CONSTRUCTIVE VALIDITY

DANA SCOTT

This paper 1s a preliminary report on work in progress and ls an
expanded and revised verslon of the lecture gilven at the conference.
The author 1s indebted to N.G. de BRUIJN, N. GOODMAN, G. KREISEL and
A.3. TRCELSTRA for many kinds of help, information and advice as well
as stimulatlon. In particular KREISEL has been very patient over the
years 1in repeating time after time polnts not taken in and in offering
extended criticism of faulty attempts at understanding what he calls
"non-set-theoretic" foundations. The author 1s also 1ndebted to
D. LACOMBE for bringing a formal decidability problem to his attention,
and to G. KREISEL for discussions on the significance of thls problem.
(See postscript).

BACKGROUND

A quote from HEYTING (8) willl set the stage as well as could be
desired:

One of BROUWER’S main theses wase' that mathematics is not based on
logie, but that logie ie based on mathematics. This is easily seen to
be an immediate congequence of hig point of departure. If mathematics
consists of mental constructions, then every mathematical theorem is the
expression of a result of a successful construction. The proof of the
theorem consists in this construction itself, and the steps of the proof
are the same as the steps of the mathematical construction. These are
intuitively clear mental acts, and not applications of logical laws.
Yet an intuitionistic logic has been developed, and thus the question
of ite significance was raised. The older interpretations by KOLMOGOROFF
{as a caleculus of problems) and HEYTING (as a calculus of intended con-
structions) were substantially equivalent. In a later paper HEYTING
interprets logical theorems as simply mathematical theorems of ezireme
generality. There is no epsential difference between logical and mathe-
matical theorems, becausegboth sorte of theorems affirm that we have

succeeded in performing cpnetructions satisfying certain conditions.
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BROUWER based his considerations on a complex philosophical stand-
point and a thorough psychologistic view of the nature of mathematics.
Our purpose here willl be to reexamine the idea of the ealculus of con-
structlions. A formalization of this calculus will be presented, and 1t
will be applied to the problem of interpreting logical formulas in a
way that, to the author at least, seems to carry out the program out-
lined by HEYTING above word for word. When thils 1s done it would appear
that the psychologlsm has been reduced to a minimum: one only has to
agree that the theory of constructions has intultive appeal. And one
particular advantage of the theory we shall examine is that 1t has many
interpretations of varying degrees of constructivity. Now there will of
course remain the questions of whether BROUWER would have consldered
the theory at all reasonable and of whether some essential part of his
idea of mathematics has been lost. But the author feels that until the
intuitionists arrive at a greater degree of clarity in formulating
their principles, the conclusion must stand that the notlon presented
here is indistinguishable from the intended meaning on the basis of
current practice, of intuitlonistic mathematics.(This statement is in-
correct; see postscript.)

These remarks do not apply directly to BROUWER'S theory of choice
sequences, but the present state of the art (cf.(19) and the objections
of MYHILL (17)) indicates that choice sequences are eliminable. Thus,
however pleasant they may be in theory (and natural in intuition), one
cannot claim for them at the moment any more fundamental role in
analysis than, say, that of the infinitesimals of (classical) non-

standard analysis. For both kinds of analysis these various remarkable
reals have properties that aid our understanding through the regularity
of theilr laws, but strietly speaking they are not needed. This situation
may very well change in the light of future developments; hence the
cautlous reader may be reluctant to call the author's theory intultion-
ism.

The calculus we shall develop here did not occur as a bolt out of
the blue but has a long history involving many people. In the first
place we have HEYTING'S original work. The author's own contact with the
problem came through KREISEL'S formulations in (10) and (11). Subse-
quently interest was revived in consulting with GOODMAN on the thesis (5)
(cf. also (6), and more on this later. In the meantime we had the work
by LAUCHLI (14) and LAWVERE (15) who both provided interpretations that

are closely related. Their approach has one serious defect from our
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point of view: neither of them formalized thelr theories of functions
(constructions) and both of them think rather non-constructively. (I
hope they will forgive me for thils remark.) Therefore the foundational
(as distinet from mathematlical) content of thelr interpretatlons 1s not
evident. Hopefully the present theory will make it possible to view
their results in a new light. LAUCHLI was motivated by KLEENE'S realiz-
ability interpretation (cf.(9)) and considered his notion as an abstract
generalization thereof. The exact relatlon of the present interpretation
to realizabillity 1s not clear yet. KLEENE'S particular use of recursive
functions introduces anomalies (sometimes formally useful!) that make
comparison difficult. GOODMAN discusses this in (5), but we shall not

be able to do so here.

