages.

Changes in WebAccess.xml

1 Locate the <installDir>/extern/webmacro/webaccess.xml configu-
ration file. This file contains all of the settings used by service developers and
deployers to set the password, expiration time, hostname, web proxy name,
and database connection information. It can also be used to enable or disable
the persistent message queue and debugging.

2 Find the <TokenManager> element. Inside this is a <TokenPassword>
element, which is a key used to encrypt the session tokens given to clients.

3 Change the <TokenPassword> as needed. Each site should have a unique
<TokenPassword> to ensure security.

4 Find the <ExpireIntervalSecs> element and change if necessary. This
element sets the expiration interval for each token, and the default setting is
14400 seconds.

5 Update the information for JDBCConnection in the configuration file (two
places):

• Name of the host running the Oracle database

• Login name and password

6 Find the <webServerInfo> element and change the hostname element to
your actual hostname.
42 Developer Release 3.01, June 2000

Expanding E-speak Functionality WebAccess
7 Find the <webProxyInfo> element and change the hostname element to
your actual proxy.

Unix and Linux Platforms
For HP-UX platforms, the shell environment needs to be set up as below:

SHLID_PATH=<installDir>/lib

For Linux platforms, the shell environment nees to be set up as below:

LD_LIBRARY_PATH=<installDir>/lib

Debug Logging
Since Apache servlets do not report messages to the screen, debug messages gener-
ated from servlets must be obtained from log files; for example:

tail -f <JSERV>/logs/jserv.log

tail -f <APACHE>/logs/access.log

Setting the debug option for the servlet allows you to trace requests as they go
through the WebAccess servlet. This setting is made in the zone.properties
file, and the logging level should be lowered to ‘info’ in the jserv.properties
file.

To set the debug option

1 Add the following line for the Servlet Init Parameters to the zone.proper-
ties file:

servlet.net.espeak.webaccess.WebAccess.initArgs=debug=1

2 Make the following changes to the jserv.properties file:

log.channel=true

log.channel.info=true

log.channel.debug=true

3 Make the following changes to the jserv.conf file:

ApJServLogLevel info
Developer Release 3.01, June 2000 43

WebAccess Expanding E-speak Functionality
Testing Web Access Configuration C

Now that you’ve installed all the components and done the configuration work, you
can test the WebAccess infrastructure.

Testing WebAccess Configuration
The sequence of commands in this section illustrate how to test on NT. For Linux
and HP-UX platforms, use ‘/’ in place of ‘\’. Make sure no JVMs are running before
starting this procedure.

1 Start the Core with the following commands:

CD to <installDir>\bin

.\espeak

2 Start the Apache server from the <installDir>\config directory. For
example, here is one set of commands for starting the Apache server:

CD to <installDir>\config

<APACHE>\Apache -d “<APACHE>” -s

NOTE: On HP-UX and Linux platforms, the Apache executable is called ‘httpd’.
You need double quotes only if your <APACHE> has blanks in it. On NT, if you
use a shortcut icon, modify the Start In box of the shortcut properties to
<installDir>\config.

Another way to start Apache server is to copy the following files from
<installDir>/config directory to <APACHE> directory: espeak.cfg,
securestore.txt, clientcerts.adr and servicecerts.adr. You can then
start Apache the normal way.

3 Launch a web browser, such as Netscape or Internet Explorer.

4 Point the browser at this URL: http://localhost
Depending on your configuration, you may need to use your actual hostname
instead of localhost if the Login screen does not come up.
44 Developer Release 3.01, June 2000

Expanding E-speak Functionality WebAccess
5 The browser window comes up with the Login Form, which looks like this:

6 If you do not see this screen, make sure that:

• Your servlet installation is working properly (even without e-speak)

• Your Apache server is running properly

• Your Apache server is focused on the WebAccess htdocs directory.

7 Click the Login link on the Login Form. Another form appears, which requires
username and password. Enter esadmin for both the username and password,
Developer Release 3.01, June 2000 45

WebAccess Expanding E-speak Functionality
then click the Login button. If the login is successful, you see a screen that looks
like this:

8 From this screen, you can register and locate vocabularies and services, and
you can register users. At this point, you have a fully functional e-speak WebAc-
cess system ready for development of web-accessible services.

For more information, including the Book Broker example, see the E-speak WebAc-

cess Programmers Guide. For using the BookBroker example, you need to ensure
that the Classpath environment variable includes the following for running the
BookBroker class that registers the vocabularies and services:

CLASSPATH=.;%ESPEAK_HOME%\lib\esclient.jar;%ESPEAK_HOME%\lib\escor

e.jar;%ESPEAK_HOME%\extern\parser\xerces.jar;%ESPEAK_HOME%\extern\

webmacro\webmacro.jar;%ESPEAK_HOME%\extern\ldap\ldapjdk.jar;%ESPEA

K_HOME%\extern\oracle-lib\classes111.zip;<actual path>\jsdk.jar

NOTE: On Linux and HP-UX platforms, the classpath looks as below:
46 Developer Release 3.01, June 2000

Expanding E-speak Functionality WebAccess
CLASSPATH=.:$ESPEAK_HOME/lib/ esclient.jar:$ESPEAK_HOME/lib/

escore.jar:$ESPEAK_HOME/extern/parser/xerces.jar:$ESPEAK_HOME/

extern/webmacro/webmacro.jar:$ESPEAK_HOME/extern/ldap/

ldapjdk.jar:$ESPEAK_HOME/extern/oracle-lib/classes111.zip:<actual

path>/jsdk.jar

Troubleshooting WebAccess C

• Ensure that the configuration files do not have any typos or case differences.

• Before you start the Core, ensure that no JVMs are running. If so, kill all JVMs.

• Look at the logs under <APACHE> and <JSERV>.

<APACHE>/logs/access.log

<APACHE>/logs/error.log

<JSERV>/logs/jserv.log

<JSERV>/logs/mod_jserv.log

• Most problems in using WebAccess are related to faulty configurations in
webaccess.xml. Make sure you have read the installation and configuration
notes on this file.

• Make sure your webaccess.xml file is in a directory on your CLASSPATH.

• Make sure site-specific plugins implement the right interfaces and have default
public constructors.

• Make sure the web server is set up to find the webaccess directory.

• Make sure the webmacro.properties file has been changed to refer to the
location of the webaccess\htdocs directory.

• Make sure your proxy server is configured correctly so that the java.net.URL
class can connect to your service.

• Make sure to configure the database connection information for the persistent
message manager in webaccess.xml.

• Make sure the web server is started in the <installDir>\config directory.
This directory contains an espeak.cfg file, which must be read by WebAccess
to set up security.
Developer Release 3.01, June 2000 47

Security Expanding E-speak Functionality
• If you are on HP-UX or Linux platforms, make sure that <installDir>/lib is
included in your shared library path (SHLIB_PATH for HP-UX and
LD_LIBRARY_PATH for Linux).

Security C

E-speak security centers around access control to certain services and resources
based on a certificate system. When a client machine requests a service, the autho-
rization engine within e-speak’s security service looks for a valid certificate on the
client-side for authorization. Clients with valid certificates are “trusted.”

E-speak also uses cryptographic technology to prevent unauthorized access of
messages along the client-server connection. Messages are encrypted and authenti-
cated to prevent interception and/or alterations. This means that a copy of a
message cannot be captured and used again at a later date because the attempt is
ignored.

E-speak security uses the following components:

• Private Secure Environment

• Certificates

This section describes the security components, how to configure them, and gives
a sample security configuration file. For more detailed information, see Chapter 6,
“Using Security in E-speak”.

Private Secure Environments
E-speak establishes a Private Secure Environment (PSE) containing passphrase
protected public-private key pairs. Both clients and servers have public-private key
pairs. They authenticate by using a cryptographic protocol to prove they are in
possession of the private key corresponding to their public key. No entity must ever
share its private key.

The PSE is loaded into the client or server along with any certificates that have been
issued to the client or server. The PSE and certificates are contained in separate
files.
48 Developer Release 3.01, June 2000

Expanding E-speak Functionality Security
Certificates
Access rights are controlled by certificates, which are authenticated by the Security
Engine. Both client and server may have certificates.

Configuring E-speak Security Services C

The default configuration file is espeak.cfg. This is looked for in the <installDir>/
config directory, current directory, and the user’s home directory

The properties supported by the security code are as follows:

1 Master flag controlling security:

net.espeak.security.activate, boolean

Default value is off. This property is set to true in espeak.cfg file and thus
security is activated.

2 Property controlling whether secure sessions are established with newly
encountered resources:

net.espeak.security.connectOnContact

Default value is off. When it is off, sessions are not established unless required
(by SessionRequiredException) or created explicitly.

3 PSE mode:

net.espeak.security.pse.mode

Possible values are gui, passphrase, and passfile. Default value is gui.

If the mode is gui, a dialog is used to get the PSE passphrase.

If the mode is passphrase, the property net.espeak.secu-
rity.pse.passphrase is used to get the passphrase (default null).
Developer Release 3.01, June 2000 49

Security Expanding E-speak Functionality
If the mode is passfile, the property net.espeak.secu-
rity.pse.passfile (default passfile.txt) is used to get the name of
a file which must contain a net.espeak.security.pse.passphrase
property defining the passphrase.

4 PSE key file:

net.espeak.security.pse.storefile

Default value is securestore.txt. This defines the name of the file contain-
ing public-private key pairs.

5 PSE role:

net.espeak.security.pse.role

Default value is client. This defines the default role (symbolic PSE key name).

6 Certificate file suffix:

net.espeak.security.pse.certfile

Default value is certs.adr. The value of this property is appended to the role
name to get the name of the certificate file to load. If the role is client, the
certificate file is clientcerts.adr, for example.

7 ACL file suffix:

net.espeak.security.pse.aclfile

Default value is acl.adr. The value of this property is appended to the role
name to get the name of the ACL file (trust assumptions) to load. If the role is
client, the ACL file is clientacl.adr, for example.

8 Cipher suites:

net.espeak.security.cipherSuites

The value is a list of cipher suites in ADR syntax. The default is to use hmac,
sha-1, and 128-bit blowfish.
50 Developer Release 3.01, June 2000

Expanding E-speak Functionality System Deployment Console
Sample Security Configuration File
!===
! E-speak security properties file.
!==
net.espeak.security.activate=on
user.name="John Doe"

! Example time value.
foo.timeout = 12h 3m .0001s
! Set a property prefix.
@prefix=net.espeak.security
! Gui mode runs a dialog for the passphrase.
!.pse.mode=gui
! Passphrase mode looks for the passphrase property.
.pse.mode = passphrase
! Passfile mode looks for a file containing the passphrase
property.
!.pse.mode = passfile
! Define the passphrase.
.pse.passphrase = default passphrase
! Define the default role (PSE key name).
!.pse.role = foo

More Information C

For more a more detailed description of security in e-speak, see Chapter 6.

System Deployment Console C

The e-speak System Deployment Console is a remote management tool imple-
mented in e-speak. It has been designed for the distributed management of both e-
speak and native (non-e-speak) processes as well as services. It works with the
Management Services described in Chapter 4.
Developer Release 3.01, June 2000 51

System Deployment Console Expanding E-speak Functionality
The purpose of the System Deployment Console is to:

• Help service operators to configure and deploy services remotely.

• Provide remote management at task (process) level.

• Help people to debug and test their services remotely.

• Allow easy and intuitive access to web-based management.

The architecture of the Console is based on the Common Information Model (CIM)
for system management and features many extensions specific to e-speak. The
Console uses a locally stored database, essentially a table of managed elements
representing, and interacting with real processes and services.

The Console has a built-in model for e-speak systems. It includes task-level manage-
ment models for e-speak enabled hosts, cores, clients and services. Such a model
forms the basis of the Console’s inner-workings. This model can be extended and
even replaced to allow custom system management. Normally, the users of the
Console are not aware of the existence of the model.

Starting the Deployment Console C

The Console itself is an e-speak client. Like all e-speak clients, it must be connected
to a local e-speak Core to start.

1 To start the Deployment Console, use this command (after setting CLASSPATH
to e-speak required .jar files):

<JVM> net.espeak.services.management.configman.ui.Console
<12346>

2 The Console is not ready until the local Core connection has been established
or timed out.

Working with the Deployment Console C

For instructions on how to use the Deployment Console, see the System Deploy-

ment Console User Manual, available on the e-speak website.
52 Developer Release 3.01, June 2000

Expanding E-speak Functionality Configuration for Persistence
Configuration for Persistence C

The current release only supports Oracle Database Server with thin client JDBC
driver. The Release Notes provide information on the version of the Database
Server, JDBC driver, and Operating System supported by the current release.

Before starting e-speak in a persistence mode

1 Install Oracle Server on a server. Follow the typical installation as documented
in the Oracle installation documentation.

2 Install Oracle’s Thin JDBC driver on each of the clients that need to run the e-
speak Core.

3 Ensure that you are able to make a connection to the Oracle Server from the
JDBC driver on the Client.

4 Make sure that Oracle Listener and Server are running on the Database Server.

5 Modify the repository.ini file (available in the <installDir>\config
directory) with the following changes:

• In the section [Repository Params], comment out
Store Type=INMEMORY and uncomment Store Type=JDBC

• In the section [JDBCGlue], make the following modification to the
connectionString: 1.) Make HOST equal to the IP of the server where
Oracle Database Server is running. 2.) The default PORT value should be
1521. Change it as needed if the Oracle server is listening on a different port.

6 Create User(s) in the Database.

Metadata in E-speak
E-speak creates all the metadata it requires. All data and some metadata within e-
speak is partitioned based on the Core. Resources registered by a Core can be
discovered or unregistered only by that Core. Other Cores do not have any access
to these resources.
Developer Release 3.01, June 2000 53

Configuration for Persistence Expanding E-speak Functionality
Removing and Replacing Repository Data and Metadata
A RepositoryReset utility is available to entirely remove all e-speak repository data
and the metadata from the persistent repository. You can use this utility to remove
an old version of the repository from previous releases of e-speak which are not
compatible with the current release. You can then create a new repository by doing
a cold start with the ’-r’ option as described below.

To run the RepositoryReset utility

1 Enter the following command:

<jvm> net.espeak.infra.core.repository.RepositoryReset -u ben1
-pswd ben1

2 The following text appears:

 Preparing to reset Repository!

 All E-speak data associated with user ben1 will be removed.

 Continue? (Y/N)

3 Press y to continue. The following text appears, showing the procedure is
complete:

 ES Core starting with a JDBC-based Repository for user ben1.

