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The Mat hemat ical Language 
Automath, its Usage, 
and Some of its Extensions* 

N.G. de Bruijn 

1. INTRODUCTION 

1.1. Automath is a language which we claim to be suitable for expressing 
very large parts of mathematics, in such a way that the correctness of the math- 
ematical contents is guaranteed as long as the rules of grammar are obeyed. 

Since the notions “mathematics1’ and “expressing” are rather vague, we had 
better discuss a specific example. Assume we have a very elaborate textbook on 
complex function theory presenting everything from scratch. That is, we start 
with chapters on logic and inference rules, set theory, the number systems, some 
geometry, some topology, some algebra, and we never use anything that is not 
derived, unless it has been explicitly stated as an axiom. Assume the book has 
been most meticuously written, without leaving a single gap. Then we claim it 
is possible to translate this text line by line into Automath. The grammatical 
correctness of this new text can be checked by a computer, and that can be con- 
sidered as a final complete check of the given piece of mathematics. Moreover 
we claim that it is possible to do so in practice. The line by line translation will 
be a matter of routine; the main difficulty lies in the detailed presentation of 
such a large piece of mathematics. The mere labour involved in the translation 
will not increase if we proceed further into mathematics. 

1.2. Automath was developed in 1967-1968 at the Eindhoven University of 
Technology, The Netherlands. The author is indebted to Mr. L.S. van Benthem 
Jutting for very valuable help in trying out the language in several parts of math- 
ematics, and both to  him and to  Mr. L.G.F.C. van Bree for their assistance with 
the programming (in ALGOL) of processors by means of which books written 
in Automath can be checked. In particular, Mr. Jutting is currently translating 
Landau’s “Grundlagen der Analysis”. 

*Reprinted from: Laudet, M., Lacombe, D. and Schuetzenberger, M., eds., Symposium on 
Automatic Demonstration, p. 29-61, by courtesy of Springer-Verlag, Heidelberg. 



74 N.G. de Bruijn 

1.3. In this paper we shall not attempt a complete formal definition of Au- 
tomath, for which we refer to [de Bruijn 68b]. Nevertheless we hope to  make 
the language intuitively clear in this paper. After all, the author feels that  very 
little is essentially new in Automath, that it is very close to the way mathe- 
maticians have always been writing, and that the abbreviating system used in 
Automath has been taken from existing mathematical habits. But the way we 
handle propositions and assertions will be novel, among other things. 

1.4. One of the principles of the language is that the reader (be it a human 
being or a computer) never has to  search in the previous text for definitions or 
arguments. The text presented to  him tells him precisely where to find infor- 
mation needed for checking that text. 

1.5. We indicate the possibility of building languages defined in terms of Au- 
tomath but adapted to special purposes (superimposed languages, see Sec. 10). 
This is one of the reasons for keeping Automath as primitive as possible. Actu- 
ally it is little more than what might be called the art of substitution. Automath 
has an even more primitive sub-language PAL (see Sec. 4) ,  but PAL is definitely 
too primitive to deal with things like predicates, quantifiers and functions. As 
a preliminary, we shall introduce a simple language SEMIPAL, which is not a 
sublanguage of PAL. 

1.6. An Automath book is a sequence of lines written according to  the rules 
of grammar. An important feature is that things which have been derived in 
a book (e.g. inference rules, definitions, theorems) can be applied later in that 
same book. It turns out to be possible that even very primitive parts of math- 
ematical logic can be explained in that book, and therefore it is unnecessary to 
feed that kind of logic into the grammar. 

1.7. There is one vital thing that we do not attempt to  formalize: the interpre- 
tation. When reading or writing a book in a formal language like Automath, 
we try to  be constantly aware of the relation between the text and the (math- 
ematical or non-mathematical) objects we imagine that the text refers to. I t  
is in this sense that many words occurring in the book (identifiers) are names 
of the objects outside. The book itself deals with names only. There may be 
several different interpretations, and there seems to be no way to discuss these 
interpretations in the book. 
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2. PRELIMINARY DESCRIPTION OF THE LANGUAGE 

2.1. An Automath book is written in lines. Everything we say is said in a 
certain context; we shall attach a context indicator (or indicator for short) to 
every line. Usually the context structure can be described by a set of nested 
blocks (see 3.10), such as in a system of natural deduction. Lines written in a 
block have a kind of validity inside that block. 

The context structure will make it possible to express a certain functional 
relationship. On top of that we have another way of dealing with functions: 
something that is essentially Church’s lambda conversion calculus. Although 
these two features do not make each other entirely superfluous, they create a 
certain abundancy in the language. By virtue of this abundancy, many things 
can be written in various ways. One might experience this as a drawback, but, 
on the other hand, it gives something of the flexibility of every-day mathemati- 
cal language. 

2.2. In every line a new name (an identifier) is introduced. It is very es- 
sential that to every identifier a category is attached. In every-day language 
this amounts to stating what kind of a thing we are talking about. For example, 
we might introduce the identifier “two” and say that its category is “integer”. 
We shall not admit that “two” has several categories simultaneously. This may 
have the drawback that we have to invent different notations for the integer 2 
and the complex number 2. Accordingly, we have to express ourselves by means 
of one-to-one mappings of the integers into the complex numbers, instead of 
care-free identification. (We should not forget that care-free identification is a 
matter of tradition. The average mathematician is not inclined to identify a 
unit matrix with the number 1, but he identifies all 1’s he knows as long as they 
belong to one of the “number systems”.) 

In connection with the above example we remark that it is by no means 
necessary to write mathematics in such a way that “two” has the category “in- 
teger”. Another possibility, as well rooted in existing habits as the previous one, 
is to write that both “two” and “integer” have the category “object”, and to  
add that “two E integer” is a true statement. If we do this, there is no harm in 
saying that “two E complex number” is also true. 

2.3. It will be possible to introduce new categories. For this purpose we use 
the special symbol type. For example, we may introduce the identifier “integer” 
and attach the category type to it. This will have the consequence that later 
in the text (at least in the context where “integer” was introduced) we have the 
right to use “integer” as the category of an identifier. 
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2.4. Another feature of Automath is an abbreviation system which is essen- 
tially taken from existing conventions in mathematics; this can make the labour 
of writing and reading bearable, especially if we select suggestive identifiers for 
all notions introduced in the book. In essence, this abbreviation system occurs 
already in SEMIPAL. 

