
CS4860-2020-Full-Lecture 6: PC and iPC are
decidable

Robert L. Constable

September 23, 2020

Abstract

In this lecture we present important results by Godel, Kleene, and others about the intu-
itionistic propositional calculus, iPC. Godel shows that iPC is only apparently narrower
than classical PC. Kleene notes that the consistency of iPC secures the consistency of PC.
Godel showed that there is no truth table decision procedure for iPC. Gentzen showed that
there is a decision procedure for both PC and iPC Investigations into logical deduction by
Gerhard Gentzen, 1969 [11]. Basically we we can prove that iPC is decidable using the
same method that proves PC is decidable. These are important results by some of the best
logicians. We draw heavily on Kleene’s book Introduction to Meta-Mathematics, ISHI Press
International, 2009 [14].

1 Intuitionistic Propositional Logic Axioms

We recall the axioms given in Joan Moschovakis’ 2018 article in the Stanford Encyclopedia of
Mathematics, SEP [19]. These axioms are listed below.

1. A⇒ (B ⇒ A).

2. (A⇒ B)⇒ ((A⇒ (B ⇒ C))⇒ (A⇒ C)

3. (A⇒ (B ⇒ (A & B))

4. (A & B)⇒ A

5. (A & B)⇒ B

6. A⇒ (A ∨B)

7. B ⇒ (A ∨B)

8. (A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C))

9. (A⇒ B)⇒ ((A⇒ ¬B)⇒ ¬A)

10. ¬A⇒ (A⇒ B)
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Next we give Heyting’s eleven axioms for iPC in his North-Holland book Intuitionism, An In-
troduction [12].

1. P ⇒ (P ∨Q).

2. (P ∨Q)⇒ (Q ∨ P )

3. ((P ⇒ R) & (Q⇒ R))⇒ ((P ∨Q)⇒ R)

4. (P ⇒ (P & P )

5. ((P ⇒ Q) & (Q⇒ R))⇒ ((P ∨Q)⇒ R)

6. Q⇒ (P ⇒ Q)

7. (P & (P ⇒ Q))⇒ Q

8. (P & Q)⇒ (Q & P )

9. (P ⇒ Q)⇒ ((P & R)⇒ (Q & R)

10. ¬P ⇒ (P ⇒ Q)

11. ((P ⇒ Q) & (P ⇒ ¬Q))⇒ ¬P

12. ((P ⇒ R) & (Q⇒ R))⇒ ((P ∨Q)⇒ R)

Finally we present the axioms given Stephen Kuznetsov, a student at the University of Pennsyl-
vania interested in intuitionistic logic.

1. A⇒ (B ⇒ A).

2. (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

3. (A & B)⇒ A

4. (A & B)⇒ B

5. (A⇒ (B ⇒ (A & B))

6. (A⇒ (A ∨B)

7. (B ⇒ (A ∨B)

8. (A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C)

9. ⊥ ⇒ A

10. There is one inference rule: A (A⇒ B)/B

We now present the functional programs that are said to realize these axioms.
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1. A⇒ (B ⇒ A) by λ(a.λ(b.a))

2. (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))
by λ(f.λ(ab.λa.f(a)(ab(a))))

3. (A & B)⇒ A by λ(ab.first(ab))

4. (A & B)⇒ B by λ(ab.second(ab))

5. (A⇒ (B ⇒ (A & B)) by λ(a.λ(b. < a, b >))

6. (A⇒ (A ∨B) by λ(a.inl(a))

7. (B ⇒ (A ∨B) by λ(b.inr(b))

8. (A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C) by λ(f.λ(g.λ(ab.decide(ab.a.f(a); b.g(b)))))

9. ⊥ ⇒ A by λ(x.any(x))

10. There is one inference rule: A (A⇒ B)/B

2 Proof Assistants

Proof assistants are used to formalize and implement results in mathematics, to help researchers
precisely formulate open problems and solve them, and to discover interesting new problems and
conjectures. Results with computational content can be executed. Most results can be executed
on laptops, but some rely on a cluster of processors to help find the proof. As a very simple
example, if we formally prove that for any natural number n there is a least prime number p
greater than n, then we can execute the proof on a number and see exactly what the prime
number is. As another example, if we constructively prove that an equation has a real number
solution, then we can compute that real number to arbitrary precision by executing the proof.
This method of using constructive proofs as programs [1] can be provided for number theory, for
significant parts of real and complex analysis, for geometry, for constructive and intuitionistic
topology and for results in other branches of mathematics. There are now several excellent proof
assistants and informative web pages that describe them. We have an especially close relation-
ship with the Coq proof assistant because we use it to prove the Nuprl rules correct. We call this
a dual prover technology.

