
Applied Logic - CS4860-2018-Lecture 1

Robert L. Constable

Abstract

For over two millennia logic developed as a distinct subject in philosophy and mathematics.
It is now vitally important in computer science (CS) as well. Logic is essential to guarantee
the correctness and safety of software systems on which society increasingly depends. A single
coding error or misunderstanding in building a critical system component can and has resulted
in disaster. Furthermore, research in artificial intelligence (AI) has shown how to provide sub-
stantial computer support for the highly precise logical reasoning needed in mathematics and
computer science. With computer support, humans can achieve error free reasoning and quickly
explore alternative proofs. This area of investigation has produced many interesting new re-
search questions.

A new kind of software system, called a proof assistant, combines the imaginative ingenuity of
humans with the inhumanly fast and flawless reasoning of machines to solve problems that arise
in mathematics, software design and construction. Proof assistants have deepened our under-
standing of the fundamental concepts of logic, and they have helped build industrial software and
solve open problems in mathematics. Efforts to improve the reasoning abilities of proof assis-
tants now have both scientific and economic value. Research using proof assistants is leading to
ever more surprising and unexpected results about the nature of human computer collaboration.

This Applied Logic course will cover the basic logical core of proof assistants and illustrate
some important applications, both in fundamental research and applications in CS. We will
also explore the impact of these tools on our philosophical understanding of logical concepts
and on human-machine knowledge formation. Moreover, there is strong interest and substantial
funding for deploying proof assistants more broadly in university education and eventually in
secondary education as well. We have experience in this realm which we will discuss.

1 Course mechanics and topic outline

1. Logistics

Textbook: Smullyan First-Order Logic [32].
Lecture Notes
Readings: articles, book (Type Theory and Functional Programming [33])
Problem sets – 10 to 12

2. Outline of Topics

1

3. Propositional Calculus
Smullyan account
Constructive propositional calculus as a programming language
Classical completeness
Constructive completeness

4. First-Order-Logic
Smullyan account
Constructive version, iFOL
Dependent types
iFOL as a programming language
Completeness
Constructive completeness and uniform validity

5. Foundations of Mathematics – Set Theory
Paradoxes
Zermelo-Fraenkel Set Theory with the Axiom of Choice, ZFC
cardinality
continuum problem
large cardinals
ZFC based mathematics: number theory, real analysis, algebra

6. Foundations of Mathematics – Type Theory
Principia Mathematica [39]
Gödel’s incompleteness theorem

7. Foundations of Computer Science – Constructive Type Theory
shortcomings of set theory
types in programming languages [20]
impredicative type theories

8. Intuitionistic mathematics – Brouwer and Poincarè
nature of the continuum of real numbers, R
free choice sequences

2 Content Overview

Logic has been an important element of mathematics for centuries and of computer science (CS)
since its birth. Logic is in fact one of the oldest academic disciplines, going back to Aristotle’s

2

philosophy in 350 BCE and to Euclid’s geometry in 300 BCE, extended by Archimedes by mid 200
BCE. Logic played a major role in shaping mathematics as can be seen in Euclid’s Elements and in
the 20th century creation of set theory and type theory as languages for precisely expressing mathe-
matical knowledge and for resolving questions about its foundational meaning. One of the founders
of CS is Alan Turing who received his PhD at Princeton University [35, 36] under the guidance of
Alonzo Church, one of the first internationally renown American mathematical logicians. Church’s
famous lambda calculus was the direct inspiration and basis for the programming language Lisp
developed by John McCarthy [26, 25] in 1962, and still in use today. The lambda calculus is also
the basis for new functional languages that followed Lisp such as Standard ML, OCaml, Haskell,
F] and others.

