
Principles & Practices Principles & Practices
of Software Developmentof Software Development

Daniel Spoonhower Daniel Huttenlocher

Carnegie Mellon University Cornell University
Pittsburgh, PA Ithaca, NY

Intelligent Markets, Inc.
San Francisco, CA

New York, NY

In This TalkIn This Talk

• Purpose
– Relate some of our experience
– Introduce way of talking about software

development
• Language for dialogue

• Audience
• Not in this talk

– Breadth of experiences
– Scientific study

OutlineOutline

• Background
• Experience: Requirements & Estimation
• Terminology: Principles, Problems and

Practices
– Some examples & comparisons
– Things to look out for (e.g. competing

Principles)
• Relating Principles to experience

BackgroundBackground

• Our task – system for trading convertible
bonds

• Our (prior) experience
• Our team – best people we’d ever worked

with
• Our challenge:

– High reliability
– Complex (user) requirements
– Technically challenging
– Demanding schedule

BackgroundBackground

• Your experiences?
– Written software (or just programs)?

• Your teams?
– Size, project duration?

• Your challenges?

Simplified OrganizationSimplified Organization

Marketing

Product Management

QA

Customers

Engineering

Requirements & EstimationRequirements & Estimation

Requirements & EstimationRequirements & Estimation

• First implementation
– Started with partial outsourced version
– Screen shots used as requirements

• No product management
– Responsibilities shared by marketing &

engineering
• Internal customer

– Frequent delivery, rapid feedback

First Solution(!) ResultsFirst Solution(!) Results

• Sparse documentation
– Both requirements and implementation
– Verbally conveyed = many changes
– Written by developers

• Success!
– Very flexible, agile process
– System launched in 8 months
– Many lessons learned

Product ManagementProduct Management

• Second solution
– Now enterprise software not service
– External customers
– Demanded clearer definition of product

• Feature by feature description
– Hierarchical, outline format

• Specification change process
– Manage document updates
– Understand effects of changes

Second SolutionSecond Solution

• Problems:
– Lacked coherence
– Serving many different parts of the

company
• Marketing, product design, engineering

– Didn’t convey understanding
– Delivered on-time but with poor set of

features

More DocumentationMore Documentation

• Third solution (attempted, not fully
implemented):
– Several levels of documentation, one for

each use, e.g.
• MRD (Marketing)
• HLD & DLD (Product Management and QA)
• TD (Engineering and QA)

• Conventional big company approach

Third(!) Solution ResultsThird(!) Solution Results

• Problems:
– Lots of effort, difficult to manage

• Many dependencies, gated tasks
– Skew between different documents
– Focus on documents more than on

development

Interleaved StagesInterleaved Stages

• Our final solution: incremental!
– Alternate requirements with estimates
– Start with quick, rough ideas; work towards

details
– Drive to ship date – cut features to do so

Interleaved StagesInterleaved Stages

• Requirements
– Business need, short descriptions,

detailed functional and UI specs
– Reprioritize as estimates established

• Several levels of specs and estimates
– Day-week-month, “factor of 2 guess”,

then +/- 25% with small tasks
– More specific estimates derived from more

detailed specs

Ongoing ChallengesOngoing Challenges

• “Delta” specifications – note changes to
product
– Need both complete and difference spec

• Product team gaining understanding of
implementation
– Can find more workable solutions
– More difficult to think independently

• Meet the needs of testing
– Function point combinations
– Workflow sequences

Lessons LearnedLessons Learned

• Communication is important
– Business needs engineering
– Estimates & implementation PM

• Conflicting forces:
– Include the best features
– Ensure maintainability
– Ship on time

• Make sure the process focuses
resources on getting product done

TerminologyTerminology

TerminologyTerminology

Principle
A comprehensive and fundamental law,
doctrine, or assumption. Principles may
be universal, or they may apply only to
certain types of projects.

TerminologyTerminology

Principle
A comprehensive and fundamental law,
doctrine, or assumption. Principles may
be universal, or they may apply only to
certain types of projects.

• Predictive
• Broadly applicable
• Relates to experience
• Expands understanding

TerminologyTerminology

Problem
Something that can get in the way of
rapidly developing high quality software
that meets customer needs, while having
fun doing it.

TerminologyTerminology

Problem
Something that can get in the way of
rapidly developing high quality software
that meets customer needs, while having
fun doing it.

• Observable
• Describes a state of being
• To be identified, minimized, avoided,

solved

TerminologyTerminology

Practice
A way of acting or working so as to avoid
or to alleviate problems in developing
software.

TerminologyTerminology

Practice
A way of acting or working so as to avoid
or to alleviate problems in developing
software.

• Most importantly: an action
• Still abstract (as opposed to

implementation)
• Focus of many methodologies

Our GoalsOur Goals

• Explicitly enumerate
• Study interactions
• Compare results

BUT…
…keep them separate!

Principles

Problems

Practices

Principles, Problems and Principles, Problems and
PracticesPractices

Principles, Problems and Principles, Problems and
PracticesPractices

• Seen some Problems and Practices
related to requirements and estimation

• Consider some underlying Principles
– Sometimes competing

• Relate to the experiences in
specification and estimation

Domain ExpertiseDomain Expertise

Principle: Understanding the domain is
critical to understanding, explaining, and
interpreting user requirements.