 JDBC-based Repository is doing RESET of Database!

 Repository successfully removed.

NOTE: You can specify the -f option to prevent the interactive confirmation.

Restarting E-speak
You can restart e-speak two ways: cold start with the -r option or warm start.

Cold Start -r Option

When starting the Core for the first time, use the -r option. You can also use this
option to clean up all resources for a Core. The -r option does the following tasks:

• Deletes all data pertaining to the Core

• Creates the metadata needed for e-speak
54 Developer Release 3.01, June 2000

Expanding E-speak Functionality Configuration for Persistence
• Initializes to 0 the Unique ID for Resources

• Loads onto the database all the initial core managed resources and boot
resources

Warm Start

Make sure to perform a Cold Start at least once before doing a Warm Start.

Specifying repository parameters
The repository.ini file controls various cache and repository parameters. You
can specify your own repository.ini file using the -repository option to the
Core. By default, a repository.ini file is searched for in the current directory.
There are three caches in the e-speak implementation—the resource description
cache, the resource specification cache, and the resource state cache.

A repository.ini file is available in <installDir>\config directory. Here
is a sample repository.ini file:

[Cache Params]

Description Cache Size=262144

Specification Cache Size=262144

State Cache Size=262144

The minimum size for any of these caches is 1024. If you specify a smaller cache
size, 1024 is used instead. If you specify a larger size, your setting is used. You can
select a particular kind of repository by commenting out the other kinds of reposi-
tory adapters. In the following example, the e-speak core starts with a JDBC-based
persistent repository:

[Repository Kind]

;adapterType=INMEMORY

adapterType=JDBC

A JDBC-based reference implementation on top of an Oracle database is provided
with this release. Database vendor-specific information is captured in the JDBC-
Glue clause in the repository.ini file. For example, the name of the driver is
different if an Informix database is deployed.
Developer Release 3.01, June 2000 55

Configuring Integrated Development Environments Expanding E-speak Functionality
The JDBC driver uses the connection string to talk to the back end database. It has
several components. For example, it identifies that a thin Oracle driver is used. The
advantage of a thin driver is that the actual database server can be on a Unix or an
NT machine and the Core can interoperate with no problems.

The HOST and PORT strings identify the actual machine name that runs the data-
base. Database vendor-specific error codes are encoded for portability. In the
following example, the error code 955 is valid for Oracle to capture the pre-exist-
ence of a table. Similarly, noTbl denotes the error code for a missing table and
dupRec shows the error code for an attempt to add a duplicate entry to a table.

[JDBCGlue]

driverName=oracle.jdbc.driver.OracleDriver

connectionString=jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS =

(PROTOCOL = TCP)(HOST = <hostname>)(PORT = 1521))(CONNECT_DATA =

(SID =ORCL)))

tblExists=955

noTbl=942

dupRec=1

dbFull=1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1658, 1659

Configuring Integrated Development Environments C

Integrated development environments (IDEs) allow you to run, compile, and debug
applications in a user-friendly environment. This section explains how to start the
e-speak Core and other components within an IDE.

This section focuses on Microsoft’s Visual J++ environment. Syntax and procedures
may vary for other IDEs. Refer to their help documents as needed.

To configure Microsoft Visual J++

1 Set the classpath to contain e-speak-related classes.

a Click <Project> Properties on the Project menu, where <Project> is the
name of your Microsoft Project.
56 Developer Release 3.01, June 2000

Expanding E-speak Functionality Configuring Integrated Development Environments
b In the Classpath tab, add the necessary e-speak–specific jar files:

2 Start the e-speak Core and services and load the default.ini file using the
SysLoader utility.

NOTE: SysLoader is available in the escore.jar file, and default.ini is
available in the <installDir>/config directory.

a Click <Project> Properties on the Project menu, where <Project> is the
name of your Microsoft project.

<installDir>\lib\escore.jar E-speak Core

<installDir>\lib\esclient.jar E-speak Standard Services
and APIs

<installDir>\contrib\lib Needed if Contributed tools
like Core Browser, perfor-
mance monitor, etc. are used

<installDir>
\extern\ldap\ldapjdk.jar

Needed if Advertising Service
uses external LDAP server

<installDir>
\extern\parser\xerces.jar

Needed when using e-speak’s
XML API

<installDir>
\oraclelib\classes111.zip

Needed if e-speak’s Core is
started in persistence mode,
using Oracle Database as a
back-end
Developer Release 3.01, June 2000 57

Configuring Integrated Development Environments Expanding E-speak Functionality
b In the Launch tab, click the Custom radio button and enter the following
values for the Program and Arguments settings:

3 Start the Core and other default services mentioned in default.ini by
choosing Start Without Debugging from the Debug menu.

The Core and other services are started in a separate console window.

4 Press Ctrl+C in the command shell to stop the Core and services.

Program JView.exe

Arguments /p /cp:p ”<JAVAPACKAGES>”
/d:espeak_home=<installDir>
/d:espeak_port=12346
/d:espeak_group=”<your_group_name>”
net.espeak.util.SysLoader
“<installDir>\config\default.ini”
58 Developer Release 3.01, June 2000

Chapter 4 Running E-speak Standard
Services
E-speak includes three standard services, which are supported tools that will be
maintained in future releases. These services are simple to use and serve as an aid
to learning more about e-speak. The standard services are bundled into the
<installDir>\lib\esclient.jar file.

This chapter describes the following standard services, giving instructions on how
to run them:

• Event Distribution Service—Used to notify different subscribers (applications
interested in receiving events) of significant events.

• Advertising Service—Used to locate and import services that are not present in
a local logical machine.

• Management Services—A suite of services used to manage an e-speak applica-
tion. The E-speak System Management User Guide provides detailed informa-
tion on the four management services and how to use the Programming
Interface to make an e-speak component manageable.

NOTE: The examples in this section use the NT notation for path names. On Unix
platforms, use forward slashes (/) instead of back slashes (\).
Developer Release 3.01, June 2000 59

Event Distribution Service Running E-speak Standard Services
Event Distribution Service D

Client applications that need to subscribe to and receive notifications of events
generated by event publishers use the e-speak event distribution service. This
service uses a publish-subscribe model. There are potentially four entities in this
model:

• Distributor—The entity that receives notifications from event publishers and
manages subscriptions to events. A standard distributor is included in this e-
speak release.

• Publisher—The originator of events. Publishers come in one of two classes—
external services and the Core.

• Subscriber—Subscribes to various event types handled by the distributor.
Subscribers specify filters to allow distributors to reduce the number of events
forwarded to clients.

• Listener—In most cases, a subscriber to an event is also the listener. However,
in some situations a Subscriber could register interest in an event on behalf of a
different Client that implements a Listener interface.

Core-Generated Events D

All events for resources are disabled by default. But, services registering resources
with the Core can enable event generation on a resource-by-resource basis. The
Core assumes the presence of a Core distributor and ships these events to it.
Subscribers to these events include the Core proxies and any external clients.

Both external and Core distributors support the same interface. Event types are
expressed as dot-delimited strings. Simple prefix matching of the event type string
is supported.

Currently, only the contributed VFS application turns on event generation for the
resources it uses.

A subscriber to a Core-generated event would simply become a subscriber to the
Core and express interest in events of a specific type for an e-speak Resource Loca-
tor (ESRL) Core-generated event.
60 Developer Release 3.01, June 2000

Running E-speak Standard Services Advertising Service
Running the Core Event Distributor D

The standard event distributor is started by default in the
<installDir>\config\default.ini file distributed with e-speak. The rele-
vant lines of the file are:

[CoreDistributor]

Class=net.espeak.jesi.event.coredist.ESCoreDistributor

Args=CORE_PORT=%espeak_port%

WaitFor=Core Ready

You can replace this distributor with another customized distributor of your own
creation if needed. The distributor can also be run stand-alone by invoking the
scripts.

To run the Distributor stand-alone

1 Enter <installDir>\bin\espeak core p=TCP:12346 to start a Core.

2 In another window, enter <installDir>\bin\espeak cd
CORE_PORT=12346 to start the Core event distributor.

Building Event Listeners, Event Subscribers, and Event Generators D

The API documentation for the event service is located in
<installDir>\doc\html\index.html.

To build new applications using this API, add
<installDir>\lib\esclient.jar to your CLASSPATH.

Advertising Service D

The advertising service is used to locate and import services that are not present on
a local machine. The advertising service makes connections to other advertising
services if necessary, imports services that satisfy clients’ requirements, and
returns the services to the client.
Developer Release 3.01, June 2000 61

Advertising Service Running E-speak Standard Services
LDAP Server D

An advertising service may run in one of two modes:

• Offline with an external lookup directory

• Online without an external lookup directory.

Any lookup directory may be used to implement the offline mode. The advertising
service in this release uses a Lightweight Directory Access Protocol (LDAP) server
as its external lookup directory. For more information about LDAP, see the LDAP
World website at this URL:
http://www.critical-angle.com/ldapworld/index.html

Installing a Directory Server
Follow these steps to download and configure a directory server to use with the
advertising service:

1 Obtain a directory server program. A 60-day trial version can be downloaded
from Netscape at:
http://www.iplanet.com/downloads/testdrive/
detail_8_7.html

2 Get the documentation you need, such as an installation guide, to properly
install the directory server. If you download the directory server from Netscape
as mentioned above, you can find documentation at these locations:

• http://developer.netscape.com/docs/manuals/index.html

• http://home.netscape.com/eng/server/directory/4.0

3 Make a note of the following values as they pertain to your installation. You
need this information to complete the configuration process:

• Directory suffix

• Directory Manager DN
62 Developer Release 3.01, June 2000

Running E-speak Standard Services Advertising Service
• Directory Manager password

NOTE: The installation process asks for a large amount of configuration data. You
can use most of the default values, except for the values noted above.

4 After you install the LDAP server on NT, you need to reboot the system to start
the directory server. Check the instructions as appropriate for Unix platforms.

5 Create a schema to store information about the connection object. Creation of
object classes and attributes is described in Chapter 3 of the Netscape Direc-

tory Server: Administrator’s Guide.

To create an attribute for Connection Objects

1 On the Directory Server Console, select Configuration tab -> Database
icon -> Schema folder -> Attributes tab.

2 In the Attribute dialog box, click Create.

3 Enter cobj in the Attribute Name text box.

4 Select binary for its syntax.

5 Click OK.

To create an object class

1 On the Directory Server Console, select Configuration tab -> Database
icon -> Schema folder.

2 Click Create, then enter the name ESCore in the Name text box.

3 Add attributes cn, cobj, and objectclass to the object class.

4 Click OK.
Developer Release 3.01, June 2000 63

Advertising Service Running E-speak Standard Services
How to Download the LDAP JDK D

An LDAP JDK provides a set of APIs to access an LDAP directory server. A free
implementation of LDAP JDK can be downloaded from Netscape. The latest version
is Netscape Directory SDK 3.1 for Java and can be obtained at:
http://developer.netscape.com/tech/directory/index.html

Configuring the Advertising Service D

Configuring the advertising service involves editing the LDAPDirAgent.java file,
inserting information you noted during the LDAP server installation process, and
recompiling the package as follows:

1 Open this file:

<installDir>\src\services\advertise\agents\LDAPDirAgent.java

2 Assign the values you defined while installing the LDAP server to the following
items:

• OSO_DN = <Directory Manager DN>

• OSO_PASSWD = <Directory Manager password>

• SEARCH_BASE = <Directory Suffix>

NOTE: If you do not want to rebuild the system, you can pass these parameters
as command line arguments. See “Automatic Connection without a Backend
LDAP Directory” on page 70 for more information.
64 Developer Release 3.01, June 2000

Running E-speak Standard Services Advertising Service
How to Advertise Services D

Services can be advertised locally within an enterprise, across the Internet, or in a
local domain. This is described in detail in the following sections.

Advertising a service across the Internet
Service providers can advertise their services throughout the world using the HP-
hosted global service directory by selecting default values when starting the adver-
tising service.

In this case, when a user invokes the advertise() call, the service gets advertised
in the global service directory. For example, this enables a service provider located
in Los Angeles to advertise a service to the global directory, accessible by any
clients in New York. The service provider places the service outside the firewall, but
the clients can be inside or outside the firewall. The clients only need to connect
through any proxy which supports the HTTP connect call.

Advertising a service within an enterprise
Service providers can advertise their services within an enterprise in two ways:

• Using a service directory, such as an LDAP server

• Using an e-speak Core repository

Using a service directory is similar to using the HP-hosted global service directory,
except that the advertising service connects to the service directory specified by the
service provider. This service directory can be located within the enterprise and
spread in different locations. In this case, you start the advertising service by spec-
ifying -beproto <protocol>, -behost <hostname>, and -beport <port-
number> command line options. If the -beproto command line option is not
specified, then the global service directory hosted by HP is selected.

By using an e-speak Core repository, service providers who do not want to use
service directory like LDAP can still achieve the same results. This is done by start-
ing the advertising service in With repository mode. When the user invokes the
advertise() call, the service is placed in the local advertising service. In this
case, clients doing a search in a community can specify fully qualified group names
(group name + host name +port number). The infrastructure automatically
Developer Release 3.01, June 2000 65

Advertising Service Running E-speak Standard Services
connects and makes all the services available in the advertising service identified by
host name and port number visible to the client, even when not using any service
directory.

Advertising a service in a local domain
Service providers can advertise services in the local domain in two ways:

• Using a service directory, such as an LDAP server

• Using an e-speak Core repository

Using a service directory is similar to using the HP-hosted global service directory,
except that the advertising service connects to the service directory specified by the
service provider. This service directory can be located within the enterprise and
spread in different locations. In this case, you start the advertising service by spec-
ifying -beproto <protocol>, -behost <hostname>, and -beport <port-
number> command line options. If the -beproto command line option is not
specified, then the global service directory hosted by HP is selected.

The benefit of using an e-speak Core repository is that users can take advantage of
the spontaneous discovery mechanism in the e-speak system. Service provider
advertisements are automatically transferred to all the advertising services belong-
ing to the same group. So, clients doing a search in a community would only need
to specify the group names. The hostname and portnumber are no longer necessary
in the local domain, because the advertising services spontaneously talk with each
other in the local domain and exchange information.

Multiple groups in a single service directory
It is possible to have multiple groups in a single service directory, such as LDAP. In
this case, different advertising services belonging to different groups can connect
to the same service directory and advertise services.