The subject of automated reasoning arose as a key subject in computer science starting with
Newell, Shaw, and Simon in 1957 [28] and growing to be a major research area the 1980’s [24, 6, 5,
9, 31]. This line of research eventually led to proof assistants which are now important and widely
used tools in the heart of computer science [2]. They are used to precisely define the tasks that a
software system is designed to accomplish and logically prove that the resulting code satisfies the
precise specifications. One of the first modern proof assistants, Nuprl (”new pearl”), was built in
CS at Cornell in 1984 [11]. It is still in use. Members of the Nuprl team went on to influence and
help create one of the most widely used proof assistants today, Coq [4, 10], supported by the French
government’s INRIA research facility. Recent research at Cornell has used Coq to prove that the
Nuprl logical rules are correct [1]. This is another landmark result about modern proof assistants.

Proof assistants have created a new kind of logical reasoning, just as chess playing computers
such as Deep Blue created a new kind of chess playing [8]. An unaided human does not stand a
chance at winning a game of chess against Deep Blue nor even against the best chess programs
available on smart phones.1 On the other hand, the combination of a human and a computer chess
assistant can beat Deep Blue and the “smart chess phones”. Why is that? What is the lesson behind
this fact? Humans can provide what chess champion Kasparov calls “strategic guidance.” They
imagine creative new ways for how to win and find plans and moves that have never been explored
before [8]. Machines working alone are much less good at creative imagination. The combination
of human strategic guidance and the computer’s ability to rapidly follow it is a powerful new mode
of work and play. We will explore this mode.

This new human-machine partnership will be widely explored. Logicians, mathematicians, and
computer scientists will use it to ensure that a software system will always work correctly. It
applies to rigorously proving a new mathematical result or finding exactly the right theorem to
prove. The futurist Kevin Kelly says that we will be paid in the future by how well we work with
machines. This course will seek to broaden our horizons on how to work with a class of machine
with a promising future, proof assistants. We will explore a subject with a distinguished history
from ancient times and a very bright future in the second machine age, applied logic.

1By now, chess programs running on smart phones have grandmaster ratings and can beat almost any human on
the planet.

3

2.1 Course Summary

The course will begin with an account of propositional logic, the typical starting point for all logic
textbooks. We will use a small book by Raymond Smullyan entitled First-Order Logic [32], one
of the most elegant and compact logic textbooks ever written. Propositional logic deals with the
logical operators of and, as in A&B, or, as in A ∨ B, implies, as in A ⇒ B, and the logical
constant False which is sometimes also written as ⊥. The logical operator not is written ∼ A,
and is defined as A ⇒⊥. In the standard account of propositional logic, it is assumed that the
propositional variables such as A,B,C,D, ... have truth values, either true or false.2 We will
consider another interpretation in which we assign evidence to the propositional variables. The
evidence is intended to provide a reason that we know the proposition to be “true.”

We are interested in evidence because that is how humans come to understand ordinary proposi-
tions as well as mathematical propositions. Generalizing examples of evidence leads to the discovery
of new mathematical results. For example, if we know that x < y means that we can find a positive
numerical witness u > 0 such that x + u = y, then we know that if x < y and y < z, then we
have evidence that x < z. This is because we have x+ u1 = y and y + u2 = z, so x+ u1 + u2 = z.
Therefore x < z using (u1 + u2) as the positive witness. This method of understanding logical
arguments applies widely in mathematics as well as daily life. For example, in Euclidean Geometry
we argue that if figure A is congruent to figure B and B is congruent to C, then A is congruent
to C. It takes a little work to see this, defining what it means to be congruent. Intuitively we
know that it means we can “place figure A on B” and “place figure B on C.” We can then see a
construction for placing A on figure C. We first place A on B. Then A comes along for the ride as
we place B on C. This method of understanding goes beyond mathematics, for example evidence
is critical in legal reasoning. To “prove” that a person violated the law, there must be evidence
as in “being caught in the act” by a credible witness or by recording a car’s speed at a point on
the road. Legal training involves knowing the logic of legal evidence. Children learn the lessons of
evidence early in home life and find strategies for ensuring “fair treatment” as in cutting the pie
for desert: the child who cuts the pie into equal pieces is the last to choose his or her piece of pie.
This “cake-cutting” topic in mathematics is extremely rich and applicable in creating fair protocols
in computer science.