3. STRUCTURE OF THE LINES 

3.1. A line consists of 4 parts: 

(i) an indicator, 

(ii) an identifier, 

(iii) a definition, 

(iv) a category. 

3.2. In every line the identifier part (ii) is a symbol that has not been used 
in previous lines. (This stipulation is unusual in every-day mathematics: a 
symbol like 2 is used repeatedly in different senses. But assuming we have 
infinitely many symbols available, it would do no harm to replace all these 2’s 
by different symbols whenever necessary.) 

An identifier used as identifier part of a line will be called a proper identifier. 
There is a second kind of identifiers: those that play the rBle of bound variable. 
Again, in constrast with existing habits we shall use each bound variable only 
once, and a bound variable has to be different from previously introduced proper 
identifiers. 

There are three kinds of proper identifiers: block openers, primitive notions, 
and compound notions. This depends on the definition part of the line. If 
the definition part is -, then the identifier part is called a block opener (or 
“free variable”). If the definition part is PN, then the identifier part is called a 
primitive notion. If the definition part is an expression (see Sec. 3.3), then the 
identifier part is called a compound notion. 

There is a second classification of identifiers, which bears no relation to the 
classification above. Some identifiers are object names, others are types. An 
identifier is a type if and only if it is the identifier part of a line whose category 
is type. All other identifiers (including bound variables) are called object names. 

3.3. The definition part of a line is either an expression or one of the symbols 
PN or -. If the definition part is an expression, that  expression is composed 
of 
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(i) proper identifiers of previous lines; 

(ii) bound variables; 

(iii) the symbols 
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3.4. The category part of a line is either the symbol type or an expression. If 
it is an expression, we can say the same things as in 3.3. 

3.5. The indicator part of a line is either the symbol 0 or a block opener 
introduced in a previous line. 

The indicator is used in order to describe context. 

3.6. A book is organized as a string of lines, but the context indicators in- 
duce a second structure in the form of a rooted oriented tree. The root is the 
symbol 0, the other vertices are the identifiers of the lines of the book. The 
edges are all oriented towards the root. The edge starting at the identifier x 
points to the indicator of the line that has x as its identifier part. 

3.7. As an example we take the following book: 

indicator 
0 
0 
0 
X 

X 

Y 
Y 
0 
X 

W 

Y 

identifier 
a 

b 
X 

C 

Y 

d 
e 

z 

W 

f 
9 

definition 
PN 
- 

.... 
PN 
- 
- 

.... 

.... 
- 

.... 

.... 

category 

type 
.... 
.... 

type 
type 
.... 
.... 
.... 
.... 

type 
.... 

In this example we have written .... in order to suppress expressions we do not 
intend to discuss at this moment. (So "...." is not a symbol used in Automath, 
but in our discussion about Automath.) In this example x, Y, z ,  w are block 
openers, a and c are primitive notions, b, d, e, f ,  g are compound notions. 
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The tree of this book is 

C 

0 

Figure 1 

3.8. It has to be remarked that the tree is a combinatorial thing, and that the 
way it is drawn in a plane is quite irrelevant. 

Note that the primitive notions and the compound notions are end-points of 
the tree. The block openers are usually not end-points. 

To every point # 0 of the tree we can attach the definition part and the 
category part of the line of which that point is the identifier part. If we do 
this, the tree contains all the information of the book, and can be referred to 
as the tree of knowledge. But one thing the tree does not reveal: it does not 
show the order of the lines in the book. If we want to know whether the tree 
is grammatically correct, it  is useful to know the order of the lines. Given the 
set of lines of a valid book, there may be several ways to  arrange them. The 
only condition an arrangement has to satisfy is that no expression occurring in a 
line contains identifiers of later lines. All such arrangements produce legitimate 
books. 

Anyway, if we want to extend the book by a further line then the order of 
the previous lines is irrelevant. At that moment, it is only the tree of knowledge 
that counts. 

3.9. If p is a point of an oriented rooted tree, different from the root, then 
we can consider the subtree of all those points of the tree for which the oriented 
path to the root passes through p ( p  itself is the root of the subtree). In the 
case of our tree of knowledge, we shall refer to these subtrees as blocks. In the 
tree of 3.7, the point x determines the block containing x, c, y, z ,  d ,  w ,  f, g ;  
the block opener of that block is 2. 

3.10. Quite often a book has been written in an order that makes the block 
structure immediately clear. This is the case if every block consists of a set of 
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consecutive lines. In this case we shall say we have a nested book. (We remark 
that it is not always possible to transform a correct book into a correct nested 
book simply by rearrangements of the lines. In order to get a nested book we 
might have to duplicate pieces of the text.) 

In a nested book we can indicate the block structure by means of vertical 
bars in front of the lines. Corresponding to each block we draw a vertical line 
spanning all lines belonging to the block. We agree that if block B is contained 
in block A ,  then the line for B is drawn to  the right of the line for A.  

Once the lines have been drawn, the indicators can be omitted since they can 
be retraced. In the example below we present a nested book twice, once with 
indicators, once with bars. The version with the bars is certainly more readable 
for the human mathematician. A computer will of course prefer the one with 
the indicators. 

- 

a 
5 

a, 
b 
t 

C 

W 

d 
- 

~ 

PN 
- 

- 

.... 
- 

PN 
- 

.... 

type 
type 
.... 
.... 
.... 
.... 
.... 
.... 

a := PN type 

type 
y := - .... 
b := . . . . . . . .  

x := - 

2 := - .... 
c := PN .... 

d := . . . . . . . .  
w := - .... 

As in this example we shall always separate identifier part and definition part 
by the symbol := which suggests that the identifier on the left is defined by the 
expression on the right. 

Needless to say, the vertical bars and the symbol := do not belong to the 
language. They are just devices for easier reading. Quite often we shall print 
both the vertical bars and the indicators. 

3.11. Sometimes we shall talk about the indicator string of a line. If the indi- 
cator is 0, the indicator string is empty. In all other cases the indicator string 
describes the reversed path from the indicator in question to the root of the tree 
(excluding the root). For example, the indicator string of the last line in the 
example of 3.7 is (x, y),  the one of the last line in the example of 3.10 is (x, z, w). 