We were not expecting to create a proof assistant for full intuitionistic analysis in the style of
Luitzen Egbertus Jan Brouwer, L.E.J. Brouwer for short.1 One reason is that Brouwer proved
that there is no way to implement all of intuitionistic mathematics nor even formalize all of it.
Moreover without using diagonalization techniques, Brouwer proved that the intuitionistic reals
are not enumerable. We present that elegant argument later. There are many other results in
his intuitionistic mathematics that have not been formalized and almost surely can be. Those
are results of special interest.

1His friends called him “Bertus.”
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Next we mention other topics of this course. Our approach is informed by a modern reaction
to the quotation from Leopold Kronecker (“Die ganzen Zahlen hat der liebe Gott gemacht, alles
andere ist Menschenwerk” (“The loving God made the integers, all else is people’s work.”). In
the coming age of intelligent machines, we will say something more like this: “In the 20th century
humans built intelligent machines, all else is our work with our colleagues, students, and these
machines.”

3 Introduction and Background

Since 2014 we have been formalizing elements of L.E.J.Brouwer’s intuitionistic mathematics and
implementing them with the Nuprl proof assistant. Results are encouraging. For instance, in-
tuitionistic calculus turns out to be technically simpler than classical calculus. The Continuity
Principle is very expressive and useful, yet it contradicts classical mathematics. Brouwer’s Bar
Induction is a clean and elegant form of induction that is classically valid as well. We present
formal versions of these key principles and theorems. The fact that continuous functions from
closed intervals of the reals into the reals are uniformly continuous saves the work of proving
uniform continuity case by case in applications. Many more examples of the technical advantages
of formal intuitionistic mathematics are included in this course.

The task of implementing mathematics brings together themes at the interface between mathe-
matics and computer science. Computer science (CS) is a young and vibrant branch of science
with roots in mathematics. There are at least four research threads that bring these two dis-
ciplines together. One is the foundations of mathematics thread, tracing its origins as far
back as Euclid, at least 300 BCE. Another is the thread of checking proofs using computers,
active since at least 1970 in the work of N.G. de Bruijn [9]. This theme led naturally to formal
proof creation with computer assistance driven by the creation of proof assistants in com-
puter science. We focus on two proof assistants, Coq [2] and Nuprl [6], because they are closely
related and they work together. There are other excellent proof assistants, some mentioned
later. The fourth theme is theorem and proof discovery using proof assistants. This is part
of the thriving area of computer science called Artificial Intelligence (AI). It is deployed to make
modern proof assistants “smarter.” There have been new discoveries in mathematics as a result
of this synergistic combination of research themes and computer engineering advances. We see
no end in sight to the steadily advancing synergy between technology, mathematical discovery,
human imagination. We will explore all four themes.

Starting circa 1985 the Nuprl proof assistant was used to implement elements of constructive
mathematics including constructive real analysis as presented in Bishop’s book Foundations of
Constructive Analysis [3] and in its enrichment in the Bishop and Bridges version Constructive
Analysis [4]. From that implementation, we began to verify textbook material for real analysis
using Nuprl. In 1986 the PRL research group wrote the book Implementing Mathematics with the
Nuprl proof development system [6]. For various reasons, that book has been cited almost every
week since it was first published by Prentice-Hall. A large team of doctoral students contributed
to the proof assistant and the book. Our current effort to implement intuitionistic mathemat-
ics is undertaken with a smaller group of very experienced computer science researchers. They
are the co-authors on the five articles that document our implementation of core intuitionistic
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mathematics at Cornell University from 2014 until 2019.

In 2020 we are now using this implementation to explore elements of intuitionistic mathematics
including calculus, topology, homotopy theory, and Cubical Type Theory (CTT). This challeng-
ing and exciting effort motivates a search for new ways of making Nuprl “smarter”. Human
intuition has always been critical in creating new mathematics, and we can now explore more
deeply connections between human intuition and machine intelligence.