2.2 Role of Computation

Mathematicians discovered early on, starting at least with Euclid, how to compute with geometric
objects as well as with numbers and how to create evidence that constructions accomplished certain
tasks. They could copy a line segment from one point to another, Euclid’s Proposition 2. They
could bisect an angle or construct a line segment perpendicular to another, both useful tasks. They
extended the computational method to algebra and developed computations for finding solutions
to equations, factoring polynomials, and so forth. The book by Harel [17] tells this story very well
in describing the spirit of computer science. The centrality of human computation in understand-
ing the logical operators was stressed by L.E.J. Brouwer [7] in the early 20th century, by 1907.

2Some logic books use 1 for true and 0 for false.

4

He noted that the basic logical operations as used in mathematics have computational meaning.
Understanding these intuitive mental constructions is the key to understanding what it means for
mathematical statements to be “true.” He went on to argue forcefully that computation grounds
all mathematical truths.

Brouwer also claimed that the contradictions and paradoxes that created a “foundational crisis”
in mathematics in the mid 1800s were due to doomed attempts to justify non-computational meth-
ods for establishing mathematical truth, by adopting various “obviously true” logical principles with
no computational meaning. These views provoked considerable controversy with other mathemati-
cians such as Hilbert who believed that an axiomatic approach to truth was more general. Brouwer
is known for rejecting the “law of excluded middle,” the logical principle that every proposition is
either true or false. Hilbert was very much against giving up this “obvious truth” that is so useful
in most of mathematics. Nowadays, we see how to reconcile these two view points and deeply
enrich the study of logic and mathematics. We will cover this issue in some detail because from
the computer science point of view, Brouwer’s idea and the compromise worked out in computer
science, are quite clearly not only right, but very useful. The standard approach to mathematical
truth that accepts excluded middle, was for various reasons called classical logic.3

Since Brouwer we have come to understand that the computational method is more general than
the pure axiomatic method and can even be used to explain that method in terms of computing
with “virtual evidence.” We will examine this new idea in this course. Indeed, the course will
stress the computational method and its explanations of the axiomatic method using evidence and
virtual evidence. This fits very well into a course designed for both computer science students
and mathematics students and also very informative for philosophy students as well. The approach
based on evidence provides valuable information beyond simply knowing that a proposition is “true”
(we have evidence) or is “false,” meaning we can’t possibly have evidence. It also leads to very
useful versions of the completeness theorem for first-order logic that are the center piece of basically
every introductory logic courses. We will study the “computational proofs of completeness,” a new
topic for any logic course.

2.3 Functional Programming Languages

We will use very small part of a popular functional programming language to compute with math-
ematical evidence. That will help us engage computers right at the start in doing logic. The
programming language will precisely define how to compute with evidence and understand more
deeply the computational foundation of knowledge. We will see that the truth values, true and
false are a weak kind of evidence, but it is often too weak and uninformative to help understand
computational issues. This programming language is at the core of modern proof assistants and
is used by them to give useful computational value to logical proofs. Indeed these programming
languages often use the initials ML, as in SML (for Standard ML) or OCaml (for Objective ML)

3This name is misleading because the mathematics of the classical Greeks was computational as well as axiomatic,
unlike the later “axiomatic methods” which dropped the computational requirements. Brouwer claimed that this
mistake of ignoring the computational meaning is what led to confusion and paradoxes in the new attempts to
explain mathematical truth purely axiomatically.

5

or ClassicML, etc. The ML in these languages is derived from the very first example created by
Robin Milner 4 and his research group at Edinburgh University in Scotland [15] where ML stood
for “metalanguage.” The proof assistants Coq [4], HOL [29], and Nuprl [11] are built on the “proof
tactic” method from the Edinburgh system.