4. HOW TO WRITE PAL 

4.1. PAL is a sublanguage of Automath, in the sense that every correct PAL 
book is also a correct Automath book. PAL is quite easy to learn. In PAL we 
do  not use the lambda conversion, and we have no bound variables. 
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0 

b 
a 

Let us take an example. At this stage the reader must not expect an exam- 
ple with deep mathematical significance, since that would require quite a long 
book. The interpretation we have in mind is this one: Assume that nat (natural 
number) and real (real number) are available as categories. If a and b are given 
reals, then their product is introduced as a primitive notion. If n is a natural 
number and 2 is a real, then the power xn is introduced as a primitive notion. 
If n is a natural number and y is a real number, then we define d ( y )  := y n ;  

(= Y ~ ( ~ + ' ) ) .  In PAL this can be written as follows: 
e(Y)  := 4 Y )  * Y (= yn+% f ( Y )  := 4 Y )  . 4 Y )  (= Y 2 9  d Y )  := e ( d ( y ) )  

- .- real 3 
.- - real 4 

.- 

.- 1 !rod := PN real 5 

nat 6 
real 7 

power := PN real 8 

real 9 Y 

.- - .- 
- .- .- 

- .- .- 
!1 

d := power(n ,y )  real 10 
e := prod(d,y)  real 11 

f real 12 
9 := e ( d )  real 13 

.- .- prod(d,d)  

This happens to be a nested book in the sense of 3.10, but that does not 
have any consequence for the present discussion. It is also a very simple case in 
the sense that the categories are all very simple. 

Although we are not going to do it in this paper, it may help the reader 
to provide the identifier parts (as far as they are not block openers) with the 
indicator strings in parentheses. That means that he writes prod (a ,  b )  in line 
5, power(n ,x )  in line 8,  d ( n , y )  in line 10, e(n,y) in line 11, f(n, y )  in line 12, 
g ( n , y )  in line 13. This makes it easy to see what we intend with the other 
expressions: prod (d, d )  indicates that both a and b in prod ( a ,  b )  are replaced 
by d. Now what does e ( d )  mean in line 13? By line 11, e depends on two 
variables (n and y ) .  We agree that we add the letters of the indicator string of 
line 11 on the left until we have enough entries. So e ( d )  has to be interpreted 
as e ( n ,  d ) :  the first entry of the string n, y is added on the left. In general: if p 
is introduced with indicator string (21, ..., zn), and if k < n, then ~(21, ..., zk) 
has to be interpreted as p ( z 1 ,  ..., Zn-kr 21, ..., Zk). 
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4.2. Before we describe the rules of PAL, we first describe a simpler language 
to  be called SEMIPAL. This language is different from PAL and Automath in 
that it does not attach a category to a line. Its relation to  PAL is simple. If we 
just cancel from a correct PAL book the entire category column, then we get a 
correct SEMIPAL book. (On the other hand, we can always transform a correct 
SEMIPAL book into a correct PAL book just by adding type as the category 
of every line.) 

4.3. The rules of SEMIPAL are given in this and the next section. The reader 
may take the 13 lines of Sec. 4.1 for an example, by just cancelling the category 
column. 

(i) As the first line of the book any one of the lines 

PN .- 0 .... .- 
0 .... .- - ._ 

is acceptable. (Here "...." stands for an arbitrary identifier.) 

(ii) We can add an (n  + 1)-st line to a correct SEMIPAL book A of n lines by 
writing 

.- U .... .- c ,  

where u is either 0 or one of the previous block openers, and C is either -, 
or PN, or an expression valid at u, a notion to be defined presently. 

4.4. The notion expression valid at u (where u is an indicator) is relative to 
the given correct book A. We define it by recursion. 

(1) If b is a block opener, either equal to u or contained in the indicator string 
(see Sec. 3.11) of u, then b is an expression valid at u. 
Example: At y the expressions n, y are valid. 

(2) If b is the identifier of a line of A, but not a block opener, and if the indicator 
of that line is either 0 or u or contained in the indicator string of u, then b 
is an expression valid at u. 
Example: At y the expressions nat, real, d, e ,  f ,  g are valid. 

(3) Let b be the identifier part of one of the lines of A, and assume that b is not 
a block opener. Let n be the length of the indicator string of b. Let k be a 
second integer, 0 < k 5 n. We assume that El, ..., C k  are expressions valid 
at u. If n > k we have the extra assumption that the (n - k)-th entry of 
the indicator string of b is an  expression valid at u (that is, it is equal to u 
or contained in the indicator string of u). Then 
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is an expression valid at u. 
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4.5. In the SEMIPAL book that is obtained from the example of Sec. 4.1 (by 
omitting the category column) we give a few examples of expressions valid at y: 

4.6. As a preparation to discussion of normal forms, we define the completion 
of an expression valid at u. Let C be an expression valid at u; its completion C' 
will also be valid at u. 

(i) If C consists of a single block opener, then C' = C. 

(ii) Let C = b(C1, ..., Ck) (see the end of Sec. 4.4) and let u1; ..., u, be the 
indicator string of b. Then 

If k = 0, n - k # 0 this has to be read as b(u1, ..., u,-k), if k # 0, n - k = 0 as 
b(C1, ..., C k ) ,  if k = n - k = 0 it has to be read as just b. 

4.7. An expression is said to have normal form (in the sense of SEMIPAL) 
if it contains no compound notions (see Sec. 3.2). 

Let C be an expression valid at u. We shall define, again recursively, a 
reduction to normal form C*. We first complete the expression C to  C' (4.6). 

If C' is a single identifier, but not a compound notion, then we take C* = C'. 
If C' is a single identifier and if that identifier is a compound notion, we 

define C* to be the normal form of R, where R is the definition part of the line 
whose identifier part is C'. 

If C' = b(C1, ..., C,) with n > 0, and if b is a primitive notion, then we take 

C" = b(C:, ..., C:) , 

where Ct is the normal form of Ci (i = 1, ..., n). 
If C' = b(C1, ..., C,) with n > 0, and if b is a compound notion, with indicator 

string u1, ..., un, then we obtain C' as follows. Let R* be the normal form of the 
definition part of the line whose identifier is b. In 52' replace every occurrence 
of ui by Ct (the normal form of Xi). This gives C'. 
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Warning: The substitution of the C,t for ui is only carried out for explicit 
occurrences of ui in R*, and not for new ui’s that arise after substitution (the 
C,t’s themselves may contain uj ’s) . 