Selecting a group name
Two different service providers may advertise services with exactly the same
descriptions (attribute values). To prevent collisions across the advertised services
or to protect access to the services advertised, specify a unique group name for the
66 Developer Release 3.01, June 2000

Running E-speak Standard Services Advertising Service
advertising service. The service provider uses the -group <groupname>
command line option of advertising service to achieve this. Service providers and
clients are responsible for prevent collisions by selecting unique group names for
their advertised services.

A client doing a search can specify a community which is a collection of group
names. In this case, only services registered in the those groups are returned to the
client. Services in other groups, even if matching client’s query, are not returned.

A service provider wishing to advertise the service to the whole world can do so by
starting the advertising service with group name speaktome and using the HP-
hosted global service directory. Specifically, the service provider starts the adver-
tising service with command line option -group “speaktome” to advertise the
service in the HP-hosted global service directory.

Starting the Advertising Service D

The e-speak Core must be running before you start the advertising service. The
Advertising Service can run in one of two modes — with or without an external
lookup repository. Each mode requires a different set of parameters. The next
section describes what parameters may be specified. The following sections explain
how to start the Advertising Service with these parameters.

Parameters to be Specified
The following parameters can be specified for running the advertising service with
or without an external lookup repository:
Developer Release 3.01, June 2000 67

Advertising Service Running E-speak Standard Services
Specification of Core

The Advertising Service should be connected to a Core. The current release
supports two ways to specify a Core with which the advertising service is regis-
tered. One is to specify the Core by giving a protocol name, a host name, and a port
number. If the communication protocol is not given, TCP/IP is assumed.

The other way is to give a URL string for the Core, such as
"tcp:rgelpc016.rgv.hp.com:12346".

Configuration for Initial Discovery

A group of e-speak Cores that run together and share the same external repository
may be given a name. The name is specified with the -group option as follows:

-group <group-name>

Initial discovery of advertising services is implemented using a multicast mecha-
nism. The port the advertising service listens to is specified with the -mport
option. By default, it uses 1438 (i.e., the SLP multicast port), but any port can be
used. However, you may need to specify a port number greater than 1000 if you do
not have a root privilege to run the advertising service. The -mport option is as
follows:

-mport <multicast-port-number>

-cp <conn -protocol> The communication protocol between the
Core and an Advertising Service

-eshost <core-hostname> The name of a host machine on which a Core
is running

-esport <core-port-number> The port to which the Core is listening

-esurl <protocol-hostname-
port-number>

E-speak URL in the following format:

"protocol : hostname : port number"
68 Developer Release 3.01, June 2000

Running E-speak Standard Services Advertising Service
Advertising Services get the information about which host an external repository is
running on, what protocol the repository uses, and what port it listens to from the
initial discovery and join process. Alternatively, advertising services may hard-code
the information in a file and read it at start-up time. The file can be specified with
the -beconfig option as follows:

beconfig <backend-configuration-file>

A backend configuration file can contain information on host, port, and protocol.
The entries can appear in any order, such as the following:

• Host: <host-name>

• Port: <port-number>

• Protocol: <protocol-name>

Specification of Connection Mode

To control the initial discovery and joining mode, you can specify a connection
configuration file with the -connconfig option.

You can turn on or off the option of multicasting to other advertising services a
request to connect to each service’s Core (AutoConnect). Also, you can turn on or
off the option of accepting an auto connect request from other advertising services
(AcceptConnection). The default value of both options is set to yes.

• AutoConnect: yes/no

• AcceptConnection: yes/no

Specification of LDAP Configuration Information

To allow dynamic discovery and joining, there are advertising services that access
the directory as the same user, such as Directory Manager. The login information
may be hard-coded in the Advertising Service itself, or it may be given as command-
line arguments as follows:

• -rootdn <Directory Manager DN>

• -passwd <Directory Manager password>

-connconfig <connection-
configuration-file>

File which contains connection
mode
Developer Release 3.01, June 2000 69

Management Services Running E-speak Standard Services
• -base <Directory suffix>

NOTE: This information is determined when the LDAP directory is configured. See
Chapter 2, “Installing and Configuring.” for more information.

Starting Advertising Service With or Without a Backend LDAP
Directory
With the configuration options above, you can start up the Advertising Service with
or without an external repository using one of the following sets of commands.

Automatic Connection without a Backend LDAP Directory
<installDir>\bin\espeak ads eshost=<hostname>

esport=<portnumber> group=<groupname>

mport=<multicastport> ypprotocol=slp

No Automatic Connection with a Backend LDAP Directory
<installDir>\bin\espeak ads eshost=<hostname>

esport=<portnumber> rootdn=<Directory-Manager-DN>

passwd=<Directory-Manager-password> base=<Directory-suffix>

beconfig=<backend-configuration-file> group=<groupname>

mport=<multicastport> connconfig=<connection-configuration-file>

Automatic Connection with a Backend LDAP Repository
<installDir>\bin\espeak ads eshost=<hostname>

esport=<portnumber> rootdn=<Directory-Manager-DN>

passwd=<Directory-Manager-password> base=<Directory-suffix>

group=<groupname> mport=<multicastport>

Management Services D

The current e-speak release contains a suite of four management services, Logging
Service, Policy Manager, Service Manager and Process Manager. You must have the
Java Servlet Development Kit (JSDK) 2.0 installed and the corresponding
jsdk.jar file in your CLASSPATH environment variable in order to compile and
run any program that uses management services.
70 Developer Release 3.01, June 2000

Running E-speak Standard Services Management Services
Management services include:

• Logging Service

• Process Manager

• Policy Manager Service

Logging Service D

The Logging Service provides a simple logging API to e-speak service writers.
Messages are logged in a persistent store (one per Core) such that they may be
meaningfully analyzed at some later date.

Concepts
Log messages will in practice come from a wide variety of sources and, in the worst
case (for the log reader), come from different implementations of functionally iden-
tical services, each of which has a different Vocabulary (or dictionary) of log
messages. Therefore, there must be some mechanism to differentiate one from
another in order for the log to be meaningful. It is thus essential that each logged
message must in some way specify the dictionary to which it refers. The implemen-
tation of the dictionary is left to the user.

Starting the Logging Service
To start the Logging Service, enter the following command (after setting CLASS-
PATH to e-speak required .jar files):

<JVM>

net.espeak.services.management.logger.manager.ESLogServiceManager

localhost <CORE_PORT> <ESPEAK_HOME>

NOTE: In this command, <CORE_PORT> is the port number of the local core that this
Logging Service should connect to, <ESPEAK_HOME> is the location of the e-speak
installation as set in the ESPEAK_HOME environment variable.
Developer Release 3.01, June 2000 71

Management Services Running E-speak Standard Services
Example Usage
In order to log messages, an ESLogClient object is provided. This object has a
logMessage method that takes ESLogMessage objects. Below is an example
usage of ESLogClient:

import com.hp.es.management.services.logger.client.*;

import com.hp.es.management.services.logger.message.*;

import com.hp.es.client.framework.util.*;

ESLogClient lc = new ESLogClient(new FrameworkContext());

ESLogMessage m = new
ESLogMessage(“id”, “d”, ESLogMessage.INFO, “msg1”);

lc.logMessage(m);

The FrameworkContext object handles the connection to the Core. The default
constructor connects to a Core on the local host. To connect to a remote Core, pass
the framework context constructor a String[] containing the host name and port
number.

Process Manager D

The e-speak Process Manager provides a uniform way of remotely managing of
processes. Here process refers to a general operating system process, for example,
a running Java Virtual Machine is a process, an active e-speak core is a process, and
a database server could also be a process. The concept of process should not be
confused with the concept of e-speak service. For example, an e-speak advertising
service may consist of multiple processes: the backend database engines could be
one process, while its e-speak service access front-end could be another process.
While one service may constitutes of multiple processes, one process may also host
multiple services. The management of processes is often interrelated to the
management of services. Process Management is an essential part of the infrastruc-
ture that helps service management.
72 Developer Release 3.01, June 2000

Running E-speak Standard Services Management Services
Process Management is provided through the e-speak Process Manager Service. It
is a bundled e-speak service in this release.

In order to run the Process Manager Service, the user is expected to know:

• How to start e-speak Cores

• How to start the e-speak Advertising Service

Starting the Process Manager Service
To start the Process Manager service, do the following:

1 Make sure there is a local core running, and you know its port number.

2 If you want the Process Manager Service to be accessible remotely, then make
sure you have started a local Advertising Service.

3 Start the process manager with the following command line (after setting
CLASSPATH to e-speak required .jar files):

<JVM> net.espeak.services.management.CPM.service.ProcessManager

<CORE_PORT>

NOTE: In this command, <CORE_PORT> is the port number of the local e-speak
core. You can only start one instance of Process Manager on each machine.
There is no need for running more than one instance of Process Manager on one
machine.

Accessing the Process Manager Service from Your Application

1 The Process Manager Service is an e-speak service. You can discover this
service with the following e-speak query:

"Type==’ProcessManagerService’ and Name==’<HOST_IP>’"

NOTE: In this query, <HOST_IP> is the IP address of the host where the Process
Manager is running. The service interface used in discovery shall be:

net.espeak.services.management.CPM.service.ProcessManagerIntf

2 The returned service stub implements the following interface:
Developer Release 3.01, June 2000 73

Management Services Running E-speak Standard Services
public interface ProcessManagerServiceIntf extends ESService {

 public String[] allProcesses() throws ESInvocationException;

 public String[] allLiveProcesses() throws ESInvocationException;

 public String ping(String msg) throws ESInvocationException;

 public String run(String path) throws ESInvocationException,

ProcessManagerException;

 public void stop(String pid) throws ESInvocationException,

ProcessManagerException;

 public String getStatus(String pid) throws ESInvocationException,

ProcessManagerException;

 public String getLastStatus(String pid) throws

ESInvocationException, ProcessManagerException;

 public void remove(String pid) throws ESInvocationException;

 public void setConfig(String s) throws ESInvocationException;

 public String getConfig() throws ESInvocationException;

 public byte[] getOutput(String pid) throws ESInvocationException,

ProcessManagerException;

 public byte[] getError(String pid) throws ESInvocationException,

ProcessManagerException;

}

The client can use the interface to enumerate, start, stop, get standard output, and/
or get status of all processes managed by the Process Manager. Note that a process
becomes manageable by the Process Manager if it is started through the Process
Manager.

Accessing the Process Manager Service using the System
Deployment Console
The System Deployment Console uses the Process Manager to control processes on
local and remote machines. Thus it is a client of the Process Manager Service. For
more information about how to run the System Deployment Console, please see the
e-speak System Deployment Console User Guide, which is available on the e-speak
website.
74 Developer Release 3.01, June 2000

Running E-speak Standard Services Management Services
Policy Manager D

A Policy Manager may be thought of as a user environment, similar to a user envi-
ronment under Windows NT. A user may set policies, get policies, or remove poli-
cies using the Policy Manager.

A Policy Manager Factory is implemented as an e-speak service. A Client would
typically discover the Factory Service and then use it to create, remove, link, or
unlink a Policy Manager.

Starting the Policy Manager
To start the Policy Manager, use the following command (after setting CLASSPATH
to e-speak required .jar files):

<JVM>

net.espeak.services.management.policymanager.PolicyManagerFactor

yImpl localhost <CORE_PORT> <ESPEAK_HOME>

NOTE: In this command, <CORE_PORT> is the port number of the local core that
this Policy Manager Service should connect to, and <ESPEAK_HOME> is the
location of the e-speak installation as set in the ESPEAK_HOME environment
variable.
Developer Release 3.01, June 2000 75

Management Services Running E-speak Standard Services
76 Developer Release 3.01, June 2000

Chapter 5 Working With Applications
How Applications Work in E-speak E

As mentioned in Chapter 1, an e-speak service can call on other services to perform
a task, and it can be called on by clients in specialized environments. Understanding
the service/client relationship is important for writing applications in the e-speak
environment. This chapter help you gain that understanding.

This chapter describes how to get started with a simple program, Echo, which is
included in this release.

About The Echo Program E

The Echo application has two components —EchoServer and EchoClient. The
EchoServer program provides one service — it echoes any string sent to it by a
Client. EchoClient is a sample Client that sends a string to the EchoService and
checks if the string is properly echoed back to it. The EchoServer and
EchoClient source code is available under the directory
<installDir>\samples\echo\src.

Generally speaking, an e-speak service-provider, such as EchoServer, does the
following:

• Connects to the Core

• Registers a service that can be discovered by Clients

• Waits for a request and responds upon receiving it

Meanwhile, an e-speak Client program, such as EchoClient, usually does the
following:

• Connects to the Core
Developer Release 3.01, June 2000 77

How Applications Work in E-speak Working With Applications
• Finds the service it wants to use

• Invokes a method on the service and processes the response

NOTE: The server must be ready before you start a client.

Echo Syntax
NOTE: This section uses the NT notation for pathnames and commands. On Unix
platforms, use forward slashes (/) instead of back slashes (\).

EchoClient uses the property files client.prop, and EchoServer uses the prop-
erty files server.prop. These files are available under the singlecore and
multicore subdirectories of <installDir>\samples\echo\config.

Both files have the following syntax:

• hostname=<hostname where e-speak Core is running>

• portnumber=<port of the e-speak Core>

• community=<name of the group used to identify the group-server for Advertis-
ing Services>

You can eliminate the hostname field if EchoClient and Core are running on the
same machine. You can also eliminate portnumber if the Core is started on the
default port (12346). You can set community=null when EchoClient and Echo-
Server are connected to the same Core.

Building and Running the Echo Program E

For building and running this sample program, set up the environment variables
JAVAC, JRE, and CLASSPATH (JVC and VJ++ if you are a Microsoft Visual J++
user) as described in Chapter 2, “Installing and Configuring”.

The following sections provide instructions for building and running the sample
programs in Windows NT, HP-UX, and Linux.
78 Developer Release 3.01, June 2000

Working With Applications How Applications Work in E-speak
Running Echo on Windows NT
Under Windows NT, you can run Echo from a command shell or within a Microsoft
Visual Java (VJ++) IDE. To assist with compilation, the sample programs come with
a batch file, compile.bat. When compile.bat is run, it calls
<installDir>\bin\envmake.bat, which sets the CLASSPATH environment
variables.

To run sample programs in an NT command shell

1 In a Command Prompt window, enter cd <installDir>\samples\echo

2 Set environment variable ESPEAK_HOME to point to the <installDir> and
add <installDir>\samples\echo\lib to your CLASSPATH environment
variable.

3 Run compile to build the sample programs. This creates the class files under
the <installDir>\samples\echo\lib\samples\echo directory.