The programming language we use (in a very elementary way) is OCaml [27], but we will also
use a simpler mathematical syntax to write basic OCaml programs. For example, the identity
function in OCaml, is written as fun x → x. This is a syntax close to Church’s original lambda
calculus definition of a function, written λx.x. The name “lambda calculus” comes from Church’s
decision to signify a function definition by writing the Greek letter lambda (λ) followed by the
name of the argument (or input) to the function followed by the “body” of the function definition.
The body typically uses the input but is not required to, as in the constant function λx.0. We will
take the integers as numerical values, 0,1,-1,2,-2,.... The exceptional power and enduring value of
this simple programming language comes from the fact that functions are data as well as operations
on data. So we can compute with the function λx.λy.x which takes an input value x and returns
as output a constant function that produces that value on any input for y. Initially to make it clear
that there is an operator for applying a function, we will write ap(f ; a) to denote the application
of the function f to the input value a. We can write ap(f ; 0) as the application of the function f to
the numerical constant 0. If we write ap((λx.λy.x); 0) the result will be the function λy.0 which is
the constant function that returns 0 on any input. So we can compute ap((λy.0); 1) to the value 0.

Notice that the name of the input in the identity function, the x in λx.x. is arbitrary. We could
use any variable name such as λy.y, λz.z, λin.in, and so forth. All of these expressions define
the abstract idea of the identity function. We will consider them equal as functions even though
they are definitely not equal as syntactic expressions. We give this kind of equality the name alpha
equality, following Church. In logic it is very important to understand this distinction. We need
syntax to write down mathematical expressions or expressions of programming languages. But the
mathematical objects we are defining, in the above case the identity function, usually does not
depend on the syntax. In the case of numerical expressions, the story is a bit different. We want
0,1,2,... to be the standard (decimal) names for the natural numbers, say as opposed to the Roman
numerals, I,II, III, IV, V, VI,.... There are other examples we will see where we adopt standard
names, as for the logical operators.

Types Another critical feature of the OCaml programming language, and of the entire ML family
of languages, is that data is classified into types. The integers are a type of the language, written as
int. The function fun x→ x+ 1 computes the successor function on integers, so ap(λ(x.x+ 1); 1)
reduces or computes to the integer value 2. We say that the function has the type int→ int, telling
us that it maps any integer to another integer. If we try to reduce the term ap(λ(x.x+ 1);λ(y.y))
we would get the expression λ(y.y) + 1 which does not “make sense” in the normal way. The plus
operator, +, is defined as an operation on integers, so 10 + 5 makes sense and reduces to 15, but
λ(y.y) + 1 does not make sense, and if we try to further evaluate it, the computation “gets stuck.”

4Robin was a good friend of Cornell CS who won the Turing Award for this work, and we sometimes think of ML
as Milner’s Language.

6

Boolean values Another atomic OCaml data type is the type of Booleans. The type is called
bool and the values are spelled out as true and false. With this type we can treat logic as Boolean
Algebra. OCaml has the standard Boolean operators with odd looking names. If a and b are
Boolean expressions, then so are the following expressions: a && b for “and,” a ‖ b for “or,” and
not a, for negation. There is no built in “implication” operator, but it can be defined as an infix
function, a imp b means (not a) ‖ b. We can learn a lot about propositional logic by seeing how
OCaml evaluates expressions such as true ‖ true, true ‖ false, false ‖ true and so forth.

The type of Booleans help us describe the computational features of other types. For example,
we know that we can decide whether two integers are the same. We can reduce them to their
decimal form and then compare those decimals digit by digit. Thus we know that the equality
relation n = m between two integer expressions n and m is such that we can compute the expression
to a boolean value. We know that n = m will compute to true exactly when the two numbers are
the same. Otherwise the value is false. In OCaml, these facts are made explicit by the procedure
that does this computation and reduces n = m to either the Boolean value true or false.

OCaml also has the type unit which has only one element denoted ?. We can also define the
type void in OCaml. It is a type with no elements and corresponds to the logical notion False
which is a type with no elements or a proposition with no possible evidence. Early on we will study
the remarkable fact that some of the basic type constructors of OCaml represent logical operators
on propositions. Moreover, all of the OCaml types have a clear mathematical interpretation.