As an example we give the normal form of the expression e ( d )  of line 13 in 
the example of Sec. 4.1: 

4.8. Two expressions C1, C2 both valid at u are called definitionally equal if 
they have the same normal form. If we want to show definitional equality it is 
not always necessary to compute these normal forms; it will often suffice if we 
can transform both forms into a single form by partial reduction. 

If we replace an expression in a correct SEMIPAL book by a definitionally 
equal one, we get a new correct SEMIPAL book. The normal forms of corre- 
sponding expressions in both books will be the same. 

4.9. We shall describe the notion of a correct PAL book in two stages. We 
start with a book A written according to the preliminary description of Sec. 3. 
That is, the definition part of a line is -, or PN, or an expression; the category 
part is type or an expression; the indicator part is 0 or a previous block opener. 
By a certain duplication operation to be described presently, we get something 
which we shall require to be a correct SEMIPAL book A’. Finally, we shall 
require certain conditions regarding the categories. 

The duplication means the following thing. We replace every line 

C .- U a .- R 

(where u may be 0 or a block opener, R may be an expression or - or PN, C 
is an expression or type) by two lines 

U a+ := C 
U a .- 52 , .- 

unless C is type, in which case we write the single line 

.- U a .- R .  

We of course assume that for every identifier we can create an entirely new 
identifier by adding the plus sign. 

As an example we deal with the first 5 lines of the book of Sec. 4.1: 
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nat 
real 
U+ 

a 
b+ 
b 
prod+ 
prod 

.- .- PN 

.- PN 

.- real 

.- real 

.- real 

.- PN 

.- 

._ 

._ - .- 

._ 

.- - .- 

._ 

._ 

4.10. We define the notion ‘‘correct PAL book” by recursion. The definition 
will be such that if A is correct, then A’ is a correct SEMIPAL book. 

A one-line book is correct if and only if that line has one of the following two 
forms: 

._ 0 .... .- PN t y p e ,  

t ype  . 0 .... .- .- - 

Now assume that a book A consisting of n lines is a correct PAL book. We shall 
state the conditions for any line to be added. 

(i) 

(ii) 

The indicator u is either 0 or a block opener of A. 

The definition part is either -, or PN, or an acceptable expression at u 

(see Sec. 4.11 for this). 

(iii) The category part is either type ,  or an acceptable expression at u with 
category type.  In the case where the definition part is an expression (see 
(ii)), we require that the category part is definitionally equal (in the sense 
of the SEMIPAL book A’) to the category of that expression. 

4.11. Let u be one of the block openers of the SEMIPAL book A’ obtained 
by duplication of A .  We will define a collection of expressions that we call 
acceptable at u; to each one of these expressions we will attach what we will 
call a category. The latter is either an expression or the symbol type.  The 
expressions to be considered for acceptability, as well as their categories, will 
only contain identifiers of A, and no identifiers with + signs attached to them. 
The acceptable expressons will be automatically valid at u in the sense of Sec. 
4.4. 

The description of “acceptable” closely resembles the one of “valid” (Sec. 
4.4). 

(1) Let b be one of the following: 
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- a block opener whose indicator string is contained in the indicator string 

- the identifier of a line of A (but not a block opener) whose indicator is 
either 0, or u, or contained in the indicator string of u (cf. (1) and (2) in 
Sec. 4.4). 

of u; 

Then b is an acceptable expression at u, and its category is the category 
part of the line whose identifier is b. 

(2) Let b be the identifier part of one of the lines of A, and assume that b is 
not a block opener. Let n be the length of the indicator string of b. Let k 
be a second integer, 0 5 k 5 n. We assume that the expressions C1, ..., Ck 

are acceptable at u, with categories 0 1 ,  ..., Rk. If n > k we have the extra 
condition that the (n- k)-th entry of the indicator string of b is either equal 
to u or contained in the indicator string of u. Let v1, ..., vk be the last k 
entries in the indicator string of b. We require, for i = 1, ..., k ,  that 

is definitionally equal (in the sense of A') to Ri. (If i = 1 we have to  read 
(1) as v:. If any of the v+ does not occur in A', we have to read (1) as 
type, and the condition is just that R; = type.) 

Under these conditions we proclaim b(C1, ..., Ck)  to be acceptable at u, 
and we give it the category b+(C1, ..., Ck) .  If b+ does not occur in A', the 
new expression b(C1, ..., C k )  is given the category type. 

One minor modification should be made: we promised that the category 
would not be an expression containing identifiers with plus signs. Therefore 
we replace b+(C1, ..., Ck)  by the result of an application of a substitution 
such as described at the end of Sec. 4.7. 

5. HOW TO USE PAL FOR MATHEMATICAL REASONING 

5.1. In Section 4 we explained how to express things by means of PAL. Seem- 
ingly, expressing things covers only a small part of mathematics, for usually we 
are interested in proving statements. Mathematics has the same block struc- 
ture as we have in PAL, but there are two ways to open a block. One is by 
introducing a variable that will have a meaning throughout the block, the other 
one is by making an assumption that is valid throughout the block. We shall 
be able to deal with the second case as efficiently as with the first one, if we 
represent statements by categories. Saying we have a thing in such a category 
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means asserting the statement. This can be done in three ways: by means of -, 
or PN, or an expression. These three correspond to assertion by assumption, by 
axiom, by proof, respectively. 

5.2. As an example we shall deal with equality in an  arbitrary category. The 
following piece of text introduces equality as a primitive notion, and states the 
three usual axioms. 

0 

E 
X 

Y 

X 

Y 
asp 1 
asp 1 

asp 2 
z 

.- - .- 

.- - 
t 
X .- 

.- - .- Y 

.- 1 is .- PN 

i reflex := PN 
asp 1 := - 

symm := PN 

asp 2 := - 
trans := PN 

- .- .- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

This book is not a nested one since line 5 does not belong to the block opened 
by y. Even so, the vertical bars, with an interruption at line 5 ,  can be helpful. 

