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Abstract

This is a list of the proof rules used in the completeness proof for intuitionistic First-Order
Logic (iFOL) with respect to uniform validity referenced in the brief introduction. References
are kept to a minimum in this list of rules.

1 Introduction

These iFOL proof rules are not entirely novel, but the refinement style proof system implemented
in proof assistants might not be familiar to all readers. We provide published references for them.
A widely cited source is the book on the Nuprl proof assistant [2]. The rules used here are from [1].

The semantic tradition is grounded in precise knowledge of the underlying computation system and
its efficient implementation made rigorous by researchers in programming languages. Our opera-
tional semantics of evidence terms follows the method of structured operational semantics.

2 Proof Rules and Proof Expressions

We can assign meaning to proofs, either as terms in the meta logic or as terms in the object logic,
according to the “proofs as terms” principle (PAT). Here we view them as terms in the meta logic
in order to keep the object logic standard. The rules include constraints on the subexpressions
of a proof. This is especially natural in refinement style logics and tableaux systems as used in
Constructive Type Theory (CTT) [2].

For each rule we provide a name that is the outer operator of a proof expression with slots to
be filled in as the proof is developed. The partial proofs are organized as a tree generated in two
passes. The first pass is top down, driven by the user creating terms with slots to be filled in then
on the algorithmic bottom up pass once the downward pass is complete. Here is a simple proof of
the intuitionistic tautology A⇒ (B ⇒ A).

` A⇒ (B ⇒ A) by λ(x.slot1(x))
x : A ` (B ⇒ A) by slot1(x)

In the next step, slot1(x) is replaced at the leaf of the tree by λ(y.slot2(x, y)) to give:
` A⇒ (B ⇒ A) by λ(x.slot1(x))

x : A ` (B ⇒ A) by λ(y.slot2(x, y)) for slot1(x)
x : A, y : B ` A by slot2(x, y)

When the proof is complete, we see the slots filled in at each inference step as in:
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` A⇒ (B ⇒ A) by λ(x.λ(y.x))
x : A ` (B ⇒ A) by λ(y.x)
x : A, y : B ` A by x

We present the rules in a top down style showing the construction rules first, often called the
introduction rules because they introduce the canonical proof terms or called the right hand side
rules because they apply to terms on the right hand side of the turnstile. So typical names seen in
the literature are these: for & we say AndIntro or AndR; for⇒ we say ImpIntro or ImpR; for ∨ we
say OrIn-r or OrIn-l, and for ∀x we say AllIntro or AllR, and for ∃ we say ExistsIntro or ExistsR.

For each of these construction rules, the constructor needs subterms which build the component
pieces of evidence. Thus for AndR the full term will have slots for the two pieces of evidence needed,
the form will be AndR(slot1, slot2) where the slots are filled in as the proof tree is expanded. When
the object to be filled in depends on a new hypothesis to be added to the left hand side of the
turnstile, the rule name supplies a unique label for the new hypothesis, so we see a rule name like
ImpR(x.slot(x)) or AllR(x.slot(x)). In the case of the rule for ∃, there is a subtlety. The rule
name provides two slots, but the second depends on the object built for the first, so we see rule
names such as ExistsR(a; slot(a)).

For each connective and operator we also have rules for their occurrence on the left of the
turnstile. These are the rules for decomposing or using or eliminating a connective or operator.
They tell us how to use the evidence that was built with the corresponding construction rules, and
the formula being decomposed is always named by a label in the list of hypotheses, so there is a
variable associated with each rule application. Here are typical names: for & we say AndElim(x)
or AndL(x). However, there must be more to this rule name because typically new formulas are
added to the hypothesis list, one for each of the conjuncts, so we need to provide labels for these
formulas. Thus the form of elimination for & is actually AndL(x; l, r.slot(l, r)) where l stands for
the left conjunct and r for the right one.

Rule names such as AndR, AndL, OrRl, OrRr, OrL, and so forth are suggestive in terms of
the details of the proof system, but they are not suggestive of the structure of the evidence, the
semantics. We will use rule names that define the computational forms of evidence. The evaluation
rules for these proof terms are given as in ITT or CTT, for instance in the book Implementing
Mathematics [2].