First-Order Logic The title of Smullyan’s text book is First-Order Logic. This logical system is
the heart of modern logic because it is expressive enough to formulate the standard theories used in
modern mathematics, e.g. elementary number theory (sometimes called Peano Arithmetic - PA),
real analysis, and Zermelo, Fraenkel set theory with the axiom of choice (ZFC). ZFC set theory is
widely believed to be expressive enough to rigorously define all the concepts of modern mathematics.
However, it is not a sufficient basis for computational theories and thus not a good foundation for
computer science. There is a version of First-Order Logic that can express computational ideas
well. Mathematicians call it intuitionistic First-Order Logic, a “mouth full” indeed. If we abbreviate
First-Order Logic as FOL, then the intuitionistic version is abbreviated as iFOL. This version of
the logic can be seen as a programming language in which it is possible to express a computational
theory of numbers, both natural numbers and real numbers. We will study this theory and its role
in computing. It brings logic and computer science together in one theory, and it ties that theory
to some of the deepest philosophical issues in the foundations of mathematics and epistemology.
The story of this logic involves some of the most colorful and influential mathematicians of the last
century – Brouwer, Hilbert, Poincaré, Herbrand, Krönecher, Cantor, and others.

One of the central theorems about first-order logic is due to Gödel in his doctoral disserta-
tion. It is the completeness theorem that shows that every valid formula of this logic is provable.
Smullyan gives a very elegant proof of this theorem and explores its consequences. We will study
this fundamental result carefully. We will also sketch a proof of the analogue of this result for
iFOL and show how that proof applies to FOL as well. Gödel is most well known for his deep
incompleteness theorem. This is one of the most celebrated theorems in logic, and we will look

7

at it in its simplest form, for a theory called Q. We will also look at Kleene’s abstract form of
Gödel’s theorem presented in his widely read logic book, Introduction to Meta-Mathematics [22].
This proof uses the unsolvability of the halting problem, a result known to all computer science
students.

Type Theory A major alternative foundational theory for mathematics is type theory which
was first presented in work of Bertrand Russell [30, 39]. Constructive versions of this theory are
adequate as a foundation for computer science as well as mathematics. These constructive type
theories have been implemented in proof assistants [11, 21, 4] and are having a significant impact on
computer science research and education. We will look at the core ideas in this subject and show how
programs can be ”extracted” from constructive proofs [3]. Many of the ideas in constructive type
theory were developed by L.E.J. Brouwer, the Dutch mathematician who created the intuitionistic
philosophy of mathematics [7, 19, 38, 37]. These ideas appear to be steadily gaining force over the
years and are now well integrated into three of the major proof assistants in use today. We will
explore some of Brouwer’s ideas about logic and computability and show how they are being used
today in very practical ways.

Philosophy Brouwer’s ideas have had a significant impact on the philosophy of mathematics [12,
13, 18, 34, 23, 16, 14],and we will devote parts of several lectures to explore the philosophical issues
he raised. His bold ideas are likely to lead to lively class discussion as they have for over a hundred
years among mathematicians and philosophers. The ideas are considerably less controversial in
computer science where several of them have been embraced, explored, and deeply integrated into
using proof assistants and programming languages. To give the flavor of Brouwer’s ideas it is
interesting to note that he does not believe that the famous “law of excluded middle,” is valid in all
areas of mathematics, although it has been used in logic since Aristotle and Plato. This law simply
says that “every proposition P is either true or false.” Symbolically it is usually written P∨ ∼ P.

I agree with Brouwer, and will try to persuade you to have an open mind on this topic despite
the fact that it is a law of the first logical system we will study, the (classical) propositional calculus.
In that simple setting the law can be defended.

References

[1] Abhishek Anand and Vincent Rahli. Towards a formally verified proof assistant. In Interna-
tional Conference on Interactive Theorem Proving, pages 95–197, 2014.

[2] Henk Barendregt and Herman Geuvers. Proof-assistants using dependent type systems. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages 1149–1238.
Elsevier, 2001.

