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Abstract

Applied logic is increasingly important in mathematics, philosophy, and computer science. Cornell recognized
this trend early and created the course Applied Logic, joint between Computer Science and Mathematics.

This document provides an overview of the main topics in the Fall 2018 version of the course taught by
Computer Science. The course will stress the relevance of the topics to computer science, mathematics, and
philosophy. More information will be available at the CS course web page.

1 Relevance of Logic

The importance of logic to mathematics and philosophy is clear. Mathematicians develop a subject by formulating
and proving theorems about it. The idea of proof goes back at least to Euclid and Aristotle. The notion of a
constructive proof arose in Euclidean geometry because many proofs provided ruler and compass constructions.
Aristotle classified proofs based on their structure. Many of his ideas remain relevant.

The importance of logic for computer science was well established at least by 1969 in the article by C.A.R.Hoare,
An axiomatic basis for computer programming, published in the Communications of the ACM [13]. This major
accomplishment and the large body of subsequent work earned Tony Hoare a knighthood. His idea is that the
task to be achieved by a program should be specified precisely in a logical language, and then using his proposed
new axioms, it would be possible to prove that a program accomplished the task for which it was written.

By the 1980’s there were implemented formal systems that integrated programs, assertions, and proofs that the
program accomplished the task defined by its formal logical specification. The language of specification was
not the language of sets common in mathematics. The programming languages used types instead of sets. At
Cornell we produced the PLCV system based on the Cornell designed programming language PLCV [8]. This
led to the idea of proofs as programs [2] and helped advance the use of types rather than sets as the foundational
concept. The idea of types came from the famous work of Whitehead and Russell, Principia Mathematica [20]
that provided a foundation for mathematics based on types rather than sets. This theory was later simplified
considerably by Church [5]. There is an interesting comic book account by A. Doxiadis and C. Papadimitriou,
Logicomix: An Epic Search for Truth [10].

A major addition to applied logic was the creation of software systems called proof assistants or provers. These
systems help users create formal proofs in type theory. They greatly expand the role of formal proofs. The PLCV
system used a simple type theory, but the new proof assistants aimed to support a type theory capable of expressing
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all of mathematics with a special stress on computational mathematics. The Nuprl proof assistant built at Cornell
was released in 1986 in the book Implementing Mathematics [7]. The Coq proof assistant was introduced in 1988
by T. Coquand and G. Huet in the article The calculus of constructions [9]. Both have been operational and
evolving ever since those times. They have already been used to produce significant software systems known to
be formally correct and to prove new results in mathematics and computing theory [1].

Open problems in mathematics have been solved by these proof assistants [12, 16, 14, 18, 19, 6]. The Coq system
is supported by the French research organization at INRIA, and Nuprl remains at Cornell University supported
by US research funds from the NSF and the DoD (e.g. DARPA, AFRL, and ONR).

Proof assistants help users prove theorems in mathematics and computer science, but are perhaps best known
for verifying software, i.e. programs, protocols, compilers, operating system kernels, and so forth. Investments in
proof assistants are making them “smarter” in the sense that they can guide users more quickly and surely toward
an answer and check that all the reasoning steps are correct. The more scientists use these tools, the more facts
and methods are formalized by proof assistants. Usually these have inscrutable names such as Agda [4], Coq [3],
HOL [11], Lean, Nuprl [7], PVS [15] and so forth, not Alice and Bob. So let us name one of the hypothetically
most potent proof assistants Quin, Q for short.

The jargon is that expert users “drive” a proof assistant. As they drive it, knowledge is archived and proof
methods and “tactics” are saved so they can be applied automatically in other situations. In some cases the
tactics allow Q to finish solving the problem before the user realizes that it has a chance. The time thus saved is
a strong motivator to let the proof assistant guide users along a particular path that the tactics determine, even
if there is a simpler way to solve the problem.

The situation we now face is that people who use proof assistants come to depend on them more and more, as we
do with most thought tools, like spell checkers. Should there be a counter force? Perhaps suggestions from Q at
certain points that there might be a better step that a human could discover but Q does not yet know. Perhaps
a feedback mechanism where readers grade proofs by their clarity, cleverness, and elegance. Those grades might
help proof assistants do a better job – not because of the proof assistant’s enjoyment and happiness but because
of the user’s.

In due course, the role of proof assistants will expand as we learn to incorporate more and more elements
of Artificial Intelligence(AI) into their operation. This course will speculate on such applications and look at
research questions at the intersection of AI and Applied Logic [17].
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