We have formalized the Nuprl type theory proof rules using the Coq proof assistant [8]. Nowa-
days we do not alter the Nuprl logical rules or add new ones without verifying them in Coq.
We call this a dual prover technology. The Coq and Nuprl teams have worked with each other
in a variety of ways since 1985 until today. We have collaborated on projects some of which we
mention in this book. One outcome is that Coq will have access to elements of intuitionistic
mathematics that we formalize.

We began writing these notes to determine the plausibility of creating a textbook for logic in
computer science with precisely the focus of our title. We are able to draw on Brouwer’s extensive
writings, also on the book The Foundations of Intuitionistic Mathematics [15] by Stephen Cole
Kleene and Richard E. Vesley, the book by Heyting [12, 13] and the books by A.S. Troelstra
[21, 22, 23] and by Dirk van Dalen [24]. We also depend on these resources [16, 14] as well
as [5]. Moreover, Kleene’s former PhD student, Professor Joan Rand Moschovakis, has written
incisively on intuitionism [18, 17]. Her twenty eight page 1999 article with co-author Garyfallia
Vafeiadou entitled Intuitionistic Mathematics and Logic [20] is in our view one of the very best
insightful and compact accounts of intuitionistic mathematics written in English. We draw on
this material and explicitly reference several of their insights and explanations.

The first author of this book was also a PhD student of S. C. Kleene. One of our goals is to
relate several intrinsically computer science ideas to uniquely intuitionistic concepts such as free
choice sequences, realizers for Bar Induction, and for the Continuity Principle. We learned these
ideas from the indispensable book The Foundations of Intuitionistic Mathematics by Kleene and
Vesley [15]. We subsequently studied many publications of Brouwer, Heyting, van Dalen, van
Atten as well as several other modern intuitionists cited in the text. We have explored Brouwer’s
Creating Subject arguments, but do not cover them here.

Before we focus on intuitionism, we want to point out the advantages of creating a book. Our
previous book, Implementing Mathematics with the Nuprl Proof Development System [6], is still
frequently cited after 34 years. In that book and in further work, we implemented several
theorems in Errett Bishop’s book Foundations of Constructive Analysis [3] including some new
material added by Douglas Bridges in the updated book entitled Constructive Analysis [4]. These
implementations allowed us to accomplish tasks in real analysis by executing these formal proofs.
Our implementation brought the book to life. By now that book has well over 1,200 citations.
We wrote something useful which we can now apply to intuitionistic mathematics.

We have permission from the publisher, Springer-Verlag, to display pages of the Bishop and
Bridges book Constructive Analysis on the PRL group home page, we give the url just below.
Dr.Bickford has created links between definitions and theorems in Chapter 1 to their Nuprl
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formalization. An interesting task for future work is to formalize this chapter using our im-
plementation of the relevant concepts from intuitionistic analysis, and compare the results. A
similar artifact was created by Ariel Kellison to link her Nuprl formalization of theorems from
Euclidean geometry to their presentation with diagrams available in Heath’s well known book
on Euclid’s Elements [10].

http://www.nuprl.org/MathLibrary/ConstructiveAnalysis/
http://nuprl-web.cs.cornell.edu/MathLibrary/TheElements/TheElements.html

3.1 Open Problems

For various topics in the subsequent sections, we will want to mention open problems in mathe-
matics and computer science. To that end, we list some of these problems here.

1. Let P stand for the type of polynomial time computable problems and NP for the type of
problems solvable in non-deterministic polynomial time. A famous open problem in com-
puter science posed by Steve Cook [7] in 1971 is whether P = NP . It remains unsolved.

2. The Hodge Conjecture (HC) is that every Hodge Class on a projective complex manifold
is algebraic. A solution of this problem is worth one million dollars.

3. The Riemann Hypothesis (RH) is that the Riemann zeta function has zeros only at the
negative even integers and at complex numbers with real part 1/2. The problem has been
open since it was proposed by Riemann in 1859.

4. Hilbert’s 16th problem, to determine the maximum number of closed separated branches
of a plane algebraic curve of order n.

5. Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes. This
is known to be the case for n < 4× 1018.
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