So instead of AndR(a; b) where a and b are the subterms built by a completed proof by pro-
gressively filling in open slots, we use pair(a; b) or even more succinctly < a, b >, and for the
corresponding decomposition rule we use spread(x; l, r.t(l, r)) where the binding variables l, r have
a scope that is the subterm t(l, r). This term is a compromise between using more familiar operators
for decomposing a pair p such as first(p) and second(p) or p.1 and p.2 with the usual meanings,
e.g., first(< a, b >) =< a, b > .1 = a. The reason to use spread is that we need to indicate how
the subformulas of A&B will be named in the hypothesis list.

The decomposition rules for A ⇒ B and ∀x.B(x) are the most difficult to motivate and use
intuitively. Since the evidence for A ⇒ B is a function λ(x.b(x)), a reader might expect to see
a decomposition rule name such as apply(f ; a) or abbreviated to ap(f ; a). However, a Gentzen
sequent-style proof rule for decomposing an implication has this form:

H, f : A⇒ B,H ′ ` G by ImpL on f
1. H, f : A⇒ B,H ′ ` A
2. H, f : A⇒ B, v : B,H ′ ` G

As the proof proceeds, the two subgoals 1 and 2 with conclusions A and G respectively will
be refined, say with proof terms g(f, v) and a respectively. We need to indicate that the value v
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is ap(f ; a), but at the point where the rule is applied, we only have slots for these subterms and
a name v for the new hypothesis B. So the rule form is apseq(f ; slota; v.slotg(v)) where we know
that v will be assigned the value ap(f ; slota) to “sequence” the two subgoals properly. So apseq is a
sequencing operator as well as an application, and when the subterms are created, we can evaluate
the term further as we show below. We thus express the rule as follows.

H, f : A⇒ B,H ′ ` G by apseq(f ; slota; v.slotg(v))
H, f : A⇒ B, v : B,H ′ ` G by slotg(v)
H, f : A⇒ B,H ′ ` A by slota

We can evaluate the term apseq(f ; a; v.g(v)) to g(ap(f ; a)) or more succinctly to g(f(a)). This
simplification can only be done on the final bottom up pass of creating a closed proof expression,
one with no slots.

With this introduction, the following rules should make sense. These rules define what we will
call the pure proof expressions.

2.1 First-order refinement style proof rules over domain of discourse D

Minimal Logic
Construction rules

• And Construction
H ` A&B by pair(slota; slotb)
H ` A by slota
H ` B by slotb

• Exists Constructiona

H ` ∃x.B(x) by pair(d; slotb(d))
H ` d ∈ D by obj(d)
H ` B(d) by slotb(d)

aAlso see Alternative Rules below.

• Implication Construction
H ` A⇒ B by λ(x.slotb(x)) new x
H, x : A ` B by slotb(x)

• All Construction
H ` ∀x.B(x) by λ(x.slotb(x)) new x
H, x : D ` B(x) by slotb(x)

• Or Construction - left
H ` A ∨B by inl(slotl)
H ` A by slotl

• Or Construction - right
H ` A ∨B by inr(slotr)
H ` B by slotr

Decomposition rules

• And Decomposition

H,x : A&B,H ′ ` G by spread(x; l, r.slotg(l, r)) new l, r
H, l : A, r : B,H ′ ` G by slotg(l, r)

• Exists Decomposition

H,x : ∃y.B(y), H ′ ` G by spread(x; d, r.slotg(d, r)) new d, r
H, d : D, r : B(d), H ′ ` G by slotg(d, r)

• Implication Decomposition

H, f : A⇒ B,H ′ ` G by apseq(f ; slota; v.slotg[ap(f ; slota)/v]) new v1

1This notation shows that ap(f ; slota) is substituted for v in g(v). In the CTT logic we stipulate in the rule that
v = ap(f ; slota) in B.
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H, f : A⇒ B,H ′ ` A by slota
H, f : A⇒ B,H ′, v : B ` G by slotg(v)

• All Decomposition

H, f : ∀x.B(x), H ′ ` G by apseq(f ; d; v.slotg[ap(f ; d)/v])
H, f : ∀x.B(x), H ′ ` d ∈ D by obj(d)
H, f : ∀x.B(x), H ′, v : B(d) ` G by slotg(v)2

• Or Decomposition

H, y : A ∨B,H ′ ` G by decide(y; l.leftslot(l); r.rightslot(r))
1. H, l : A,H ′ ` G by leftslot(l)
2. H, r : B,H ′ ` G by rightslot(r)

• Hypothesis - domain (D)
H, d : D,H ′ ` d ∈ D by obj(d)

• Hypothesis - formula (A)
H,x : A,H ′ ` A by hyp(x)
We usually abbreviate the justifications to
by d and by x respectively.