4 Run the following command to start the e-speak Core and EchoServer.

<installDir>\bin\espeak -i

<installDir>\samples\echo\config\singlecore\EchoServer.ini

NOTE: An EchoServer.ini file is available under
<installDir>\samples\echo\config\singlecore for this purpose.

5 You see output similar to this:

ES Core starting with an In-Memory Repository.

coreId = "17ef1871f8f7e2b3666541755c6d0c9d"

Starting ES Core Server with Rendezvous of "TCP:12346". Started.

Connected to e-speak

Advertising service not found, defaulting to local repository

Started Echo service

6 Open a different Command Prompt window and change directory to the
<installDir>\samples\echo directory.

7 Run the EchoClient program using the EchoClient.ini file through the
espeak utility.
Developer Release 3.01, June 2000 79

How Applications Work in E-speak Working With Applications
<installDir>\bin\espeak -i

<installDir>\samples\echo\config\singlecore\EchoClient.ini

8 You see output similar to this:

Group null will be contacted thru local core

findConnFac: search for conn fac returned null

ResourceName == ’TestServer’

ResourceName == ’TestServer’

EchoClient sent :*Hello World!*

EchoClient got reply : *Hello World!*

 SUCCESS. String returned by echo server matches the string sent.

9 You can terminate the Core and echo server by pressing Ctrl+C.

To run sample programs in Microsoft Visual Java (VJ++) IDE

1 Configure your VJ++ IDE as explained in the“Configuring Integrated Develop-
ment Environments”section in Chapter 3. A Visual J++ project file, echo.vjp,
under the directory <installDir>\samples\echo, is provided for your
convenience.

2 Load the project ‘echo’ in VJ++ IDE, using the supplied project file with this
command:
<installDir>\samples\echo\echo.vjp.

3 On the Build menu, click Build. This compiles the sample program. If no errors
appear, the class files are created under the
<installDir>\lib directory.

4 On the Project menu, click Echo Properties… and go to the Launch tab.

5 Verify that the Custom radio button is selected and the Program and Argument
fields have the following values. If not, correct the fields. When finished, click
OK to close the dialog box.
80 Developer Release 3.01, June 2000

Working With Applications How Applications Work in E-speak
Program JView.exe

Arguments /p /cp:p "<JAVAPACKAGES>"
/d:espeak_home=<installDir>
/d:espeak_port=12346
/d:espeak_group="myEchoGroup"
net.espeak.util.SysLoader
"<installDir>\config\default.ini"
Developer Release 3.01, June 2000 81

How Applications Work in E-speak Working With Applications
6 On the Debug menu, click Start Without Debugging. This starts the Core and
other e-speak components running.

7 When all sample applications are complete, a new console window appears,
showing output similar to the following:

ES Core starting with an In-Memory Repository.

coreId = "6bf5c260ca031e38246bdf23e2f9eded"

Starting ES Core Server with Rendezvous of "TCP:12346". Started.

Connection Object: mapped localhost to 15.81.93.137

-- WARNING: Serializing class

net.espeak.infra.intercorecom.confactory.co.ConnectionObject

with slow, Java-dependent Java serialization

Created the BaseDistributorVocabulary vocabulary

Advertising service not running

Started Core distributor

switching to no-backend version...

advertising service is ready

8 On the Project menu, click Echo Properties and go to the Launch tab in the
same IDE.

9 Click the Custom radio button and enter the following information in the two
text boxes:

Program JView.exe

Arguments /p /cp:p ”<JAVAPACKAGES>” echo.EchoServer
<install-
Dir>\samples\echo\config\singlecore\server.p
rop EchoServer
82 Developer Release 3.01, June 2000

Working With Applications How Applications Work in E-speak
10 On the Debug menu, click Start Without Debugging. This runs the EchoServer
program, producing the following output in the new console window:

Connected to e-speak

Vocabulary Name in Client Side = default

Started Echo service

11 When you are finished with the sample, terminate the service by pressing
Ctrl+C.

12 In the same IDE, click Echo Properties on the Project menu and go to the
Launch tab. Click the Custom radio button and enter the following information
in the two text boxes:

13 On the Debug menu, click Start. The Echo Properties dialog box appears.

14 In the Echo Properties dialog box, select echo.EchoClient and click OK.

15 The EchoClient program produces the following output in the Output window:
(If the Output window does not appear, press Ctrl+Alt+O.)

group server null not in core
connect: group server url not given for group null

Advertising Services now in core:
[0]: name is rgelpc129.rgv.hp.com:12346 and subtype is rgelpc129.rgv.hp.com:12346
*** end of list ***
ResourceName == ’EchoServer’
ResourceName == ’EchoServer’
EchoClient sent :Hello World
EchoClient got reply : Hello World

 SUCCESS. String returned by echo server matches the string sent.

Program WJView.exe

Arguments /p /cp:p ”<JAVAPACKAGES>” echo.EchoClient
<install-
Dir>\samples\echo\config\singlecore\client.pr
op “Hello World” EchoServer
Developer Release 3.01, June 2000 83

How Applications Work in E-speak Working With Applications
To compile in VJ++ IDE and run in an NT Command Shell

To compile the Echo sample in MS VJ++ but run it in an NT Command Shell, follow
Step 1 and Step 3 from the ““To run sample programs in Microsoft Visual Java
(VJ++) IDE” on page 80” for compilation, then follow Step 6 through Step 9 from the
“To run sample programs in an NT command shell” on page 79 to run them.

Running Echo on HP-UX or Linux E

For HP-UX or Linux, a Makefile is provided for compiling Echo sources. This Make-
file can be found under <installDir>/samples/echo. You can either use a
native make utility available on your Unix platform, or GNU’s make utility (known
as gmake). The GNU make utility can be downloaded freely from
ftp://ftp.gnu.org/gnu/make.

The following targets are defined in the makefile provided:

• make clean removes all class files from the echo/lib directory.

• make all compiles all Java source files in the echo/src directory. The class
files are created in the echo/lib directory.

To compile source files, start e-speak, and run sample programs

1 Copy the Echo directory recursively to a temporary location, /home/myself,
for example.
cp -R <installDir>/samples/echo /home/myself

2 Change to directory cd /home/myself/echo. Set the environment variables
as discussed in “Setting the Environment Variables” in Chapter 2.

3 Enter make all to compile the sources. Class files are created under the
/home/myself/echo/lib/samples/echo directory. Add this directory to
your CLASSPATH.

4 Start the e-speak Core and EchoServer using the EchoServer.ini file:

<installDir>/bin/espeak -i

/home/myself/echo/config/singlecore/EchoServer.ini
84 Developer Release 3.01, June 2000

Working With Applications How Applications Work in E-speak
You see output similar to this:

ES Core starting with an In-Memory Repository.

coreId = "17ef1871f8f7e2b3666541755c6d0c9d"

Starting ES Core Server with Rendezvous of "TCP:12346". Started.

Connected to e-speak

Advertising service not found, defaulting to local repository

Started Echo service

5 In a new shell window, go to the directory where the sample program Echo is
compiled: cd /home/myself/echo.

6 Add the lib directory to your current settings for the CLASSPATH environment
variable. Type export CLASSPATH=${CLASSPATH}:/home/myself/
echo/lib when using ksh, sh, or bash. (You can enter setenv CLASSPATH
${CLASSPATH}:/home/myself/echo/lib if you use csh.)

7 Run EchoServer and EchoClient, using the espeak utility. To run, enter:

<installDir>/bin/espeak -i
/home/myself/echo/config/singlecore/EchoClient.ini

You see output similar to this:

Group null will be contacted thru local core

findConnFac: search for conn fac returned null

ResourceName == ’TestServer’

ResourceName == ’TestServer’

EchoClient sent :*Hello World!*

EchoClient got reply : *Hello World!*

 SUCCESS. String returned by echo server matches the string sent.

8 Terminate the Core and echo server by typing Ctrl+C in this window.
Developer Release 3.01, June 2000 85

Distributed Applications Working With Applications
Distributed Applications E

A distributed e-speak environment consists of any number of interconnected e-
speak Cores. Connections between Cores are established in pairs. Each pair of
connected Cores agrees to share some resources through an export process. Once
a resource is exported to a Core, all tasks connected to that Core can discover and
use the resource as if it were a local resource.

For a Core to participate in a distributed e-speak environment an export mechanism
such as an advertising service, must be available.

The following sections describe how to set up a distributed e-speak environment
and how to run the Echo sample program that illustrates this functionality.

NOTE: This section uses the NT notation for pathnames and commands. On Unix
platforms, use forward slashes (/) instead of back slashes (\).

Connection Object Files E

Connections between Cores are established in pairs. Each connection requires a
configuration file, called a Connection Object file, which specifies the port on
which it listens. A Connection Object file contains information about three items:

• The name of the protocol

• The hostname on which the Advertising Service is running

• The port on which it is listening

The Connection Object files are used for two purposes. Each file describes how the
Service Engine (Core) should configure the ports to listen on. Connection Object
files also describe the machine to which the services are to be exported. The
Connection Object files that describe the listening ports should be present on the
corresponding machines.
86 Developer Release 3.01, June 2000

Working With Applications Distributed Applications
Logical Machines E

Typically, each Service Engine, or Logical Machine, is created on a separate
computer (physical machine). However, it is possible to configure multiple logical
machines on the same physical machine. This can be two Cores running on a single
computer or on two different computers on a local area network.

When setting up this kind of configuration, each Logical Machine must have a
unique Core port number. You can use the espeak utility to quickly set up a Service
Engine (Core) ready to participate in a distributed e-speak environment.

To set up a logical machine, you need to provide the socket port number used by
the Core and the name of the Connection Object file that contains information used
by Service Engine to create Connection Objects.

After creating two logical machines on the same physical machine (as outlined
below), you can start running the sample distributed applications, as described in
the next section.

To set up Logical Machines

1 Enter <installDir>\bin\espeak core p=TCP:12345 to run a Core for
Logical Machine 1.

2 In a different window, enter <installDir>\bin\espeak ads
esport=12345 copath=<installDir>\config myco=co1 to start a
AdvertisingService for Logical Machine 1.

3 In a window on another machine (or in another window on the same machine),
enter <installDir>\bin\espeak core p=TCP:12346 to run a Core for
Logical Machine 2.

4 In the second window, enter <installDir>\bin\espeak ads
esport=12346 copath=<installDir>\config myco=co2 to start a
AdvertisingService for Logical Machine 2.
Developer Release 3.01, June 2000 87

Distributed Applications Working With Applications
Setting Up a Distributed Echo Program on Two Logical Machines E

NOTE: When running this sample across two physical machines, make sure that the
community name that the client.prop refers to (and -group argument of the
advertising services under EchoServer.ini and EchoClient.ini) are not
used by some other application within the same Local Area Network.

Figure 2 shows the setup structure for running a distributed Echo program.

To set up the program

1 Start two Service Engines (Cores) on either the same machine or on two differ-
ent machines:

• A server application, EchoServer, started on logical machine1

• A Client application, EchoClient, run on logical machine2

Figure 2 Client and Service in distributed environment

Logical Machine1

EchoServer

Engine

Logical Machine2

EchoClient

Engine

Group Server

A
dvertising

Service

A
dvertising

Service

Property File
88 Developer Release 3.01, June 2000

Working With Applications Distributed Applications
In this example, two Connection Object files, co1.MYCO and co2.MYCO, are used
to configure the Service Engines (Cores) for machine1 and machine2. These files
are available in the directory <installDir>\samples\echo\config. The
contents of the two Connection Object files are shown below:

• co1.MYCO
TCP: machine1.domain.com 23456

• co2.MYCO
TCP: machine2.domain.com 34567

You can replace machine1.domain.com and machine2.domain.com as appro-
priate. They can point to the same physical machine (local host).

Regardless, co1.MYCO should be present on machine1 and co2.MYCO should be
present on machine2 . If you run the distributed application on the same machine,
machine1 and machine2 can both be identical as long as the port numbers are
different.

To run the program

1 In separate windows on each machine, change to the <installDir>\bin
directory and add <installDir>\samples\echo\lib to the CLASSPATH
environment variable.

2 Edit the Connection Object files co1.MYCO and co2.MYCO in the
<installDir>\samples\echo\config directory to reflect the correct
machine names.

3 On machine1, start the Core, Advertising Service, and
EchoServer using the EchoServer.ini file available in the
<installDir>\samples\echo\config\multicore directory:

<installDir>\bin\espeak -i
<installDir>\samples\echo\config\multicore\EchoServer.ini

hostname=<hostname>

You see output that looks like this:

**
* Running: Core AdvertisingService echo.EchoServer
Developer Release 3.01, June 2000 89

Distributed Applications Working With Applications
**

ES Core starting with an In-Memory Repository.
coreId = "e648caf27cdd37788fabba57337bbc7b"
Starting ES Core Server with Rendezvous of "TCP:12346". Started.
Connection Object: mapped localhost to 15.81.93.137
-- WARNING: Serializing class
net.espeak.infra.intercorecom.confactory.co.ConnectionObject with slow, Java-
dependent Java serialization
Warning: Pls check LDAP configuration if you intended to use LDAP. Switching to
non-LDAP mode now
switching to no-backend version...
advertising service is ready
i am processing 3
Querying for advertising services with query: (ResourceType == ’Advertising
Service’ and ResourceSubType == ’echogrp’)
my entries... 0
rgelpc129.rgv.hp.com:12346: agent found 0 services for query (ResourceType ==
’ESVocabulary’) and (ResourceName == ’BaseDistributorVocabulary’)
i am processing 1
Connected to e-speak
Vocabulary Name in Client Side = default
Started Echo service

4 On machine2, in a new shell window, enter the following command to start
another Core, Advertising Service, and EchoClient:

<installDir>\bin\run -i

<installDir>\samples\echo\config\multicore\EchoClient.ini

hostname=<hostname>

You see output that looks like this:

**
* Running: Core AdvertisingService echo.EchoClient
**

ES Core starting with an In-Memory Repository.
coreId = "fb05569e0bbc814f1efb341214d880c0"
Starting ES Core Server with Rendezvous of "TCP:43210". Started.
Connection Object: mapped localhost to 15.81.93.137
-- WARNING: Serializing class
net.espeak.infra.intercorecom.confactory.co.ConnectionObject with slow, Java-
dependent Java serialization
switching to no-backend version...
advertising service is ready
Warning: Pls check LDAP configuration if you intended to use LDAP. Switching to
non-LDAP mode now
90 Developer Release 3.01, June 2000

Working With Applications Distributed Applications
-- WARNING: Serializing class
net.espeak.infra.intercorecom.ESIP.ESIPControlMessage with slow, Java-dependent
Java serialization
Group echogrp will be contacted thru local core
findConnFac: conn fac returned is
net.espeak.infra.client.coreproxy.ESConnectionFactory@155
Trying to connect to CF specified by null
connect: group server echogrp already in core

Advertising Services now in core:
[0]: name is rgelpc129.rgv.hp.com:12346 and subtype is echogrp
[1]: name is rgelpc129.rgv.hp.com:43210 and subtype is echogrp
*** end of list ***
(ResourceType==’Advertising Service’) and (ResourceSubType ==’echogrp’)
(ResourceType==’Advertising Service’) and (ResourceSubType ==’echogrp’)
ResourceName == ’RemoteServer’
ResourceName == ’RemoteServer’
i am processing 3
Querying for advertising services with query: (ResourceType == ’Advertising
Service’ and ResourceSubType == ’echogrp’)
my entries... 0
rgelpc129.rgv.hp.com:43210: agent found 0 services for query (ResourceType ==
’ESVocabulary’) and (ResourceName == ’BaseDistributorVocabulary’)
EchoClient sent :*Hello!*
Connection Dropped By the Client
i am processing 3
Querying for advertising services with query: (ResourceType == ’Advertising
Service’ and ResourceSubType == ’echogrp’)
my entries... 0
rgelpc129.rgv.hp.com:43210: agent found 1 services for query ResourceName ==
’RemoteServer’
EchoClient got reply : *Hello!*

 SUCCESS. String returned by echo server matches the string sent.
Developer Release 3.01, June 2000 91

Distributed Applications Working With Applications
92 Developer Release 3.01, June 2000

Chapter 6 Using Security in E-speak
This chapter describes the current basic setup for using e-speak securely. Security
is subtle and it is dangerous to treat it as just another thing to “select the check box”
— it can bite you hard!