We now show how this piece of text can be used in later parts of the book. 
Assume we have the following lines (in some order) in the book: 

type  
77 
77 

.- 0 7 7  .- .... 
0 a .- .... 
0 b .- 
0 known := .... zs(v,a, b )  

.- 
.... .- 

We wish to derive a line: 

0 result := .... is (77, b, a)  * 

We have to find a definition part for this line. What we want is to apply line 7. 
The indicator string is (E,x,  y,asp 1). In ordinary mathematical terms, we have 
to furnish a value for 5, a value for x ,  a value for y ,  and a proof for the statement 
obtained from “x  = y” by these substitutions. A proof for the statement means, 
in our present convention, something of the category is (71, a,  b). Indeed we have 
something, viz. “known”. The reader can easily verify that 

0 result := symm(7, a,  b,known) is (77, b, a )  

is an acceptable line. 

any block that contains 77, a,  b and known. 
The above application was given entirely in context 0, but it can be done in 
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5.3. We are, of course, inclined to see the categories as classes, and things 
having that category as elements of those classes. If we want to maintain that 
picture, we have to say that the category “is (t, z, y)” consists of all proofs for 
z = y. In this picture the usual phrase “assume z = y” is replaced by “let p 
be a proof for 2 = y”. Another aspect is that we have to imagine the category 
“is (t, z, y)” to be empty if the statement z = y is false. The latter remark points 
at a difference between these assertion categories and the “ordinary” categories 
like “nut” and “reul” in Sec. 4. In the spirit of the example of Sec. 4 it is vital to 
know what the expressions are, and it seems pretty useless to deal with empty 
categories. With the assertion categories it is different. The interesting ques- 
tion is whether we can find something in such a category, it doesn’t matter what. 

5.4. A modern mathematician has the feeling that asserting is something we 
do with a proposition. The author thinks that this is not the historic point of 
view. The primitive mathematical mind asserts the things it can, and is un- 
able to discuss things it cannot assert. To put it in a nicer way, it has a kind 
of constructivist point of view. It requires a crooked way of thinking to build 
expressions that can be doubted, i.e. to build things that might or might not be 
asserted. A possible way to do this in PAL is to talk about the category “bool” 
consisting of all propositions, and to attach to each proposition an assertion 
category. We start the book like this: 

.- .- PN type 

bool .- - .- ’ b 1 L:uE := P N  type 

The standard interpretation is simple. If we write in a certain context 

... .- .- .... TRUE(c) , 

where c is (in that context) a proposition, then the interpretation in every-day 
mathematical language is that  we are asserting c.  

5.5. In PAL we are able to write axioms and prove theorems about propo- 
sitions (e.g. tautologies). In later parts of the book we will be able to use these 
axioms and theorems (just like the derivation of “result” in Sec. 5.2). This 
means that in a PAL book we are able to derive inference rules that can be 
applied later in that same book. 

As a very primitive example we shall write the following in PAL. After intro- 
ducing bool and TRUE we introduce the conjunction of two propositions. We 
present some axioms concerning that conjunction, and we show that from z A y 
we can derive y A z. Finally we show how in a later piece of text the result can 
be used as an inference rule. 
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PN type 

PN type 

._ .- 
bool - ._ .- 

~- .- 
- bool 

bool 
PN bool 
- TRUE ( x )  

.- .- 
- .- .- 

.- .- 

.- .- 
TRUE(Y) - ._ .- 

.- .- PN TRUE(and) 

._ .- 

.- .- 

._ .- 

.- .- 

.- .- 

._ .- 

.- .- 

.- .- 

- TRUE( a n d )  

PN TR UE ( Y )  

PN TRUE(x)  

ax l (y ,x ,ax 3,az 2) TRUE(and(y,x))  
.... bool 
.... bool 
.... TRUE(and(u,v))  

theorem(u,v,known) TRUE(and(v,  u ) )  

5.6. The reader will have observed from the above examples that we do not 
need to subdivide our text into parts like “theorem”, “proof”, “definition”, “ax- 
iom”. Every line is a result that can be used whenever we wish. I t  may require 
a large number of lines to  translate the proof of a theorem into PAL. (Needless 
to say, we can always try to reduce the number of lines, but that makes the lines 
more complicated and hard to read.) Some of the lines represent definitions of 
notions introduced only for the sake of the proof. Other lines represent sub- 
results, usually called lemmas. The usual idea about theorems and proofs is, at 
least formally, that we are not allowed to refer to results obtained inside a proof. 
In PAL (and in Automath), however, we are free to use every line everywhere. 
We never announce a theorem before the proof starts, the result is not stated 
before it has been derived. 

6. EXTENDING PAL TO AUTOMATH 

6.1. I t  was shown in Sec. 4 how we can deal with functional relationship in 
PAL. Once a function has been defined (either by PN or by definition in terms 
of previous notions) it can be applied. That is, a function f is introduced by 
saying what the value of f ( x )  is for every x of a certain category. And if we 
have, at a later stage, an expression C having that same category, it will be 
possible to  talk about f (C) .  A thing that we can not write in PAL, however, 
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is “let f be any function, mapping category C1 into category C2”. If we wish 
to deal with such mappings the way it is done in mathematics, we want several 
things: 

(i) We need the facility of building the category of the mappings of C1 into 

(ii) If f is an element of that mapping category, and if x is something having 
category C1, then we have to be able to form the image of x under f .  

(iii) If a mapping of C1 into C2 is explicitly given in the PAL way then we 
have to be able to recognize that mapping as a member f of that mapping 
category. 

(iv) If we apply (ii) to the f obtained in (iii), we can (making z a block opener) 
obtain a function given in the PAL way. This function should be equivalent 
to the one we started from in (iii). 

6.2. Let us consider (iii) more closely. The “PAL way” of giving a function is 
the following one: We have somewhere in the book 

x := - C1 
X u := A C2 

1 
2 

where A is an expression possibly depending on x. (That is, its normal form 
may contain z) But it is only fair to remark that C2 may also depend on x; 
C1, on the other hand, can not contain x. Let us assume that neither C1 nor 
C2 is the symbol type. 

The mapping described here attaches to every x of type C1 a value depending 
on x, which value has category also depending on x. We shall use the notation 

[x : El] C2 

for the category of this mapping, and 

[X : El] A 

for the mapping itself. There is an objection against using the old identifier x 
for this new purpose, and therefore we replace it by a new identifier t. This t 
will never occur as identifier part of a line. It is called a bound variable, and we 
may assume that it will be used here, but never again. 

We shall write i2,(E)A for the result of substitution of C for x in the ex- 
pression A .  (It should be remarked that A may contain x implicitly, which can 
happen if the above block contains lines between line 1 and line 2. In order to 
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make such implicit occurrences explicit, we have to transform A by application 
of definitions up to a point where further implicit occurrence is impossible.) 