[3] J. L. Bates and Robert L. Constable. Proofs as programs. ACM Transactions of Programming
Language Systems, 7(1):53–71, 1985.

8

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development;
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer-Verlag, 2004.

[5] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 1982.

[6] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New York, 1979.

[7] L.E.J. Brouwer. Intuitionism and formalism. Bull Amer. Math. Soc., 20(2):81–96, 1913.

[8] Erik Brynjolfsson and Andrew McAfee. The Second Machine Age. W.W. Norton and Company,
New York, 2014.

[9] Alan Bundy. The Computer Modeling of Mathematical Reasoning. Academic Press, New York,
1983.

[10] Adam Chlipala. An introduction to programming and proving with dependent types in Coq.
Journal of Formalized Reasoning (JFR), 3(2):1–93, 2010.

[11] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki,
and Scott F. Smith. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, NJ, 1986.

[12] Michael Dummett. The philosophical basis of intuitionistic logic. In H.E. Rose J. Shepherdson,
editor, Logic Colloquium ’73, pages 5–40, Amsterdam, 1975. North Holland.

[13] Michael Dummett. Elements of Intuitionism. Oxford Logic Series. Clarendon Press, 1977.

[14] Kurt Gödel. On intuitionistic arithmetic and number theory. In M. Davis, editor, The Unde-
cidable, pages 75–81. Raven Press, 1965.

[15] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mechanized
logic of computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, NY,
1979.

[16] Johan Georg Granström. Treatise on Intuitionistic Type Theory. Springer, 2011.

[17] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, Reading, MA, 1987.

[18] A. Heyting. Intuitionism, An Introduction. North-Holland, Amsterdam, 1966.

[19] A. Heyting, editor. L. E. J. Brouwer Collected Works, volume 1. North-Holland, Amsterdam,
1975.

[20] C. A. R. Hoare. Recursive data structures. International Comput. Inform. Sci., 4(2):105–132,
1975.

[21] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq proof assistant : A tutorial
: Version 6.1. Technical report, INRIA-Rocquencourt, CNRS and ENS Lyon, August 1997.

[22] S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand, Princeton, 1952.

9

[23] S. C. Kleene and R. E. Vesley. Foundations of Intuitionistic Mathematics. North-Holland,
1965.

[24] D.W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, New York,
1978.

[25] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–70. North-
Holland, Amsterdam, 1963.

[26] J. McCarthy et al. Lisp 1.5 Users Manual. MIT Press, Cambridge, MA, 1962.

[27] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml. O’Reilly, Beijing,
Cambridge, 2014.

[28] A. Newell, J.C. Shaw, and H.A. Simon. Empirical explorations with the logic theory machine:
A case study in heuristics. In Proceedings West Joint Computer Conference, pages 218–239,
1957.

[29] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[30] Bertrand Russell. Mathematical logic as based on a theory of types. Am. J. Math., 30:222–62,
1908.

[31] Jörg Siekmann and Graham Wrightson. Automation of Reasoning, volume 1 of Classical Papers
on Computational Logic. Springer-Verlag, New York, 1983.

[32] Raymond M. Smullyan. First-Order Logic. Dover Publications, New York, 1995.

[33] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

[34] Anne Sjerp Troelstra. Metamathematical Investigation of Intuitionistic Mathematics, volume
344 of Lecture Notes in Mathematics. Springer-Verlag, 1973.

[35] A. M. Turing. On computable numbers, with an application to the Entscheidungs problem, a
correction. In Proceedings London Math Society, volume 43.

[36] A. M. Turing. Computability and λ-definability. Journal of Symbolic, 2:153–63, 1937.

[37] Mark van Atten. On Brouwer. Wadsworth Philosophers Series. Thompson/Wadsworth,
Toronto, Canada, 2004.

[38] Walter P. van Stigt. Brouwer’s Intuitionism. North-Holland, Amsterdam, 1990.

[39] A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 2nd
edition, 1925–27.

10