There are four sections to this chapter.

• “The Basic Security Model” deals with the basic aspects of the security model,
and in particular PSEs and certificates.

• “Bootstrap Process for Testing” discusses a bootstrap process used for testing
purposes.

• “Configuration Files” discusses security configuration files.

• “Security Examples”provides a number of basic examples of tag attributes and
protection masks.

The Basic Security Model F

Everyone (and everything) has a set of public/private keys. Entities are distributed
and interact with one another by means of secure sessions using the SLS protocol
– this includes firewall traversal technology. All entities can both use services
offered by others and also provide services to others. This means that all parties in
secure sessions have to be authenticated to each other. In particular, SLS secure
sessions authenticate both parties involved by using challenge-response negotia-
tions based on public-key cryptography.

Access control to services is done by exchanging digitally signed certificates as a
part of the SLS protocol providing secure sessions. These certificates act like “tick-
ets” that grant entities with authorization to access and make use of services. Certif-
Developer Release 3.01, June 2000 93

The Basic Security Model Using Security in E-speak
icates are signed by issuing entities (or Principals) and are issued to subject
principals who may use them. The subject of the certificate is the entity which is
being authorized. For example, if the issuer is the Core, and the subject is the client,
and the certificate contains the tag attribute (net.espeak.method (*) (*)),
the Core is issuing a certificate authorizing the client to access any method within
any service in the Core.

These certificates can also be chained together (using delegation) to give composite
authorizations. Refer to the J-ESI documentation and the E-speak Architecture

Specification for more information about the security model.

PSEs and Certificates F

A Private Secure Environment (PSE) represents a keystore containing
public/private key pairs. Each principal e-speak entity needs to have its own set of
keys and needs to store them securely within a PSE. The PSE itself can be stored as
a binary file in your local file system. This data is encrypted and a passphrase is
required to lock/unlock the data it contains.

The PSE is responsible for generating its own key pairs – in particular, it has been
designed so that private keys should never be exposed.

The other main function of a PSE involves validating and signing certificates. Vali-
dating a certificate involves checking the signature of the certificate using the issu-
ers public-key (embedded within the certificate). Signing a certificate involves
using a private key held within a PSE to create a digital signature, based upon a
message digest of the certificate data.

PSE Manager F

The PSE Manager is a GUI tool that supports these basic tasks:

• Creating a new PSE and saving it as a binary file. This involves choosing a pass-
phrase that is used as an encryption/decryption key. It is important to keep this
passphrase information secure – anyone capturing your PSE will be able to
perfectly masquerade as you and access everything that you can access. Also,
94 Developer Release 3.01, June 2000

Using Security in E-speak Bootstrap Process for Testing
losing or forgetting your passphrase means that you will be unable to unlock or
access your own PSE. For automatic operation, the PSE passphrase can be kept
in a pass file stored on a floppy disk etc. There is a configuration option for this.

• Creating new key-pairs. The PSE Manager can create new key-pairs, each of
which are given a symbol label. These labels can then be used when construct-
ing certificates.

• Creating and editing certificates. Attribute certificates typically contain infor-
mation about the issuer, the subject, what is being authorized and the validity
period. For convenience, the PSEs symbolic labels (or roles) for keys can be
used to refer to known keys when constructing certificates – thus avoiding
tedious and error-prone data entry of key information.

• Validating and signing certificates as described above.

PSE data can be saved to binary files (using a passphrase for the encryption key)
and certificates can be saved to text files etc.

For further information on the PSE Manager, see the PSE Manager user documen-
tation.

Bootstrap Process for Testing F

The bootstrap process for testing purposes is shown below. When writing and
deploying secure applications, refer to the J-ESI documentation and the E-speak
Architecture Specification. This configuration is only for testing purposes to get
the application programmer started. In a live deployment, all entities (users) or
services that need to be distinguished for access control purposes need to have
separate PSEs. Sharing a PSE is comparable to sharing a login password to a Unix
or Windows NT system and is generally accepted to be a bad security practice.

In the following, the subject of the certificate is the entity which is being authorized.
For example, if the issuer is the core and the subject is the client and the certificate
contains the tag attribute (net.espeak.method (*) (*)), the core is issuing a certifi-
cate authorizing the client to access any method within any service in the core.

1 Use the PSE Manager GUI tool to do the following:
Developer Release 3.01, June 2000 95

Bootstrap Process for Testing Using Security in E-speak
a Generate a keystore object (i.e. a Private Secure Environment) and is typi-
cally called securestore.txt. This is presently shared by all partici-
pants – the core, the client and the service. Therefore, this configuration is
not distributed.

b Each participant will have their own key-pairs. The current simple
approach is to generate three different key-pairs, one for each participant,
with the following labels: client, core, and service, all within the same
PSE.

c Generate a basic attribute certificate, one for each pair of distinct partici-
pants (i.e. client as issuer, core as subject and so on for all distinct combi-
nations) which gives each participant arbitrary permission to perform
operations. Each certificate will contain the all-powerful e-speak tag
attribute:

(net.espeak.method (*) (*))

The PSE Manager can be used to conveniently generate these attribute
certificates – it has access to all the keys that were generated. The PSE
labels associated with the key-pairs can be used to refer to the keys within
the certificates for convenience.

d After it is generated, the certificate must be issued – this means it is signed
by the issuer (client, Core, or service). Again, the PSE Manager can perform
this function of signing these certificates by any one of the participants.

2 To operate the core with security turned on, a security configuration file must
be correctly loaded containing the appropriate attributes. The configuration file
is more fully explained in the following sections. A high-level snapshot is as
follows:

a The configuration file is like a Java properties file and is typically named
espeak.cfg. It is searched for in the current directory, the user’s home
directory or on the Java CLASSPATH.

b A very simple espeak.cfg file is shown in Figure 3.
96 Developer Release 3.01, June 2000

Using Security in E-speak Configuration Files
!==
! E-speak properties file.
!==

!--
! Security properties.
!--
! Master flag controlling whether security is on or off.
net.espeak.security.activate=on

! Set a property prefix.
@prefix=net.espeak.security

! Default name of the keystore file
.pse.storefile=securestore.txt

! Gui mode runs a dialog for the passphrase.
!.pse.mode=gui
! Passphrase mode looks for the passphrase property.
.pse.mode = passphrase
! Passfile mode looks for a file containing the passphrase property.
!.pse.mode = passfile

! Define the passphrase.
.pse.passphrase = default passphrase

! Define the default role (i.e. the default PSE key label).
!.pse.role = client

Figure 3 A very simple espeak.cfg file

The following section discusses configuration files in more detail.

Configuration Files F

The default configuration file is espeak.cfg. The file is looked for in the following
places: the config directory under e-speak home as defined by the property
espeak_home, the directory specified by property
net.espeak.util.config.file, the current directory (from the system prop-
erty ’user.dir’) if the property is not set, or the directory specified by the
user.home system property as a system resource from the classpath.

Java system properties can be set on the java command line using this syntax:

Dproperty=value.
Developer Release 3.01, June 2000 97

Configuration Files Using Security in E-speak
The name of the file to look for can be specified using the
net.espeak.util.config.file property.

The file defined by the property net.espeak.util.config.master is
always loaded on top of all other files, if specified. The default for this property is
null.

All files found are loaded, in reverse order, with files found earlier being merged on
top of properties from files found later. The format of the files is java properties file
format, with the following additions.

@prefix=<prefix>

This sets a property prefix to apply to properties starting with a dot. For example:

@prefix=net.espeak.security
.pse.mode = passphrase

results in net.espeak.security.pse.passphrase being set to pass-
phrase. Once set, a prefix remains in force until changed or set null.

@mode=<mode>

If the <mode> is “override” (default), the values found in this file will be used and
all previous values will be ignored. Once the espeak.cfg parser encounters a file
with mode set to “override,” no more files will be parsed. If the mode is “merge,”
espeak.cfg files will be combined. But if two files specify values for the same prop-
erty, only the value in the last file to be parsed will be used.

The name of the configuration file to look for can be set using the system property
net.espeak.util.config.file, which has the default value espeak.cfg.
If the system property net.espeak.util.config.master is set, the file of that
name will be loaded on top of all other files found.

You can get the configuration by calling ConfigIntf Config.getInstance(),
which returns a reference to a static instance of the default configuration. Other
files can be loaded directly if wanted, see util.Config for the API. Single prop-
erty files can be loaded using ConfigProps.
98 Developer Release 3.01, June 2000

Using Security in E-speak Configuration Files
Property File Syntax F

A java properties file contains property names and definitions.

• The name is separated from the definition by ‘=’.

• Spaces before the property name and around the = are ignored.

• The value of the property extends to the end of line, and includes trailing spaces.

• Long property values can be broken across lines using \ to escape new lines.

• The characters ! and # introduce end-of line comments.

• The character : may be used as an alternative to =.

Property Conversion F

The class util.Convert provides methods to convert property strings to and from
common types. The types int, boolean, and long are supported. The duration
converters accept times in the format 12h3m1.001s and convert them to longs in
milliseconds. Any zero component of a time can be omitted, and spaces may be
included. A zero time may be given as 0s.

The boolean converter accepts on, true, yes for true and off, false, no for false,
regardless of case.

Argument Specifications F

The mapping or argument switches to properties can be defined using util.ArgSpec.
This provides methods to process command-line arguments and map them onto
properties in a configuration.

Security Properties F

The following are the properties supported by the security code.

• Master flag controlling security: net.espeak.security.activate, bool-
ean, default off. If this property converts to true, security is activated.
Developer Release 3.01, June 2000 99

Configuration Files Using Security in E-speak
• Property net.espeak.security.connectOnContact, default off, controls
whether secure sessions are established with newly encountered resources.
When it is off, sessions are not established unless required (by SessionRequire-
dException) or created explicitly.

• PSE mode: net.espeak.security.pse.mode. Values: gui, passphrase,
passfile. Default gui. If the mode is gui, a dialog is used to get the PSE pass-
phrase. If the mode is passphrase the property net.espeak.secu-
rity.pse.passphrase is used to get the passphrase (default null). If the
mode is passfile the property net.espeak.security.pse.passfile
(default passfile.txt) is used to get the name of a file which must contain a
net.espeak.security.pse.passphrase property defining the pass-
phrase.

• PSE key file: net.espeak.security.pse.storefile, default secure-
store.txt. Defines the name of the file containing public-private key pairs.

• PSE role: net.espeak.security.pse.role, default client. Define the
default role (symbolic PSE key name).

• PSE file protection mode: net.espeak.security.pse.OSfileprotec-
tion, default true. This property specifies whether local OS file protection
should be applied and is supplied purely as an aid for testing purposes. For full
security protection, this option should be true.

• Certificate file suffix: net.espeak.security.pse.certfile, default
certs.adr. The value of this property is appended to the role name to get the
name of the certificate file to load. If the role is ‘client’ the certificate file is
‘clientcerts.adr’ for example.

• ACL file suffix: net.espeak.security.pse.aclfile, default acl.adr. The
value of this property is appended to the role name to get the name of the ACL
file (trust assumptions) to load. If the role is ‘client’ the ACL file is ‘clientacl.adr’
for example.

• Cipher suites: net.espeak.security.cipherSuites. The value is a list of
cipher suites in ADR syntax. The default is to use hmac, sha-1, and 128-bit blow-
fish.
100 Developer Release 3.01, June 2000

Using Security in E-speak Security Examples
Sample espeak.cfg file
!===
! E-speak security properties file.
!===
net.espeak.security.activate=on
user.name="John Doe"

! Example time value.
foo.timeout = 12h 3m .0001s
! Set a property prefix.
@prefix=net.espeak.security
! Gui mode runs a dialog for the passphrase.
!.pse.mode=gui
! Passphrase mode looks for the passphrase property.
.pse.mode = passphrase
! Passfile mode looks for a file containing the passphrase property.
!.pse.mode = passfile
! Define the passphrase.
.pse.passphrase = default passphrase
! Define the default role (PSE key name).
!.pse.role = foo

Security Examples F

At the moment, the only thing a JESI service provider needs to worry about from a
security point of view is the metadata and resource masks they set up for their
resources. When security is enabled, the default behavior is to require authorization
for all operations. The masks control this. If a mask is set, operations matching the
mask are permitted whether the requestor is authorized or not.

There are two masks:

• the metadata mask for metadata operations

• the resource mask for resource specific operations.

Masks are specified as tags. The basic method tag format is

(net.espeak.method <interface name> <method name>)
Developer Release 3.01, June 2000 101

Security Examples Using Security in E-speak
In the metadata mask, the interface name is the core interface being specified, and
the method name is the operation in that interface. For metadata, the interface is
likely to be ResourceManipulationInterface, and the method name one of its meth-
ods.