We can now phrase the rule of functional abstraction: In Automath we have 
the right to deduce from lines 1 and 2 the acceptability of the line 

3 

Accordingly we have the right to consider [t : El] O,(t) C2 as a category. So if 
we have (if C1 and Cz are expressions) 

U ... ._ .- [t : El] R,(t)A [t : Ci] &(t)C2 

C1 z := - U 

X w := CZ type 
4 
5 

we have the right to add 

U ... .- .- [t : Ell %(t)& type 6 

This makes it possible to  open a new block with 

21 f : = -  It : El] R,(t)Cz , 7 

that is, we can start an argument with: let f be any mapping of the described 
kind. We also have the possibility to write line 7 with PN instead of -. 

6.4. Now returning to point (ii) Sec. 6.1, we introduce the following rule. If we 
have a line 

and also a line 

U ... .- A El 9 .- 

then we take the liberty to  write 

U ... := ( ~ ) r  R , ( A ) c ~ .  10 

The interpretation is that (A) I? is the result of the substitution of A into I?. 
We write this instead of r(A)  since, in the case that I' is a single identifier, the 
latter notation already had an entirely different meaning in PAL: it was used to  
change context. That is, r(A) is the mapping we obtain from r if we substitute 
A for u, and it is even questionable whether this is possible, since u need not 
be of category C1. 

6.5. In connection with this notation ( ) we take the liberty to extend the 
notion of definitional equality by the following pair of rules: 
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(i) If C1, C2, C3 are expressions, where C2 contains the bound variable t, but 
C1 and CJ do not, then we postulate the definitional equality of 

That is, it  does not make a difference whether substitution is carried out 
before or after functional abstraction. 

(ii) If C1 and C2 are expressions that do not contain the bound variable x, then 
we postulate the definitional equality of 

The above rules (i) and (ii) explain why we prefer to write (z) f instead 
of f (x). By way of these rules, (x) f is in agreement with the convention 
[t : C1]C2 for functional abstraction, and the latter is in agreement with the 
general mathematical habit to write quantifiers like 

m 
V X E S l  U X E S ,  n,=, 

to the left of the formulas they act on. 

6.6. The description of Automath in the preceding sections was not as complete 
as the description of SEMIPAL and PAL in Sec. 4. For a complete and more 
formal definition of Automath we refer to the report mentioned in Sec. 1.2. 

7. HOW TO USE AUTOMATH FOR MATHEMATICAL REASON- 
ING 

7.1. If we write elementary mathematical reasoning in PAL as described in 
Section 5, one of the first things we can not do is to derive an implication. 
There are two things we wish to do with implication, and only one of the two 
can be done in PAL. 

First assume we have introduced implication as a primitive notion, then it is 
easy to write "modus ponens" as an inference rule: 
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impl 
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modpon 

.- .- PN 

.- PN 

.- PN 

.- - .- 

._ 

.- - .- 

._ 

.- - .- 

.- - .- 

._ .- PN 

type 
bool 

type 
bool 
bool 
TRUE(b) 
T R  UE (impl) 
TR UE(c) 

By means of this piece of text we are able to use the inference rule 

A ,  A = + B  
B 

in all possible situations. 
The second thing we want to do is this. If we have 

._ 0 P .- .... bool 
0 .- .... bool .- 

TR UE (PI 
.... TRUE(q) 

9 
10 
11 
12 

(it might have been given in any other context instead of 0) then we want 
to construct something in TRUE(imp1 ( p ,  q ) ) .  This cannot be done by means of 
the rules of PAL. 

The problem can be solved in Automath, however. We first say that if we 
have a mapping from TRUE(b) into TRUE'(c), then impl(b, c) is true: 

. .  . .  
[x  : TRUE(b)] TRUE(c) 13 
TRUE(imp1) 14 

C 

Using the axiom, and functional abstraction, we can derive from lines 11, 12 

0 first := [y : TRUE(p)] then(y) [y : TRUE(p)] TRUE(q) 15 
0 second := axiom(p, q,first) TR (impl (PI q )  16 

That is, we have derived an assertion of impl ( p ,  q) .  So we have the inference 
rule 

A 
B 

A = + B  

- 

available in all possible cases. 

instead of two, viz. 
If we wish, we can write the application of this inference rule in one line 
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0 ... := axiom(p,q,[y : TRUE(p)] then(y)) TRUE(impl(p,q)) 17 

7.2. As a second example we introduce the all-quantifier for a predicate P 
on an arbitrary type <. 

0 bool 

b I TRUE 

b 

0 

t: 
P 
P 
3: 

X 

P 
asp 6 

f 
P 
all 
X 

asp 6 

._ .- 

._ .- 

._ .- 

._ .- 

.- .- 

._ .- 

._ .- 

._ .- 

._ .- 

._ .- 

._ .- 

PN t y p e  
bool 

PN t y p e  

- 

t y p e  

PN bool 

- 
- [u : f ]  bool 

< 
- TRUE (a l l )  

PN TRUE((2) P )  

- 

PN TRUE(al1) 

- 

[v : <] TRUE((v) P )  

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 

Note the close resemblance between the text of Sec. 7.1 and this one. Actu- 
ally we are able to define “impl” in terms of “all”: we can write instead of line 
5 of Sec. 7.1 

c imp1 := all( TRUE(b),[t : TRUE(b)] c)  bool 

If we do this after having accepted the text of 7.2, then we can replace the PN’s 
in line 8 and line 14 of Sec. 7.1 by proofs. The reader may check that the PN 
in line 8 (Sec. 7.1) can be replaced by 

ax l(TRUE(b),[s : TRUE(b)]c, asp 1, asp 2) , 

and the one in line 14 (Sec. 7.1) by 

ax 2( TRUE(b),[s : TRUE(b)] c, asp 4) . 

7.3. Next we discuss the existence quantifier. There are various different ap- 
proaches to this. The simplest one, and therefore the easiest one for application, 
is connected with the Hilbert operator. It says, if for any given category there 
exists an object for which a given property holds, then we have a way of selecting 
such an object as if we were in possession of a standard algorithm that selects 
for us. 

