
http://www.!ickr.com /photos/ro" /2097239111/

Nate Foster
Cornell University
Spring 2013

Based on lecture notes by Jennifer Rexford and Michael Freedman

CS 5114
Network Programming Languages
Control Plane

Announcements

Breakfast pickup and presentations posted to website

Reviews: start today!
•! Only review one paper but please read them all
•! Please submit by CMS in the future

Homework #1
•! Will go out next Tuesday
•! Due 2 weeks later
•! Topic: OpenFlow programming

Overview

Host (last time)
•! Network discovery and bootstrapping
•! Resource allocation and interface to applications

Data plane (next time)
•! Streaming algorithms and switch fabric
•! Forward, !lter, buffer, schedule, mark, monitor, …

Control plane (today)
•! Distributed algorithms for computing paths
•! Disseminating the addresses of end hosts

Data, Control, and Management Planes

Data Control Management

Time-
scale

Packet (ns)
Event

 (10 ms to sec)
Human

(min to hours)

Tasks

Forwarding,
buffering,
!ltering,

scheduling

Routing,
signaling

Analysis,
con!guration

Location Line-card
hardware Router software Humans or scripts

Routing vs. Forwarding

Routing: control plane
! !Computing paths the packets will follow
! !Routers talking amongst themselves
! ! Individual router creating a forwarding table

Forwarding: data plane
! !Directing a data packet to an outgoing link
! ! Individual router using a forwarding table

6

Data and Control Planes

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control plane

Routing Protocols

What does the protocol compute?
! ! Spanning tree, shortest path, local policy, arbitrary end-

to-end paths?

What algorithm does the protocol run?
! ! Spanning-tree construction, distance vector, link-state

routing, path-vector routing, source routing, end-to-
end signaling

How do routers learn end-host locations?
! ! Learning/#ooding, injecting into the routing protocol,

dissemination using a different protocol, and directory
server

What Does the Protocol Compute?

Different Ways to Represent Paths

Static Model
! ! The outcome of routing computations
! ! Not how the (distributed) computations are performed

Trade-offs
! ! State required to represent the paths
! ! Efficiency of the resulting paths
! ! Ability to support multiple paths
! ! Complexity of computing paths
! ! Which nodes control the computation

Different Settings
! ! LAN, intradomain, interdomain

Spanning Tree

A tree that connects every node
! ! Single path between each pair of nodes
! ! No loops, so supports broadcast easily

Disadvantages
! ! Paths can sometimes be long
! ! Some links unused!

Shortest Paths

Shortest path(s) between each pair of nodes
! ! Separate shortest-path tree rooted at each node
! ! Minimum hop count (or minimum sum of weights)

Disadvantages
! ! All nodes must agree on the link metrics
! ! Multipath routing is limited (e.g., Equal Cost Multipath)

Local Policy at Each Hop

Locally best path
! ! Each node picks the path it likes best
! ! … from among the paths selected by its neighbors

Disadvantages
! ! More complicated to con!gure and model

2

3 1

4

d
5

6

2

3 1

4

d
5

6

1 d
1 2 d

2 1 d
2 d 3 2 d

3 4 d

4 d
5 4 d

6 4 d
6 5 4 d

1 d
1 2 d

2 1 d
2 d

4 d

3 2 d
3 4 d

5 4 d

6 4 d
6 5 4 d

End-to-End Path Selection

End-to-end path selection
! ! Each node picks its own end to end paths
! ! … independent of what other paths other nodes use

Disadvantages
! ! More state and complexity in the nodes
! ! Hop-by-hop destination-based forwarding is not enough

How to Compute Paths?

Spanning Tree Algorithm

Elect a root
! ! Select switch with the smallest identi!er and form a tree

Algorithm
! ! Repeatedly talk to neighbors
–!“I think node Y is the root”
–!“My distance from Y is d”

! ! Update state based on neighbors
–!Smaller id as the root
–!Smaller distance d+1

! ! Disable interfaces not on path

Primarily used in Ethernet-based LANs

root

One hop

Three hops

Spanning Tree Example: Switch #4

Switch #4 thinks it is the root
! ! Sends (4, 0, 4) message to 2 and 7

Switch #4 hears from #2
! ! Receives (2, 0, 2) message from 2
! ! … and thinks that #2 is the root
! ! And realizes it is just one hop away

Switch #4 hears from #7
! ! Receives (2, 1, 7) from 7
! ! And realizes this is a longer path
! ! So, prefers its own one-hop path
! ! And removes 4-7 link from the tree

root

1

3 5

2

4

7
6

Shortest-Path Problem

Compute: path costs to all nodes
! ! From a given source u to all other nodes
! ! Cost of the path through each outgoing link
! ! Next hop along the least-cost path to s