In the resource mask for a J-ESI service, the interface name is the fully-qualified
name of the interface class. The method name is the name of the method in the
interface, plus the concatenated argument types. This allows overloaded methods
to be distinguished.

The metadata mask is used by the in-core metaresource when performing metadata
operations. The resource mask is passed to the service handler by the core for the
service handler to use when performing operations on the service itself.

The masks are completely general tags, so the mask tag itself, or any of its fields,
may use the tag matching features such as sets, prefixes and ranges. The interface
and method names, for example, do not have to be string literals, they can be sets
or prefixes. The general tag format is defined in the e-speak Architecture Specifica-

tion chapter on Access Control.

This tag masks method foo in interface net.espeak.examples.ExampleIntf:

(net.espeak.method net.espeak.examples.ExampleIntf foo)

This tag masks all methods beginning with foo:

(net.espeak.method net.espeak.examples.ExampleIntf (* prefix foo))

This tag masks methods foo and bar:

(net.espeak.method net.espeak.examples.ExampleIntf (* set foo bar))

Methods with prefix foo or bar:

(net.espeak.method net.espeak.examples.ExampleIntf

 (* set (* prefix foo) (* prefix bar)))

All methods in the interface:

(net.espeak.method net.espeak.examples.ExampleIntf)

This is equivalent to:

(net.espeak.method net.espeak.examples.ExampleIntf (*))
102 Developer Release 3.01, June 2000

Using Security in E-speak Security Examples
since missing trailing elements match anything.

Methods foo in InterfaceA and bar in InterfaceB:

(* set (net.espeak.method InterfaceA foo)

 (net.espeak.method InterfaceB bar))

All methods:

(net.espeak.method)

or simply:

(*)

The full form of the method tag is actually:

(net.espeak.method <interface name> <method name> <service>)

In the normal case, the service handler is only interested in its own operations, so
it does not care what the service field is.

When a message invoking an operation is received, the service handler extracts the
interface and method from it, and gets the service identifier from the information
passed to the handler by the core. The service handler then constructs a method tag
using this data and queries the service authorizer to see if the tag is authorized. The
authorizer first checks to see if the tag matches the resource mask, and if it does,
the operation is permitted. If the tag does not match the resource mask, the autho-
rizer uses the current security session to see if the tag is authorized.

Normal tag matching rules are used throughout, which is why the service part of a
mask tag was omitted above. A tag is authorized at a server in the current security
session if a client has presented a valid certificate or certificates that contain the
tag. A certificate is valid if it has not expired and its signature is valid. Certificate
validity and tag matching are explained in detail in the e-speak Architecture Speci-

fication chapter on Access Control.

General tags can be constructed using the following method in ESSecurityEnv:

ADR createTag(String s) throws IOException

The IOException subclass net.espeak.security.adr.ADRParseException is thrown
on a parse error. The parameter s is a string containing the input syntax for the tag.
Developer Release 3.01, June 2000 103

Security Examples Using Security in E-speak
Method tags can be created using

ADR createMethodTag(String interfaceName, String methodName,

 ADR service)

For the purposes of resource masks, tags normally contain (*) as the service param-
eter. In advanced applications, the service ca set the service parameter to its service
id, but this is not necessary.

After a mask tag is constructed, it is used in ESAbstractElement methods:

void setResourceMask(ADR tag) throws ESException

void setMetadataMask(ADR tag) throws ESException

Before a service is registered, these simply affect the local state. After registration,
these set the local state and update the service metadata.

Masking can be turned on or off using ESAuthorizer:

void setMasking(Boolean x)

When masking is off, the resource mask is ignored by the service authorizer even if
set. Setting masking off in the authorizer has no effect on the resource metadata, or
the in-core metaresource handling metadata operations. Masking can be turned off
completely, in the core and handler, by setting a mask to null.

ESConnection has methods for controlling the default resource and metadata
masks used when services are registered:

void setDefaultResourceMask(ADR mask)

ADR getDefaultResourceMask()

void setDefaultMetadataMask(ADR mask)

ADR getDefaultMetadataMask()

void setMasks(ADR metadataMask, ADR resourceMask)

After a default mask is set, all resources registered use it until it is changed. Unless
the default masks are set explicitly, ESConnection uses null for them, causing
authorization to be checked for all operations.
104 Developer Release 3.01, June 2000

Appendix A SysLoader Utility
This appendix provides help on the e-speak SysLoader utility and information
needed to configure e-speak for using persistence.

SysLoader Utility F

The e-speak main function is located in the class SysLoader, which belongs to
the package net.espeak.util. The required start-up parameter is the name of
the .ini file, which you can use to control e-speak services and classes to be
loaded. The SysLoader utility can also print version information on the e-speak
product.

Type <JRE> net.espeak.Util.SysLoader –h for available options, where
<JRE> is your preferred Java run-time environment. Note that the CLASSPATH
environment variable must contain e-speak’s escore.jar file, available under
<installDir>\lib. For example,

java net.espeak.util.SysLoader -h
Usage: <JRE> SysLoader [-h] [-v] [ini file]

-h : Prints this screen.

-v : Prints product version number.

ini file: Loads and runs commands from ini file specified.

Looks for core.ini in current directory if none is

supplied.

See the following sections for details on .ini file syntax.
Developer Release 3.01, June 2000 105

Controlling the Classes Loaded at Start-Up SysLoader Utility
Controlling the Classes Loaded at Start-Up F

The default file is core.ini in the current directory. This default can be over-
ridden on the command line with this command:

<JRE> net.espeak.cci.util.SysLoader [<your_ini_file>]

The .ini file must contain a [Tasks] section with a Start=task_list assign-
ment. This assignment should list tasks in the order they should be started. A name
should appear only once. The rest of the file consists of sections named by the task
name found in the start assignment.

Recognized assignments in the .ini file include:

• Args=<list of arguments to class>

Defaults to an empty list of arguments. This is optional.

• Background=<true | false>

If true and the task is in another JVM, the task can continue executing after the
JVM that started the task terminates. The default is false . This assignment is
valid only for tasks started in another JVM. This is optional.

• Class=<class to execute>

The path of the class to be executed in this task. The main method for the class
is invoked. This is required.

• LogErr=<null | file <errorFile> | stderr | stdout>

Specifies where to send error output. This assignment affects only tasks started
in another JVM. The default is stderr . This is optional.

• LogOut=<null | file <outputFile> | stderr | stdout>

Specifies where to send normal output. This assignment affects only tasks
started in another JVM. The default is stdout . This is optional.
106 Developer Release 3.01, June 2000

SysLoader Utility Controlling the Classes Loaded at Start-Up
• OnExit=<closeall | closeself>

Specifies what should happen when this tasks finishes. If closeall is speci-
fied, all tasks are terminated and the JVM exits. The setting closeself means
that only the current task terminates when it finishes. The default is close-
self . This is optional.

• Pause=<seconds to pause>

Specifies the number of seconds to wait after starting this task. The default is
don’t wait (0 seconds). This is optional.

• Run=<injvm | newjvm | on <host>>

Specifies how the task should be started. The setting injvm means to start the
task in the current JVM. The setting newjvm means to start the task in a separate
JVM on the local machine1. The setting on <host> is used to start the task in a
separate JVM on the remote host using the rsh command. The default is injvm .
This is optional.

• WaitFor=<<task> loaded | started | ready | exited>

Waits for <task> to achieve at least the selected status before starting this task.
Status values are ordered: loaded, started, ready, and finally exited. Therefore,
if a WaitFor= OtherTask started is given and OtherTask is currently ready,
then this task can proceed. This is optional.

The status of ready must be indicated by inserting the following code into the
source for the task at the appropriate point:

Task.setStatus(Task.STATUS_READY);

The .ini file can also contain a [Properties] section that is used to add to or
replace system properties. Any assignment in the [Properties] section is
reflected in system properties of the initial JVM.

1 On NT platform, set Background=true if you set Run=newjvm.
Developer Release 3.01, June 2000 107

Controlling the Classes Loaded at Start-Up SysLoader Utility
Example .ini File F

These are the contents of a typical .ini file. This example starts the Core in the
current JVM. After the Core is ready, it starts a TS server in a new JVM, discarding
both normal and error output. When the server is ready, it starts a Client using the
class tests.apitests.TC, also to be run in a new JVM. When the Client task has
finished, all tasks as well as the main JVM terminates.

[Tasks]

Start=<Core>,<Server>,<Client>

[Core]

Class=net.espeak.infra.core.startup.TestCore
Args=12345

[Server]

Class=tests.apitests.TS

Run=newjvm

LogOut=null

LogErr=null

WaitFor=Core Ready

[Client]

Class=tests.apitests.TC

WaitFor=Server ready

OnExit=closeall
108 Developer Release 3.01, June 2000

Appendix B ‘espeak’ Utility
The espeak1 utility, available under <installDir>/bin, is provided to help you
start the e-speak Core and other components. It is available as a perl5 script,
espeak.pl, on all supported platforms. An executable, espeak.exe on NT, is
provided for convenience. Linux and HP-UX users must have perl 5.003 or later to
run espeak utility.

NOTE: The default version which comes with standard HP-UX installation is Perl4
and not Perl5.

While the espeak program can be used to start basic e-speak components, it can also
be used to load user-defined .ini files. See Appendix A, “SysLoader Utility” to
learn how to write e-speak .ini files. The following section describes the syntax
and usage of the espeak program.

Help Page for espeak F

You can run the help page by typing espeak -h. The following output appears:

Usage: Run E-speak component(s).
Syntax:

 espeak [-v]

 espeak [help | -h | -help | /?]

 espeak [-c] [-j(opt) <JVM arguments>] [-r <repository specs>]

 [esport=<port number>] [<name>=<value> ...]

 [-i inifile | <E-speak component <args>> ...]

1 Experimental utility espeak3 is also available under <installDir>/bin directory, which allows
you to start advanced e-speak components.
Developer Release 3.01, June 2000 109

Help Page for espeak ‘espeak’ Utility
Details:

 help, -h, -help, /? Print this screen.

 -d, -debug Sets debu mode ON

 -j, -jopt <JVM Arguments> Extra arguments to your JVM.

 Quotes neede if contains spaces.

 -r <repository specs>Complete path to the file containing backend database

specs. Typically, repository.ini

 -i <ini file>User supplied Ini file.

 -v Print e-speak version number and exit.

 <esport=<port number>TCP Port number where e-speak Core is started.

 <name>=<value>Assign ’value’ to JVM Property ’name’. Typically used it user

supplied ini file which contains JVM properties

(specified by %<name>%)

 <E-speak components>One or more E-speak components and their arguments

These are ignored if -i is specified. Following

are currently valid E-speak components and their

arguments. By default Core, AdvertisingService,

CoreDistributor, ServiceDistributor &

ManagementDistributor are started.

Arguments that can be specified with any of the components:

run=newjvm|injvm|on <host>Optional. This will start the component in a new

JVM, or same JVM or on another host.Default

injvm

Valid E-speak Component(s) and their respective arguments :

 c | Core

 p=<Protocol info>Is either TCP:<tcpport> or IVM:ivmpop1

 user=<user>User name to access backend DB

 passowrd=<Password>Password to access backend DB

 load=<plugin class>Load a plugin class.

 rep=<Repository specs>Full path to repository specification file

 restartRestart the core purging the repository.

 ads | AdvertisingService

 eshost=<host>Host where e-speak core is started
110 Developer Release 3.01, June 2000

‘espeak’ Utility Help Page for espeak
 esport=<port>port number where core is started

 esurl=<es-url>Alternative to eshost:esport

 beconfig=<backend-config-file>Optional.

 beproto=<backend-protocol>Optional, one of ldap or slp

 behost=<backend-host-name>Mandatory if beproto

 beport=<backend-port-number>Mandatory if beproto

 copath=<path to co>Path to Connection object file.

 myco=<co file>Name of Connection object file.

 rootdn=<backend-root-distinguished-name>Mandatory if beproto or beconfig

 passwd=<backend-password>Mandatory if beproto or beconfig

 base=<backend-base>Mandatory if beproto or beconfig

 mport=<multicast-port>Mandatory if no backend info. (default 1438)

 group=<group-name>Mandatory if no backend info (default: current host

name)

 connconfig=<connection-config-file-name> Optional.

 cp=<communication-protocol>Optional.

 sp=<session-protocol>Optional.

 maxconntime=<max-ldap-connection-time>Optional.

 proxyhost=<web-proxy-hostname>Optional.

 proxyport=<web-proxy-portnumber>Optional.

 cd | CoreDistributor, sd | ServiceDistributor, md | ManagementDistributor

 CORE_PORT=<port>Port number where core was started.

 CORE_HOST=<host>Host name where the core was started.

 CORE_URL=<URL>CORE_HOST:CORE_PORT instead of specifying CORE_PORT &

CORE_HOST

Environment Variables:

 Following Environment variables should be defined.

 ESPEAK_HOMELocation where E-speak is installed.

 JREFull path to your JVM executable file.

 VJ++Set to true if using Visual J++ (JRE=<path>\jview)

Examples:

o To run the default E-speak components

 espeak

o To run only Core at TCP port 12390.

 espeak C p=TCP:12390
Developer Release 3.01, June 2000 111

Help Page for espeak ‘espeak’ Utility
o Run Core and Advertising Service at specified group.

 espeak C Ads group=myPrivateGroup copath=/opt/espeak/config myco=co1

Note:

 In order to terminate the program, you must hit <CTRL>C

Caution:

 All JVM’s that get started do not always get terminated, particularly on

 Windows NT. Please kill those JVM processes, else the port numbers remain

 occupied and you hit exceptions when starting the services again.
112 Developer Release 3.01, June 2000

Appendix C Introduction to PSE Manag-
er
This chapter introduces and shows the use of a PSE Manager tool. You need few
prerequisites to read this – however, you do need to be aware that e-speak security
is an example of a Public Key Infrastructure (PKI). The public key approach
involves each participant having at least one pair of keys, one private that you keep
to yourself and must never divulge and the other key is public which can be widely
known. Typically, a private key is used by you to digitally sign data, so that others
then use the corresponding public key to check this signature.

You should not need a deep background in cryptography or any knowledge of its
theory in order to make sense of this chapter. However, a thumbnail sketch of the
security model goes as follows:

• Everyone (and everything) has a set of public/private keys. Entities are distrib-
uted and interact with one another by means of secure sessions using the SLS
protocol – this includes firewall traversal technology. All entities can both use
services offered by others and also provide services to others. This means that
all parties in secure sessions have to be authenticated to each other. In particu-
lar, SLS secure sessions authenticate both parties involved by using chal-
lenge-response negotiations based on public-key cryptography.