We can write this as follows. We start again with the introduction of bool 
and TRUE, then we take an arbitrary category ( and an arbitrary predicate on 
that category, and we introduce existence as a primitive notion. I t  says that 
“existence” is true if and only if we have something in that category E .  
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TRUE ( (  Hilbert) P )  12 

In combination with other axioms this way of defining existence easily leads 
to non-contructive things, e.g. the axiom of choice. 

A different way of introducing existence is to say that it is not true that the 
negation of the predicate holds for all objects in the given category. This of 
course requires a definition of negation, which can be done in several ways. We 
shall not discuss it here. 

The difficulties about existence arise already at a lower level, viz. with the 
notion of non-emptiness of a category. In that case the following may be a useful 
substitute for the kind of non-emptiness related to the Hilbert operator: 

type 
type 

- .- .- 1 L E P T Y  := [c : bool] [u : [x  : <] TRUE(c)] TRUE(c) 

If we have something in NEPTY, if c is any proposition, and if we can prove 
that whenever we have an x in [ then c is true, then we have proved c. So if 
we have something in NEPTY,  we have a kind of inference rule: If we want to 
prove a proposition c then we may act as if we know an x with category t. 

7.4. There is no objection against higher order predicate calculus in Automath. 
For example, we can talk about the category R of all predicates on the category 
of natural numbers, say, about the. category S of all predicates on R, etc.: 

0 nat := .... type 
0 R := [ n :  nat] bool type 
0 S := [ T :  R] bool type 

7.5. Every language has its advantages and disadvantages. The disadvantages 
of Automath are obvious: it is tedious to  have to write in full detail, carefree 
identification of things in different categories is forbidden (see Sec. 2.2), and 
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0 

a b 

AUTH .- - a .- 
:= - bool I ;RUE* := P N  type 

8. UNSOLVED PROBLEMS ABOUT AUTOMATH 

8.1. It is very probable (but not yet proved) that the following is true. If 
the lines 

xi A i  
C2 A2 

.- 21 ... .- 
'11 ... .- .- 

occur in a book, if C1 and Cz are definitionally equal, then A1 and A2 are 
definitionally equal. We only say roughly what definitional equality is: Two 
expressions are definitionally equal if one of them can be transformed into the 
other by replacing an identifier in one of the expressions by the expression that 
defines it, and also by application of one of the operations of the lambda calculus. 
They are also called definitionally equal if they can be connected by a chain of 
pairwise definitionally equal expressions. 

embedding of types into other types is not an automatic facility. In order to 
compensate for these disadvantages, the user should try to exploit the advan- 
tages the language has. One advantage is that we do not have to announce 
theorems and lemmas in a formal way, and therefore repetition of arguments is 
much easier suppressed than in ordinary mathematics. And, of course, we can 
invent all sorts of tricks. We present just one such trick here. 

Consider an axiom like the line TRUE in Sec. 5.4. Once we have written it 
this way, we cannot get rid of it: if we want to do mathematics without it,  we 
have to write a new book. There is a way, however, to introduce the axiom in 
such a way that,  so to speak, it is only available to those who have authority 
to  use it. We introduce a new primitive notion AUTH (for authority) and then 
state the axiom for those users who have something in A U T R  

. -  I ,  

If later we have c in AUTH and d in bool, we can use TRUE*(c,d).  If c in AUTH 
is valid in a large part of the book, we can get rid of the awkward obligation to  
mention our authority, by defining (in a context where c is available) 
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We do not express the notion by means of normal forms, as in 4.7, since we 
are not yet sure about normal forms. 

8.2. Probably every expression occurring in an Automath book is definitionally 
equal to an expression that does not contain any ) followed by a. [. This means 
an expression 

(possibly k = 0, h = 0,  or m = 0), where the Greek capitals again represent 
expressions of that form, the PI,...,/& are bound variables, and is either a 
block opener or the identifier part of a line with PN. 

9. PROCESSORS FOR AUTOMATH 

9.1. A processor is a computer program that enables a computer to check 
line by line whether any given input represents a correct Automath book. 

One of the things the computer gets to do is to check whether two expressions 
are definitionally equal. Even if the conjectures of Sec. 8 are true, it can be 
very impractical t o  use normal forms for checking that equality. It is already 
impractical in PAL, where there is no difficulty with the normal forms (see Sec. 

A good processor should have a good strategy for checking definitional equal- 
ity. In cases where the general strategy is failing, it may pay to  assist the 
computer by giving hints as to what to do first. 

It is to be expected that very few hints will be needed in general. That is, 
at least as long as we do not try to condense a larger number of lines into a 
single one. Such a condensation is quite often possible, it  saves identifiers, but 
makes things harder to write and harder to check. (An additional disadvantage 
of condensed writing is the repetition of expressions which might have been ab- 
breviated by means of extra lines. Another aspect of the same thing is giving 
an argument twice where a lemma might have been more efficient.) 

4.7). 

9.3. There are several attractive possibilities for man-machine interaction if 
a terminal is available for direct communication in conversational mode. (The 
Automath processor in operation in 1968 at the Eindhoven University of Tech- 
nology, Eindhoven, did not yet provide such facilities.) For lines the machine 
rejects, it can produce diagnostics by means of which the operator can carry out 
corrections or add hints. I t  will be very practical for the operator to suppress 
the category of a line (unless the definition is - or PN),  and to  ask the machine 
what category it finds. If it does not coincide with the one the operator has in 
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mind, the operator can ask the machine to check definitional equality of the two 
expressions. 

10. POSSIBILITIES FOR SUPERIMPOSED LANGUAGES 

10.1. For practical purposes it will be attractive to make languages which 
bear the same relation to Automath as a programming language has to some 
particular machine language. We shall call such languages superzmposed on Au- 
tomath. They require a compiler for translation into Automath. 

10.2. A very simple thing a superimposed language might do is admitting 
repetition of names (such as the repeated use of the letter 2 for many different 
purposes in the book). The compiler has to rename everything in order t o  meet 
the requirement that in Automath the identifier parts of the lines are distinct. 

10.3. In complicated cases the superimposed language will require a fixed cor- 
rect Automath book as a basis. If we have written a book in the superimposed 
language, then the compiler starts from the basis, and next it translates the 
given book into Automath lines which are subsequently added to  the basis, and 
checked by the Automath processor. 

10.4. In a superimposed language standard mathematical notation might be 
used more freely. For example, in the superimposed language one might write 
p := a + b + c. The compiler sees that a,  b, c were previously introduced as 
reals, it sees that no change of context has been mentioned, it knows that “real” 
and “plus” are identifiers in the basis. It writes 

p := p lus (p lus (a ,  b ) ,  c) real 

and it keeps the context indicator of the previous line. 