3
2

2

1

1
4

1

4

5

3

u

s
6

Link State: Dijkstra’s Algorithm

S = {u}
for all nodes v
 if (v is adjacent to u)
 D(v) = c(u,v)
 else D(v) = ∞

add w with smallest D(w) to S
update D(v) for all adjacent v:
 D(v) = min{D(v), D(w) + c(w,v)}
until all nodes are in S

•!Flood the topology information to all nodes
•!Each node computes shortest paths to other nodes

Initialization Loop

Used in OSPF and IS-IS

Link-State Routing Example

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

Link-State Routing Example (continued)

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

Link State: Shortest-Path Tree

Shortest-path tree from u Forwarding table at u

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

Distance Vector: Bellman-Ford Algorithm

De!ne distances at each node x
! ! dx(y) = cost of least-cost path from x to y

Update distances based on neighbors
! ! dx(y) = min {c(x,v) + dv(y)} over all neighbors v

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t du(z) = min{c(u,v) + dv(z),
 c(u,w) + dw(z)}

Used in RIP and EIGRP

Distance Vector: Count to In!nity

Link cost changes:
•! Good news travels fast

•! Bad news travels slow: “count
to in!nity” problem!

X Z
1 4

50

Y
60

algorithm
continues

on!

Path-Vector Routing

Extension of distance-vector routing
! ! Support #exible routing policies
! ! Avoid count-to-in!nity problem

Key idea: advertise the entire path
! ! Distance vector: send distance metric per dest d
! ! Path vector: send the entire path for each dest d

3 2 1

d

Aþd: path (2,1)Aÿ Aþd: path (1)Aÿ

data traffic data traffic

Used in BGP

Path-Vector: Faster Loop Detection

Node can easily detect a loop
! ! Look for its own node identi!er in the path
! ! E.g., node 1 sees itself in the path “3, 2, 1”

Node can simply discard paths with loops
! ! E.g., node 1 simply discards the advertisement

3 2 1

Aþd: path (2,1)Aÿ Aþd: path (1)Aÿ

Aþd: path (3,2,1)Aÿ

Path-Vector: Flexible Policies

Each node can apply local policies
! ! Path selection: Which path to use?
! ! Path export: Which paths to advertise?

Examples
! ! Node 2 may prefer the path “2, 3, 1” over “2, 1”
! ! Node 1 may not let node 3 hear the path “1, 2”

2 3

1

2 3

1

End-to-End Signaling

Establish end-to-end path in advance
! ! Learn the topology (as in link-state routing)
! ! End host or router computes and signals a path

Routers supports virtual circuits
! ! Signaling: install entry for each circuit at each hop
! ! Forwarding: look up the circuit id in the table

1

2

1: 7
2: 7

link 7 1: 14
2: 8

link 14

link 8

Used in MPLS with RSVP

Source Routing

Similar to end-to-end signaling
! ! But the data packet carries the hops in the path
! ! … rather than the routers storing big tables

End-host control
! ! Tell the end host the topology
! ! Let the end host select the end-to-end path

Variations of source routing
! ! Strict: specify every hop
! ! Loose: specify intermediate points

Used in IP source routing (but almost always disabled)

Learning Where the Hosts Are

Building a forwarding table
! ! Computing paths between network elements

! ! … and !guring out where the end-hosts are

! ! … to map a destination address to an outgoing link

How to !nd the hosts?
! ! Learning/#ooding

! ! Injecting into routing protocol

! ! Dissemination via different protocol

! ! Directory service

Finding the Hosts

Learning and Flooding

When a frame arrives
! ! Inspect the source address
! ! Associate address with

the incoming interface

When the frame has an
unfamiliar destination
! ! Forward out all interfaces
! ! … except for the one where

the frame arrived

A

B

C

D

Switch
learns how
to reach A.

A

B

C

D

When in
doubt,
shout!

Used in Ethernet LANs

Inject into Routing Protocol

Treat the end host (or subnet) as a node
! ! And disseminate in the routing protocol
! ! E.g., #ood information about where addresses attach

3
2

2

1

1
4

1

4

5

3

u

s 6
Used in OSPF and
IS-IS, especially in

enterprise networks
. . .