• Access control to services is done by exchanging digitally signed certificates as
a part of the SLS protocol providing secure sessions. These certificates act like
“tickets” that grant entities with authorization to access and make use of
services. Certificates are signed by issuing entities (or Principals) and are issued
to subject principals who can use them. These certificates can also be chained
together (via delegation) to give composite authorizations.

See the J-ESI documentation and the E-speak Architecture Specification for further
details concerning the security model.
Developer Release 3.01, June 2000 113

Introduction to PSE Manager
Private Secure Environment F

A Private Secure Environment (or PSE) is a somewhat grand name for a keystore1.
Its function is to provide a secure store containing labelled public/private key

pairs.

Keys are used to identify particular roles held by a particular E-speak entity. By
using these keys to sign certificates, an entity can prove possession of the key-pair
and thus authenticate the certificate i.e. showing that who originated it and that it
was not modified. Clearly, e-speak entities need at least one key-pair and in general
can have more than one, each with their own key-pair. The PSE provides a secure
means of storing this mapping from labels to key-pairs.

As mentioned above, the other main function of a PSE is to use key-pairs for digi-
tally signing certificates2. The idea is that the private key in some key pair is used
to construct signatures of certificates (i.e. signing), and the key-pair’s public key is
used to verify these signatures.

Accordingly, any entity needing to verify a signature naturally needs the corre-
sponding public key. Fortunately, the particular certificate format used by e-speak
generally includes the public-key of the issuer signing the certificate, as well as that
of the subject.

A general design goal of the PSE is to prevent unnecessary exposure of the private
part of a key pair. For this reason, there is no access method provided by the PSE
that directly exposes private keys as data. All access to private key data is deliber-
ately made indirect and encapsulated. Thus the PSE’s API only needs to provide a
way to sign particular certificates, via some labelled key-pair within the current
PSE.

1 The Private Secure Environment was originally envisaged as a secure data base containing
private/public keys, certificates, trust assumptions and policy-decision support. However, it
became evident that a minimalist approach leads to a less complex and more maintainable
design.

2 Just like in real life, it is important to understand what is signed on your behalf. Do not digitally sign arbitrary pieces of

data. Fortunately, e-speak certificates are sufficiently structured and declarative that their meaning is sufficiently
well-defined and unambiguous. Even so, any certificates that an entity signs represents authorisations for other entities
to use or to do something with – if you don’t want to authorise that something, then don’t sign it’s certificate.
114 Developer Release 3.01, June 2000

Introduction to PSE Manager
The PSE itself can be stored as a binary file3 in your local file system. This data is
encrypted and a passphrase is required to lock/unlock the data it contains.

Delegation and Trust Assumptions
All e-speak entities can potentially be consumers (or users) of certificates and
simultaneously, providers (or issuers) of certificates. For this reason, the security
model needs to be symmetric and to treat parties uniformly.

Certificates can be delegated – this means that a sequence of delegated certificates
can be processed and combined together (i.e. chaining) to produce a resulting
authorization supported by all of the contributing certificates. The validation of a
chain of delegated certificates must be rooted in something that the verifying entity
trusts implicitly. This implies that all entities must have their own set of trusted
certificates within which all security verifications that they authorize are grounded.
This set of particularly trusted are known as Trust Assumptions. Each verifying
entity selects or defines their own set of Trust Assumption certificates for this
express purpose.

Because each verifier’s Trust Assumption certificates represent the “roots” of
secure access control, their entire function is to base all authorization decisions
derived from them. For this reason, in each Trust Assumption, the delegation flag is
always assumed to be true and, moreover, the validity period they contain is
ignored. In other words, any available signed certificate can be used as a Trust
Assumption, irrespective of the values of the delegation flag or the validity period it
has.

This has the advantage that any certificate specifically created for use as a Trust
Assumption certificate could have delegation set to false and have an ineffective
validity period e.g. set the not-after date to be some date-time in the very near
future, which expires very soon after it is signed. This means that although the
certificate could be signed and then used as a Trust Assumption by its creator, it
cannot be effectively used as a certificate by anyone else.

The PSE does not need to provide special support per se for Trust Assumptions –
they are after all just a particular collection of (signed) certificates.

3 The typical, default name for a PSE data file is securestore.txt.
Developer Release 3.01, June 2000 115

The PSE Manager Introduction to PSE Manager
The PSE Manager F

The PSE Manager is a GUI tool for setting up and managing PSE’s and also text files
containing certificates. The main tasks that this tool supports are:

• Creation of PSE’s, storing and retrieving them to/from binary files.

• Passphrase management for PSE’s.

• Generating key-pairs and assigning labels to them.

• Creating and editing individual certificates.

• Signing and validating individual certificates.

• Saving and retrieving collections of certificates to/from text files.

The main purpose served by this tool is to provide a bootstrap that enables PSE’s
and certificates to be deployed and created. Particular end-user services imple-
mented using e-speak security needs to deploy their own security model tailored to
their own needs and requirements. It is envisaged that there could be many tools
such as this one – this is but one example of such a tool. There is an e-speak API for
managing and manipulating PSE’s in a programmatic manner.

The basic security model requires that all users of e-speak enabled services need to
have their own PSE to store their own keys, plus their own collections of
service-specific certificates issued by those services against some of the user’s own
public-keys. These certificates do not need to be kept secret (although the user may
want to do so for privacy reasons) and can be kept in a public place, even accessible
by URL.

The following sections illustrate some of the ways that the PSE Manager can be
used to manage PSE’s and certificate files. It is not an exhaustive guide or manual –
but then ToolTip help has also been provided for most GUI controls.
116 Developer Release 3.01, June 2000

Introduction to PSE Manager The PSE Manager
Starting the PSE Manager F

You can invoke the PSE Manager using the following Java command line:

java net.espeak.security.pse.manager.Run

This can be invoked from a shell script.

After it is started, the PSE Manager consists of two panes – one for Key Management
and the other for Certificate Management. Here, the Key Management pane is
selected.

Creating a PSE F

Using the PSE Manager to create a PSE is straightforward — the following steps
show how to do this.

1 Make sure that the “Key Management” pane is selected – this is the default.

2 Select the File menu and then the New menu-item.

3 A File dialog box appears. Type the name of a new PSE file4.

4 Naturally, choosing the name of an existing PSE is also permitted
Developer Release 3.01, June 2000 117

The PSE Manager Introduction to PSE Manager
4 After specifying a PSE filename, another dialog box appears. Specify a pass-
phrase. This passphrase forms an encryption key that encodes the PSE data
when stored. The effect of this encoding is to lock the PSE data making it only
accessible to those knowing the passphrase.

When you are done with these steps. an empty PSE object is created and initially
saved. Note that the application title bar now contains the name of the PSE object.

The next step is to generate and add keys.

Generating Key Pairs F

After we have a PSE object, we can generate key pairs and add them into it. The
following steps show how to do this.

1 As before, make sure the “Key Management” pane is selected.

2 Click the New Key button.
If this is the first time that key generation has been requested during this
session, then there is a short delay while the key generation system is initia-
lised. At the present time, only the current default type of key is generated5.
118 Developer Release 3.01, June 2000

Introduction to PSE Manager The PSE Manager
3 After key generation has initialized, a dialog appears inviting you to type a new
label for the next key. After typing your new label, press OK to generate the key,
or Cancel to end key generation.

NOTE: All labels have to be unique. Key-pair labels are used within Certificate
Management as a convenient way of selecting the issuer and subject Principals for
certificates.

Furthermore, there are no methods provided for either exporting or importing
key-pairs. Such a facility could potentially allow key-pairs to be isolated and analy-
ses as data objects. Clearly, importing a key-pair from some other source has obvi-
ous security implications (e.g. the private part of an imported key pair can be
known to others or in some other way compromised).

Saving a PSE F

You can save a PSE to disk as follows:

1 As before, check that the “Key Management” pane is selected.

2 On the File menu, click Save or the Save As.

• Save: In this case, if there is some change to save, the PSE is saved with the
current PSE filename using the current passphrase.

• Save As: In this case, a File dialog appears, allowing selection of a PSE file-
name to save the PSE to using the current passphrase.

With either the Save or Save As alternatives, a dialog appears for you to confirm
saving the PSE using the current passphrase.

The current passphrase for the PSE can be changed using the Passphrase menu
item from the File menu.

Numbered backup files are made (to a maximum depth of 10) whenever a PSE file
is overwritten.

5 At present, the type of key-pair generated depends upon the current default public-key
algorithm. In this release, this default algorithm is ElGamal. Future releases will add support for
more algorithms, such as RSA.
Developer Release 3.01, June 2000 119

Certificates Introduction to PSE Manager
Known problems with Key Management F

Do not attempt to open another PSE after closing a PSE (or to reload the PSE you
have just closed). Instead exit and restart the tool.

Certificates F

There are two basic types of certificate: Attribute certificates and Name certificates.
As already outlined, attribute certificates act like “tickets”, licensing the verifier to
grant permission to particular authenticated entities for accessing some resource.
Attribute certificates can be chained together via delegation to create indirect
authorizations, often based upon roles that entities possess.

Name certificates are more specialized and essentially allow symbolic names to be
associated with a Principal6 – they act rather like rewrite rules, replacing symbolic
names by particular Principals. Name certificates can be used to create groups of
users, so that each member of the group inherits all the permissions granted to that
group as a whole. With respect to authorizations, Name certificates behave in a
similar way to Attribute certificates with delegation true and a default `allow every-
thing` attribute (i.e. “*”).

Using the PSE Manager for Certificate Management F

As noted earlier, the PSE is essentially a secure key-store, and does not itself
contain certificate data. In order to use key-pairs held within a PSE for signing and
verification purposes, the PSE Manager provides functions for loading, processing
and saving certificate text files.

We can switch from managing keys to managing certificates within the PSE
Manager by selecting the “Certificate Management” pane. This in turn configures
the File menu to provide options that process certificate text files, instead of PSE
data files.

6 The term “Principal” means the Public Key. You might find it helpful to think of it as the entity
to whom the public-private key-pair belongs.
120 Developer Release 3.01, June 2000

Introduction to PSE Manager Certificates
As can be seen, there are 6 certificate processing functions available:

1 New : Invokes the certificate editor to create a new certificate.

2 Edit/browse : Invokes the certificate editor on selected certificates.

3 Sign : This operation tries to sign selected certificates.

4 Validate : This operation checks that the selected certificates are well-formed,
their validity period is meaningful and, if signed, checks that the signature is
valid.

5 Expand : This expands any PSE key-labels used in either the issuer or subject
of selected certificates.

6 UnExpand : (Inverse to Expand.) This matches any literal public-keys against
entries in the current PSE and returns their labels.

Using PSE key-labels as symbolic Principals F

The use of PSE key-pair labels provides a useful and convenient way of referring
Developer Release 3.01, June 2000 121

Certificates Introduction to PSE Manager
to key-pairs defined in the current PSE as shown below:

This shows three certificates, one of which has been signed. All of these certificates
are valid in the sense described above. Because PSE key-labels are purely locally
bound names, they cannot occur within signed certificates – any such labels must
be expanded to literal Principals (i.e. public keys). As a convenience, the signing
operation attempts to expand any symbolic Principals (i.e. PSE key-labels) before
actually signing the certificate, and fails if there are any symbolic Principals remain-
ing.

Partial certificates can be constructed that contain arbitrary key-labels, not only
those in the particular PSE that happens to be loaded at the time. In fact, certificate
management does not require a PSE to be loaded at all – and by switching between
key and certificate management, different PSE’s can be loaded, thus conveniently
allowing different sets of key-pairs and their labels to be used in building up a
particular set of certificates.
122 Developer Release 3.01, June 2000

Introduction to PSE Manager Certificates

for
Creating, Editing and Browsing Certificates F

The Certificate editor pane is used for creating, editing and browsing certificates
and is invoked from the New and Edit/Browse buttons. The New button invokes
the editor on a fresh entry, which if accepted, is added to the end of the certificate
list. The Edit/Browse button invokes the editor on all of the selected certificates.7

The Certificate editor consists of 4 panels:

1 Certificate type: Name or Attribute (Name and Attribute certificates are
explained in the E-speak Architecture Specification Chapter on Access
Control)

2 Specification of Issuer and Subject Principals, using symbolic Principals such
as PSE key-labels, fingerprints of known keys and also arbitrary key-labels
added manually.

3 Specification of the authorization attribute (or ̀ tag’) in the S-expression format
as defined by SPKI. However, for e-speak enabled services, the authorization
expression is generally of this simplified form8:

(net.espeak.method (<interfaces>) (<methods>))

In addition, the tag can be specified from Service Metadata descriptions (see
“Service Metadata and tag files” on page 130 for more details). The delegation
flag can also be specified.

4 Validity period: The period is specified by a Not Before date-time and a Not
After date-time value. These UTC date-time specifications have the following
form:

yyyy-MM-dd_HH:mm:ss

where yyyy = year, MM = month, dd = day, HH = hour, mm = minutes, ss =
seconds.

7 The sole certificate in a certificate list of length one is implicitly selected.
8 The attributes/tags used by e-speak enabled services can be more complex than

this – see the E-speak Architecture Specification Chapter on Access Control
full details. Additionally, the standard atom: net.espeak.method is generally
suppressed when displaying standard tags.
Developer Release 3.01, June 2000 123

Certificates Introduction to PSE Manager
The Certificate editor is shown below:

Know problems with certificate management F

• Do not try to sign a certificate with the issuer field expanded. When the PSE
manager signs a certificate it tries to expand the issuer field and fails if it is
already expanded. Note that the subject field should only be expanded if the key
is not available in the currently open PSE (as in the case of when Bob signs a
certificate from Alice in “Certificates generated by Alice and Bob” on page 128).

• Expanding or collapsing a signed certificate destroys the signature on that certif-
icate.
124 Developer Release 3.01, June 2000

Introduction to PSE Manager Using PSE Manager as an Attribute Certificate Issuer
Using PSE Manager as an Attribute Certificate Issuer F

We now give a short scenario to show how the features of a tool like PSE Manager
can be used to issue certificates where two separate entities are involved. The
objective of the scenario is to show how PSE Manager can facilitate communication
of public key information from one entity to another.

NOTE: The procedure discussed below is not secure on its own – it merely serves to
show how public-key information can be exchanged using the features provided by
PSE Manager.