Intuitionistic Rules

• False Decomposition

H, f : False,H ′ ` G by any(f)

This is the rule that distinguishes intuitionistic from minimal logic, called “ex falso quodlibet”.
We use the constant False for intuitionistic formulas and ⊥ for minimal ones to distinguish
the logics. In practice, we would use only one constant, say ⊥, and simply add the above rule
with ⊥ for False to axiomatize iFOL. However, for our results it is especially important to
be clear about the difference, so we use both notations.

Note that we use the term d to denote objects in the domain of discourse D. In the classical
evidence semantics, we assume that D is non-empty by postulating the existence of some d0 in it.
Also note that in the rule for False Decomposition, it is important to use the any(f) term which
allows us to thread the explanation for how False was derived into the justification for G.

Structural Rules

• Cut rule

H ` G by CutC(x.slotg(slotc)) new x
1. H,x : C ` G by slotg(x)
2. H ` C by slotc.

Classical Rules

• Non-empty Domain of Discourse

H ` d0 ∈ D by obj(d0)

• Law of Excluded Middle (LEM) Define ∼A as (A⇒ False)
H ` (A ∨ ∼A) by magic(A)
Note that this is the only rule that mentions a formula in the rule name.

2In the CTT logic, we use equality to stipulate that v = ap(f ; d) in B(v) just before the hypothesis v : B(d).
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Alterative Rule

• Exists Construction

H ` ∃x.B(x) by pair(slotd/X; slotb[slotd/X])
H ` D by slotd
H ` B(X) by slotb(X)
Note, the substitution of slotd propagates to B(X) as soon as the first subgoal determines
the value of the slot for the goal rule. The term X acts as a logic variable.

2.2 Computation rules

Each of the rule forms when completely filled in becomes a term in an applied lambda calculus, and
there are computation rules that define how to reduce these terms in one step. These rules are given
in detail in several papers about Computational Type Theory and Intuitionistic Type Theory, so we
do not repeat them here. One of the most detailed accounts in the book Implementing Mathematics
[2]

Some parts of the computation theory are needed here, such as the notion that all the terms
used in the rules can be reduced to head normal form. Defining that reduction requires identifying
the principal argument places in each term.

The reduction rules are simple. For ap(f ; a), first reduce f , if it becomes a function term,
λ(x.b), then reduce the function term to b[a/x], that is, substitute the argument a for the variable
x in the body of the function b and continue computing. If it does not reduce to a function, then
no further reductions are possible and the computation aborts. It is possible that such a reduction
will abort or continue indefinitely. But the terms arising from proofs will always reduce to normal
form. This fact is discussed in the references.

To reduce spread(p;x, y.g), reduce the principal argument p. If it does not reduce to pair(a; b),
then there are no further reductions, otherwise, reduce g[a/x, b/y].

To reduce decide(d; l.left; r.right), reduce the principal argument d until it becomes either inl(a)
or inr(b) or aborts or fails to terminate.3. In the first case, continue by reducing left[a/l] and in
the other case, continue by reducing right[b/r].

It is important to see that none of the first-order proof terms is recursive, and it is not possible
to hypothesize such terms without adding new computation forms. It is thus easy to see that all
evidence terms terminate on all inputs from all models. We state this below as a theorem about
valid evidence structures.

Additional notations It is useful to generalize the semantic operators to n-ary versions. For
example, we will write λ terms of the form λ(x1, ..., xn.b) and a corresponding n-ary application,
f(x1, ..., xn). We allow n-ary conjunctions and n-tuples which we decompose using
spreadn(p;x1, ..., xn.b). More rarely we use n-ary disjunction and the decider,
deciden(d; case1.b1; ...; casen.bn). It is clear how to extend the computation rules and how to define
these operators in terms of the primitive ones.

It is also useful to define True to be the type ⊥⇒⊥ with element id = λ(x.x). Note that
λ(x.spread(pair(x;x);x1, x2.x1)) is computationally equivalent to id, as is

λ(x.decide(inr(x); l.x; r.x))4.

3The computation systems of CTT and ITT include diverging terms such as fix(λ(x.x)). We sometimes let ↑
denote such terms.

4We could also use the term λ(x.decide(inr(x); l.div; r.r)) and normalization would reduce it to λ(x.x).
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