Disseminate With Another Protocol

Distribute using another protocol
! ! One router learns the route
! ! … and shares the information with other routers

learn a route to d
(e.g., via BGP)

disseminate
route to other

routers

Internal BGP (iBGP)
used in backbone

networks

Directory Service

Contact a service to learn the location
! ! Lookup the end-host or subnet address
! ! … and learn the label to put on the packet
! ! … to get the traffic to the right egress point

s

d
i

e

directory

AþHost d is at egress eAÿ

Encapsulate packet to send to egress e.
Used in some
data centers

Conclusion

Routing is challenging
! ! Distributed computation
! ! Challenges with scalability and dynamics

Many different solutions for different environments
! ! Ethernet LAN: spanning tree, MAC learning, #ooding
! ! Enterprise: link-state, inject subnet addresses

! ! Backbone: link-state inside, path-vector routing with
neighboring domains, and iBGP dissemination

! ! Data centers: many different solutions, still in #ux
–!E.g., link-state routing or multiple spanning trees
–!E.g., directory service, inject subnet

“Design Philosophy of the DARPA

Internet Protocols”
(ACM SIGCOMM, 1988)

David Clark

Design Goals

Primary goal
! ! Effective technique for multiplexed utilization of

existing interconnected networks (e.g., ARPAnet, packet
radio)

Important goals
! ! Survivability in the face of failure
! ! Multiple types of communication service
! ! Wide variety of network technologies

Less important goals
! ! Distributed management of resources
! ! Cost effectiveness
! ! Host attachment with low level of effort
! ! Accountability of resources

Consequences of the Goals

Effective multiplexed utilization of existing networks
! ! Packet switching, not circuit switching

Continued communication despite network failures
! ! Routers don’t store state about ongoing transfers
! ! End hosts provide key communication services

Support for multiple types of communication service
! ! Multiple transport protocols (e.g., TCP and UDP)

Accommodation of a variety of different networks
! ! Simple, best-effort packet delivery service
! ! Packets may be lost, corrupted, or delivered out of order

Distributed management of network resources
! ! Multiple institutions managing the network
! ! Intradomain and interdomain routing protocols

Questions

What if we started with different goals?
! ! Network management
! ! Less concern about backwards compatibility
! ! More concern about security

Can we address new challenges
! ! Management, security, privacy, sensor nets, …
! ! Without sacri!cing the other goals?
! ! Without a major change to the architecture?

“End-to-End Routing

Behavior in the Internet”
(ACM SIGCOMM, 1996; ToN, 1997)

Vern Paxson

Measurement With Traceroute

Traceroute tool to measure the forwarding path
! ! Send packets with TTL=1, 2, 3…
! ! Record the source of the “time exceeded” message

Useful, but introduces many challenges
! ! Path changes
! ! Non-participating nodes
! ! Inaccurate, two-way measurements

source destination

TTL=1
Time

 exceeded

TTL=2

Questions

Why canAût we measure the Internet more directly?
! ! What can we do about it?

Right division of labor between host and network?
! ! For path selection
! ! For network monitoring

How do we !x these routing problems?
! ! In a decentralized, federated network
! ! How to incentivize better network management

Backup Slides on Paxson Paper

Paxson Study: Forwarding Loops

Forwarding loop
! ! Packet returns to same router multiple times

May cause traceroute to show a loop
! ! If loop lasted long enough
! ! So many packets traverse the loopy path

Traceroute may reveal false loops
! ! Path change that leads to a longer path
! ! Causing later probe packets to hit same nodes

Heuristic solution
! ! Require traceroute to return same path 3 times

Paxson Study: Causes of Loops

Transient vs. persistent
! ! Transient: routing-protocol convergence
! ! Persistent: likely con!guration problem

Challenges
! ! Appropriate time boundary between the two?
! ! What about #aky equipment going up and down?
! ! Determining the cause of persistent loops?

Anecdote on recent study of persistent loops
! ! Provider has static route for customer pre!x
! ! Customer has default route to the provider

Paxson Study: Path Fluttering

Rapid changes between paths
! ! Multiple paths between a pair of hosts
! ! Load balancing policies inside the network

Packet-based load balancing
! ! Round-robin or random
! ! Multiple paths for packets in a single #ow

Flow-based load balancing
! ! Hash of some !elds in the packet header
! ! E.g., IP addresses, port numbers, etc.
! ! To keep packets in a #ow on one path

Paxson Study: Routing Stability

Route prevalence
! ! Likelihood of observing a particular route
! ! Relatively easy to measure with sound sampling
! ! Poisson arrivals see time averages (PASTA)
! ! Most host pairs have a dominant route

Route persistence
! ! How long a route endures before a change
! ! Much harder to measure through active probes
! ! Look for cases of multiple observations
! ! Typical host pair has path persistence of a week

Paxson Study: Route Asymmetry

Hot-potato routing Other causes
! ! Asymmetric link weights in

intradomain routing
! ! Cold-potato routing, where AS

requests traffic enter at particular
place

Consequences

! ! Lots of asymmetry
! ! One-way delay is not necessarily

half of the round-trip time

Customer A

Customer B

multiple
peering
points

Provider A

Provider B

Early-exit
routing