Imagine that Alice wants to sign-up to the fabulously chic e-speak enabled service,
Gadgets-R-Us, that is administered by Bob. However, there is a just one small prob-
lem – Alice needs a Service Access Certificate issued by Bob that uses one of Alice’s
public-keys as the certificates’ subject Principal.

Fortunately, both Alice and Bob can each use PSE Manager with their own PSE’s to
achieve this happy situation. This dialogue just consists of two steps.

1 Alice uses PSE Manager, loaded with her own PSE, to construct a certificate
and selects the label of one of her Principals for use as both the Issuer and
Subject Principal. The other fields can be set arbitrarily, but validly. For exam-
ple, the tag field can consist of a string requesting Bob to construct a service
access certificate. The resulting certificate is signed by Alice, saved into a text
file (called here aliceRequest.adr) and sent to Bob by, for example, conven-
tional e-mail.

2 Bob now uses PSE Manager with his own PSE, and imports Alice’s self-signed
certificate as a text file edited out of his e-mail.
Developer Release 3.01, June 2000 125

Using PSE Manager as an Attribute Certificate Issuer Introduction to PSE Manager
At this stage, Bob should consider whether the certificate really was sent by
Alice, whoever she is. There are some checks that Bob can do here – such as
check that the fingerprint associated with the Issuer and Subject Principal are
identical. Bob could do some checks offline for himself, perhaps by direct
contact with Alice. Also, Alice could have offered other additional authentica-
tion evidence that Bob could do some checks against. Anyhow, lets assume that
Bob satisfies himself that Alice should be issued with a Service Access Certifi-
cate for Gadgets-R-Us.
126 Developer Release 3.01, June 2000

Introduction to PSE Manager Using PSE Manager as an Attribute Certificate Issuer
Using the PSE Manager, Bob can construct a fresh attribute certificate contain-
ing Alice’s Principal as Subject. Bob adds appropriate attributes, validity period,
delegation rights and uses one of his own key-pairs as the Issuer. The resulting
certificate is then signed by Bob, saved to a text file (called here issued-
Certs.adr) and then sent back to Alice, again perhaps using conventional
e-mail.

At the end of all this, Alice now possesses a Service Access Certificate that she
can use to access Bob’s Gadgets-R-Us service, by using the SLS secure session
protocol provided within e-speak security.
Developer Release 3.01, June 2000 127

Using PSE Manager as an Attribute Certificate Issuer Introduction to PSE Manager
Lightly edited versions of the text files, aliceRequest.adr and issued-
Certs.adr produced by Alice and Bob can be found in the following section.

Certificates generated by Alice and Bob F

This section contains lightly edited version of the text files, aliceRe-
quest.adr and issuedCerts.adr, as generated by PSE Manager in the above
example:

aliceRequest.adr

!!! Certificate Data File : C:\ … \aliceRequest.adr
!!! Written by PSE Manager v0.5 : $Revision: 1.1.2.2 $ $Date: 2000/05/12 14:12:24 $
!!! Dated 2000-05-30_20:32:58

((signed (cert
(issuer (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357"))
(subject (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357"))
(tag ("Please issue me a service access certificate - Alice"))
(not-before 2000-05-30_20:28:38)
(not-after 2000-05-31_20:28:38)
) (signature (hash SHA-1 "a\210i\330\263o\303\336j;q\000\037 …")

 (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357")
 "\003\017l\314\254\227 …"))

)

!!! Summary:
!!! ========
!!! Signed objects = 1
!!! Unsigned objects = 0
!!! Name Certificates = 0
!!! Attr. Certificates = 0

issuedCerts.adr

!!! Certificate Data File : C:\ … \issuedCerts.adr
!!! Written by PSE Manager v0.5 : $Revision: 1.1.2.2 $ $Date: 2000/05/12 14:12:24 $
!!! Dated 2000-05-30_21:00:21

((signed (cert
(issuer (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357"))
(subject (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357"))
(tag ("Please issue me a service access certificate - Alice"))
(not-before 2000-05-30_20:28:38)
128 Developer Release 3.01, June 2000

Introduction to PSE Manager Using PSE Manager as an Attribute Certificate Issuer
(not-after 2000-05-31_20:28:38)
) (signature (hash SHA-1 "a\210i\330\263o\303\336j;q\000\037 …")

 (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357")
 "\003\017l\314\254\227 …"))

(signed (cert
(issuer (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … E\024\252B{ [e"))
(subject (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … \177.\312\357"))
(tag (net.espeak.method Trigonometric (* set sine cosine tangent)

(Mathematical)))
(not-before 2000-05-30_20:56:52)
(not-after 2002-05-30_20:56:52)
) (signature (hash SHA-1 " \b\253\225\037W\"0\351\352 …")

 (public-key elgamal-pkcs1 "\003\017v\245\235b\004 … E\024\252B{
[e")
 "\003\017PZ\031\235g!a …"))

)

!!! Summary:
!!! ========
!!! Signed objects = 2
!!! Unsigned objects = 0
!!! Name Certificates = 0
!!! Attr. Certificates = 0
Developer Release 3.01, June 2000 129

Service Metadata and tag files Introduction to PSE Manager
Service Metadata and tag files F

The Certificate editor permits Authorisation Attributes (or ̀ tags’) to either be edited
textually or to be structurally edited using schematic data specified using Service
Metadata tag files.

The purpose of these Service Metadata text files is to simply specify the interfaces
that a particular service provides to its users and also the methods that each of
these interfaces provide. Here is a simple example of a tag file (called serviceM-
etadata.dat):

SERVICENAMEMathematical
Arithmeticadd:subtract:multiply:divide
Calculusdifferentiate:integrate
Trigonometricsine:cosine:tangent:secant:cosec:cotangent
NumberTheoretichcf:lcd:nextPrime

NOTE: SERVICENAME is what is called the serviceID in the E-speak Architecture
Specification and J-ESI Programmer’s Guide.

The first line specifies the serviceID (i.e. Mathematical), and subsequent
lines specify particular interfaces (i.e. Arithmetic, Calculus, Trigono-
metric, NumberTheoretic). The remainder of each line specifies the
names of public methods that each interface supports, separated by colons.
So, the above specifies that the Calculus interface can support the two
methods:

differentiate and integrate

This metadata is used to derive a simple structural GUI dialog which eases
the entry of structured tag data. For example, using the tag file serviceM-
etadata.dat defined above, here is an example use of the structural dialog
that is generated:
130 Developer Release 3.01, June 2000

Introduction to PSE Manager Service Metadata and tag files
By clicking the Yes button, the following tag is created:

(net.espeak.method Arithmetic (* set add multiply divide) (Mathematical))

Compound tag permissions for several interfaces can be generated by visiting the
tab pane corresponding to each interface required, and then selecting the particular
methods required. The resulting composite tag expression is constructed from the
selections made on each interface.
Developer Release 3.01, June 2000 131

Service Metadata and tag files Introduction to PSE Manager
132 Developer Release 3.01, June 2000

A
about the echo program 77
access configuration, testing web 44
advertising services 61

across the Internet 65
in a local domain 66
starting 67
with or without a backend ldapdirectory 70
within an enterprise 65

apis 4
applications

contributed 5
distributed 86

B
backend ldap directory, starting advertising service with or without a 70
basic security model 93
bootstrap process for testing

securtiy 95
building and running the echo program 78
building event listeners, event subscribers 61

C
classpath variable automatically, setting the 16
components, structure 2
configuration files

sample security 51
security 97

configuration for persistence 53
configuration, testing web access 44
configuring

advertising service 64
HP-UX 24
integrated development environments 56
Linux 32
security services 49
Developer Release 3.01, June 2000 cxxxiii

Windows NT 14
connection object files 86
console, system deployment 51
contributed applications 5
core 4
core event distributor, running the 61
core-generated events 60
current release components 5

D
data and metadata, removing and replacing repository 54
debug logging 43
dependencies, external module 13, 22, 30
deployment console, system 51
deployment console, working with the 52
directory structure, release 7
distributed echo program on two logical machines, setting up a 88
distributor, running the core event 61

E
echo on HP-UX or Linux, running 84
echo on Windows NT, running 79
echo program

about the 77
building and running 78
two logical machines, setting up a distributed 88

echo syntax 78
environment variables, setting the 15, 25, 32
environments, personal security 48
e-speak

environment variables 15, 25, 32
e-speak, un-installing 14
event distribution service 60
event distributor, running the core 61
event generators 61
events, core-generated 60
cxxxiv Developer Release 3.01, June 2000

examples
security 101

external module dependencies 13, 22, 30

F
files, connection object 86
finding information 8

G
getting the latest version 13, 22, 29
group name, selecting a 66
groups in a single service directory, multiple 66

H
how applications work 77
HP-UX installation 20
HP-UX or Linux, running echo 84

I
implementation, restrictions 38
information, finding 8
installation, HP-UX 20
installation, testing the 18, 27, 35
installation, Windows NT 12
installing 38

apache jserv on NT 39
apache web server on NT 39
deployment console 52
directory server 62
Linux 29
software and user privileges 23
Windows NT 14

L
latest version, getting the 13, 22, 29
ldap directory, starting advertising service with or without a backend 70
Developer Release 3.01, June 2000 cxxxv

ldap server 62
Linux, running echo on HP-UX 84
logging, debug 43
logical machines, setting up 87
logical machines, setting up a distributed echo program on two 88
logical machines, using 87

M
machines, setting up logical 87
management services 70
message logging, security 101
metadata 53
metadata, removing and replacing repository data and 54
module dependencies, external 13, 22, 30
multiple groups in a single service directory 66

N
NT installation, Windows 12
NT, running echo on 79

O
object files, connection 86

P
parameters, specified 67
parameters, specifying repository 55
persistence, configuration for 53
personal security environments 48
privileges, software 30
program, running 89
program, setting up the 88
properties, security 99
property conversion, security 99
property file syntax, security 99
PSE and certificates, security 94
PSE manager, security 94
cxxxvi Developer Release 3.01, June 2000

R
release directory structure 7
removing and replacing repository data and metadata 54
replacing repository data and metadata, removing and 54
repository data and metadata, removing and replacing 54
repository parameters, specifying 55
restarting 54
restrictions on implementation 38
running echo on HP-UX or Linux 84
running echo on Windows NT 79
running the core event distributor 61
running the echo program 78
running the program 89

S
sample config.cfg file, security 101
sample security configuration file 51
security 48

argument specificationsargument specifications, security 99
basic security model 93
bootstrap process for testing 95
configuration files 97
examples 101
message logging 101
properties 99
property conversion 99
property file syntax 99
PSE and certificates 94
PSE manager 94
sample config.cfg file 101
tracing 101

security configuration file, sample 51
security environments, personal 48
selecting a group name 66
server, ldap 62
service directory, multiple groups in a single 66
Developer Release 3.01, June 2000 cxxxvii

service with or without a backend ldap directory, starting advertising 70
service, starting the advertising 67
services, standard 4
setting the classpath variable automatically 16
setting the environment variables 15, 25, 32
setting up a distributed echo program on two logical machines 88
setting up logical machines 87
setting up the program 88
single service directory, multiple groups in a 66
software and privileges 30
specified parameters 67
specifying repository parameters 55
standard services 4
starting advertising service with or without a backend ldap directory 70
starting the advertising service 67
structure and components 2
structure, release directory 7
syntax, echo 78
sysloader utility 53
system deployment console 51

T
testing the installation 18, 27, 35
testing web access configuration 44
tracing, security 101
troubleshooting

echo on Windows NT 84
HP-UX installations 29
sysloader 56
WebAccess 47

two logical machines, setting up a distributed echo program on 88

U
un-installing e-speak 14
utility, sysloader 53
cxxxviii Developer Release 3.01, June 2000

V
variables, setting the environment 15, 25, 32
version, getting the latest 13, 22, 29

W
web access configuration, testing 44
WebAccess 37
WebAccess features 38
Windows NT installation 12
Windows NT, running echo on 79
working with the deployment console 52
Developer Release 3.01, June 2000 cxxxix

	Introduction
	How E-speak Works
	Structure and Components
	Current E-speak Release Components

	About This Guide
	Where to Get More Information

	Installing and Configuring
	Windows NT Installation
	System Requirements
	Before You Begin
	Installing E-speak on Windows NT
	Configuring e-speak for Windows NT
	Starting Basic Services

	HP-UX Installation
	System Requirements
	Before You Begin
	Installing E-speak on HP-UX
	Configuring e-speak for HP-UX
	Starting Basic Services

	Linux Installation
	System Requirements
	Before You Begin
	Installing E-speak on Linux
	Configuring e-speak for Linux
	Starting Basic Services

	Expanding E-speak Functionality
	WebAccess
	Restrictions on Implementation
	WebAccess Features
	Installation
	Testing Web Access Configuration
	Troubleshooting WebAccess

	Security
	Configuring E-speak Security Services
	More Information

	System Deployment Console
	Starting the Deployment Console
	Working with the Deployment Console

	Configuration for Persistence
	Configuring Integrated Development Environments

	Running E-speak Standard Services
	Event Distribution Service
	Core-Generated Events
	Running the Core Event Distributor
	Building Event Listeners, Event Subscribers, and Event Generators

	Advertising Service
	LDAP Server
	How to Download the LDAP JDK
	Configuring the Advertising Service
	How to Advertise Services
	Starting the Advertising Service

	Management Services
	Logging Service
	Process Manager
	Policy Manager

	Working With Applications
	How Applications Work in E-speak
	About The Echo Program
	Building and Running the Echo Program
	Running Echo on HP-UX or Linux

	Distributed Applications
	Connection Object Files
	Logical Machines
	Setting Up a Distributed Echo Program on Two Logical Machines

	Using Security in E-speak
	The Basic Security Model
	PSEs and Certificates
	PSE Manager

	Bootstrap Process for Testing
	Configuration Files
	Property File Syntax
	Property Conversion
	Argument Specifications
	Security Properties

	Security Examples

	SysLoader Utility
	SysLoader Utility
	Controlling the Classes Loaded at Start-Up
	Example .ini File

	‘espeak’ Utility
	Help Page for espeak

	Introduction to PSE Manager
	Private Secure Environment
	The PSE Manager
	Starting the PSE Manager
	Creating a PSE
	Generating Key Pairs
	Saving a PSE
	Known problems with Key Management

	Certificates
	Using the PSE Manager for Certificate Management
	Using PSE key-labels as symbolic Principals
	Creating, Editing and Browsing Certificates
	Know problems with certificate management

	Using PSE Manager as an Attribute Certificate Issuer
	Certificates generated by Alice and Bob

	Service Metadata and tag files