Domain ExpertiseDomain Expertise

Principle: Understanding the domain is
critical to understanding, explaining, and
interpreting user requirements.

• Key to many of our initial practices
• Important for communication

– Understand language; interpret spec
– Critical for QA
– Understand user needs (and feedback)

Changing RequirementsChanging Requirements

Principle: Requirements change, both
because the understanding of the needs
of users change and because the needs
themselves change.

Changing RequirementsChanging Requirements

Principle: Requirements change, both
because the understanding of the needs
of users change and because the needs
themselves change.

• When is a specification finished? Never!
– But need to ship the product

• All requirements change
– More changes for new products

Specification CostSpecification Cost

Principle: There is a high cost to writing
and maintaining detailed specification
documents that are accurate and
effectively convey understanding.

Specification CostSpecification Cost

Principle: There is a high cost to writing
and maintaining detailed specification
documents that are accurate and
effectively convey understanding.

• What form of specification is most
useful? E.g.
– None, note cards, templates
– Functional, UI, relationship, sequence

Little or No Specification?Little or No Specification?

• Advocated by eXtreme Programming
• Successful practice for our first

implementation
• For large and/or new projects, cost of

maintenance can be astronomical
– E.g. “big company” approach

Why do we need a specification?

Unreliable MemoryUnreliable Memory

Principle: Personal memory is a poor
substitute for a written document.

Unreliable MemoryUnreliable Memory

Principle: Personal memory is a poor
substitute for a written document.

• Verbal communication can easily be
misconstrued

• Memories fade over time
• People make expensive storage devices

Adequate SpecificityAdequate Specificity

Principle: When customer needs admit
many interpretations, precise
descriptions help ensure usability and
quality.

Adequate SpecificityAdequate Specificity

Principle: When customer needs admit
many interpretations, precise
descriptions help ensure usability and
quality.

• Applies differently to different projects
– Depends on complexity of user needs
– E.g. compression software

Detailed Specification?Detailed Specification?

• Specification is important for
establishing obligations
– What will be implemented
– What will be tested
– What will be delivered

• Specification evolves with product
– As opposed to Waterfall, where spec

drives remainder of process

Competing PrinciplesCompeting Principles

Unreliable Memory

Adequate
Specification

Changing
Requirements

Specification Cost

How do we achieve a balance?

Clear StatementClear Statement

Principle: A clear and concise statement
of user needs generally results in the
development of better software.

Clear StatementClear Statement

Principle: A clear and concise statement
of user needs generally results in the
development of better software.

• Accessible to company & customers
• Guidelines:

– Use informal communication to establish
understanding

– Use documentation to preserve it

Incremental & IterativeIncremental & Iterative

• Incremental specification avoids risks
inherent in this set of Principles

• Other iterative practices can be found in:
– Technical design
– Scheduling releases

• Negotiation between competing forces
– Taking “small steps” reduces the chance

that one force will “defeat” the others

Driving Force: Ship DateDriving Force: Ship Date

• For new companies
– Establish reputation and credibility

• Balancing force
– Counteracts “feature creep”
– Millions of ways not to ship!

• Healthy part of project lifecycle
– Allow for personnel & process transitions

• It is an external and concrete goal!

Real UseReal Use

Principle: Understanding the needs of
users and validating that those needs
have been met is best done with a real
implementation of the software and real
users.

Real UseReal Use

Principle: Understanding the needs of
users and validating that those needs
have been met is best done with a real
implementation of the software and real
users.

• “Line in the sand”
• Ultimate validation

– Not just for the spec, but for the product

… & Incremental Processes… & Incremental Processes

• Real Use – push the product all the way
through the process
– At regular intervals
– To validate feature set (incremental

specification)
– To check implementation (incremental

delivery)
– To get feedback on the process itself

(projects change – no single process is
“correct”)

SummarySummary

• Use Principles to understand working
constraints
– Abstract away from Problems/Practices

• Be aware of competing Principles
• Use incremental and iterative processes

to alleviate risk caused by conflicts
– Take small steps and re-evaluate

	Principles & Practices of Software Development
	In This Talk
	Outline
	Background
	Background
	Simplified Organization
	Requirements & Estimation
	Requirements & Estimation
	First Solution(!) Results
	Product Management
	Second Solution
	More Documentation
	Third(!) Solution Results
	Interleaved Stages
	Interleaved Stages
	Ongoing Challenges
	Lessons Learned
	Terminology
	Terminology
	Terminology
	Terminology
	Terminology
	Terminology
	Terminology
	Our Goals
	Principles, Problems and Practices
	Principles, Problems and Practices
	Domain Expertise
	Domain Expertise
	Changing Requirements
	Changing Requirements
	Specification Cost
	Specification Cost
	Little or No Specification?
	Unreliable Memory
	Unreliable Memory
	Adequate Specificity
	Adequate Specificity
	Detailed Specification?
	Competing Principles
	Clear Statement
	Clear Statement
	Incremental & Iterative
	Driving Force: Ship Date
	Real Use
	Real Use
	… & Incremental Processes
	Summary