10.5. A superimposed language might be very different from Automath in 
its approach to  things like propositions, assertions, predicates. The user of the 
superimposed language need not even notice that Automath has a slightly un- 
conventional approach to  these things. 

10.6. It is not strictly necessary that the text presented in a superimposed 
language is entirely unambiguous and free of gaps. Just as the human math- 
ematician has been trained to guess what the sentences in his textbook mean 
exactly, the compiler can be trained to guess the meaning of what is said in the 
superimposed language. It cannot be expected to do very much in this direction, 
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but whatever it can do, will be very helpful. Writing absolutely meticuously is 
very much harder than writing almost meticuously, and it will be a great gain 
if a machine can bridge the gap between the two. 

11. AUTOMATIC THEOREM PROVING 

11.1. Automath is not intended for automatic theorem proving. Theorem 
proving is a difficult and time-consuming thing for a machine. Therefore it is al- 
most imperative to devise a special representation of mathematical thinking for 
any special kind of problem. Using a general purpose language like Automath 
would be like using a contraption that is able to catch flies as well as elephants 
and submarines. 

11.2. There is a case for automatic proof writing in Automath if we have 
to produce a tedious long proof along lines that can be precisely described be- 
forehand. Let us take an  example. Assume that P is a proposition on magic 
squares, and that we want to prove a theorem saying that there is no 8 x 8 magic 
square that has property P.  We can write a computer program for this and run 
it on a computer. The computer says that none exist. Now quite apart from the 
question whether the computer is right, we have to admit that a formal mathe- 
matical proof has not been produced. Even if we had a complete mathematical 
theory about the machine, the machine language, the programming language, 
our proof would depend on intuitive feelings that the program gives us what we 
want, and it would definitely depend on a particular piece of hardware. 

For those who are willing to take Automath, at least temporarily, as their 
only final conscience of mathematical rigour, there is a way out. We can rewrite 
the magic square program in such a way that the search is stepwise accompanied 
by the production of Automath lines that give account of a detailed mathemat- 
ical reasoning, ending with the conclusion that there is no 8 x 8 magic square 
with property P. This way we get a complete proof that can be checked by any 
mathematician. If we leave the checking to a computer, we get again into the 
question of whether the processor and the computer do what we expect them 
to  do, but that is an entirely different matter. 

12. EXTENSIONS OF AUTOMATH 

12.1. 
this can have two reasons. 

If we feel we should have a more powerful language than Automath, 
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12.2. One reason is that we feel that the language is clumsy, and that we 
want to make it more handy, without changing the scope of what we can say. 
For some purposes this might be possible by extension of the language, i.e. by 
adding new grammar rules without cancelling the old ones. It is hardly necessary 
to  consider such extensions for the present purpose, since it can be expected that 
the same goal can be reached by means of superimposed languages. We might 
think about facilities for easy identification of two things of different categories 
(see Sec. 2.2), embedding of one category into another, etc. If such matters can 
be handled satisfactorily, they can be handled by a superimposed language. The 
only reasons for doing it without such a language may be computer time and 
memory space. 

12.3. A different reason for extension can be that we feel that Automath is 
not strong enough, just as we extended PAL to Automath since PAL was not 
strong enough for modern mathematics. 

One might suspect that no single language will ever be entirely satisfactory. 
It is an old mathematical habit to mix language and metalanguage: we write 
a text in a language; we discover facts about that text; we use these facts in 
the subsequent text. This of course means an extention of the language. We 
mention an example, though not a very important one. Let q be any identifier 
in an Automath book, and let p be a block opener. If it happens that q does not 
implicitly depend on p ,  this is an observation about the book, and there seems 
t o  be no way to  write it as an assertion in the book. It will be an extension of 
the language if we design some way to write this independence, a way to derive 
it from the book, and a way to  use that written information if we need it. This 
kind of thing is done in ordinary mathematical language, but in Automath it is 
not necessary. If q does not depend on p ,  then we are able to  define r := q 
in a context where p is not valid, and then we need not bother about p any more. 

12.4. There is a class of extensions of Automath that is very easy to  describe: 
We start the book with a number of lines some of which have not been written 
according to the rules; we want to write the rest of the lines in the book accord- 
ing to the rules. We give an example that does not belong to  Automath, but t o  
the language we get from Automath if PN’s are forbidden: Then we can write 
all axioms in the basis as theorems without proofs, and talk PN-free language 
ever after. 

One might even think of an infinitely long basis. For example, one might like 
to  have all the natural numbers as a priori given, and devote a line or two to 
each one of them. 

12.5. In Automath we have the right to indulge in functional abstraction with 
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respect t o  every type. In private discussions Prof. Dana Scott said he did not 
like the idea of introducing “bool” as such a type, a t  least not in intuitionism. It 
is very easy to  extend Automath by introducing a symbol type*, and saying that 
if C has category type*, then we do not have the right of functional abstraction 
with respect to C. It seems fair to admit the category C3 := [z : El] C2 if C1 
has category type and Ez has category type’, and to say that C3 has category 
type’. If we do all this, we can introduce “bool” as something of category type*, 
and “nut” (the natural numbers) as something of category type. 

12.6. In Automath we did not allow functional abstraction with respect to 
type itself. For example, if we have 

then we can not write 

0 ... .- .- [t : type] b ( t )  [t : type] bool . 
It is difficult t o  see what happens if we admit this. 

12.7. A possibility that seems less dangerous than the one of 12.6 is the fol- 
lowing one: if we have 

0 5 := .... type 

then we allow to  write 

0 ... := [t : [] b ( t )  [t : r ]  type 

This gives more information about [t : (1 b( t )  than just saying that it has category 
type,  but on the other hand it puts an end to  uniqueness of category. 

Moreover, we permit lines such as 

0 a : = -  [t : r1 type 

in order to introduce an arbitrary way of attaching a type to each t in <. 
Once we have opened these possibilities, it will be pretty obvious what the 

further operational rules have to be. 
We mention a single case where this extension of our language is needed. In 

connection with recursive definitions, we might wish to say: let PI ,  P2, ... be an 
infinite sequence of categories. This can be done by means of a block opener 
with category [n : nut] type. 