Getting back to KREISEL, he wanted to formalize the "intended"
interpretation In such a way that proofs (in an abstract sense) were
objects of the theory of the same status as constructions. This 1s

reasonable from the psychologlstic approach which accepts mental acts

as objects of mathematical investigation, There were some difficulties

in bringing KREISEL'S theory to a precise enough state to allow meta-
mathematical results, and thls problem was the point of departure for
GOODMAN. He reformulated KREISEL'S theory and obtalned several results,
but his version was not exactly what KREISEL had wanted. KREISEL felt
that in view of decidability of various features of proofs, the functions
should be total functions. GOODMAN did not find this requirement con-
venient because operations on constructions were to be given by general

combinators (in the sense of Curry-Church), and these necessarily lead

to partial functions. GOODMAN gave a quite neat treatment of a calculus
of partial functions, and aside from thils divergence carried out
KREISEL'S plan in satisfactory detall. It will be noted, however, that
neither KREISEL nor GOODMAN gave an analysis of the structure of abstract
proofs, and they enter in a (to the author) mysterious way simply to
allow certain properties to be decidable.

This was how matters stood at the time the author came to Amsterdam
in the fall of 1968. Soon thereafter he met Professor de BRUIJN, who
explained to him his language AUTOMATH (c¢f. the paper of de BRUIJN at
this conference). The feature of his language what was of specilal
Interest to de BRUIJN was the possibility of writing a computer program
for practical proof checkilng but that will not concern us for the moment.
What was highly suggestive to the author was de BRUIJN'S conceptual

framework. He had been, of course, personally influenced by BROUWER
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and wanted to present a suitably constructive notion of proof. He
achieved this, not surprisingly, by means of constructions for inter-
preting the logical notlons. He distinguishes between constructlons
(functions) and categories (certaln sets or species) of constructions
and places the burden of proof on showing that a given compound con-
struction belongs to the desired category. The particular conventilons
of language for writing such proofs, which are essential for computer
work, need not be discussed here.

As the reader can well imagine, at this polnt the author made the
connectlon with KREISEL, GOODMAN, LAUCHLI, and LAWVERE, and he set out
to formulate a system of his own. Instead of the natural deduction style
of de BRUIJN, 1t seemed more succinct to use the calculus of sequents
employed by GOODMAN ‘for foundational considerations. (This also seems
better than the two-valued propositional connectives of KREISEL, since
one 1s only interested 1n certaln implications in any case.) Next the
distlnction between constructions and species used by de BRUIJN seemed
very convenient, though as we shall see this does not requlre notational
distinctions. When one does this one finds that partial functions can
be avoided by having each function defined on a "principal" domain and
then making function values arbitrary outside this domain (a plan of
KREISEL). Next de BRUIJN made good use of cartesian products of speciles
(formation of function spaces) in connection with the universal quanti-
fier - an idea also familiar to LAWVERE and to a certaln extent to
LAUCHLI - and the author tock this at once. Now dual to products (as
LAWVERE knows) are disjoint sums which must be used.for the interpre-
tation of the exlstentlal quantifier (cf. KREISEL - GOODMAN). These
sums were not employed by de BRUIJN, but 1t would be easy to add them

to his system.

Now that we have functions and species and sums and products, we
take certain primitive species (a one-and two-element species, and the
species of natural numbers) and theilr implied functions (ordered pairs
and definitions by recursion) and combilne and recombine them as much
as we please obtalning the basis species of constructive mathematics
(cf. the discussion in TROELSTRA (20)). These are finally used for the
interpretation of logic.

Several polnts should be noted:
(1) We never have occasion to form speciles of specles. Why? Well silnce
we can form functlons of functions of ... of functlons of specles,
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the species of species do not seem to be needed. If we can think
of some use for them, the format of the theory will allow for them.

(ii) General speciles variables (quantificatlon over species) are not
allowed, though the effect can be produced by some simple primi-
tives. Thils is not a defect, because there may be arguments against
quantification over arbitrary specles.

(111) We have no abstract proofs only constructions and species of con-
structions. When the author finally obtained his formalism the
proofs-as-objects vanished. May be they should be brought back 1n,
but for the present the author's system seems to be simpler than
KREISEL - GODDMAN'S (and to a certain extent, de BRUIJN'S) and to
be adequate. Thus 1t seems more reasonable fto try it out first in
some detall; only then will one be able to appreciate whether
abstract proofs are desirable. (But see postsript.)

(iv) The general combinators are not used. This has the advantage that
models are conceptually easler to obtain (total vs. partial func-
tions, as mentioned earlier). Furthermore, one 1s forced to make
explicit all the basic modes of formation, and they are remarkably
few.

Let us digress for a moment to discuss the category-theoretic
approach of LAWVERE. In category theory we axiomatize a calculus of
functions under composition. We do not, however, have (what seems to
the author) a convenient axlomatization of which infinitary operations
(such as direct product) actually exist. Usually we consider a category
as a class and talk about (arbitrary) indexed families of obJects. Thus
the existence of these families 1s thrown back to set theory.

If there were an axlomatizatlion of the "category" of "all" cate-
gories, this would not be necessary, but in the author's opinion this
all-inclusive theory does not yet exist. Even 1if it did, it would most
likely not be a constructive theory. If one llkes, one can view the
author's theory as an attempt at axiomatizing in a constructive way a
theory of both functions and famllles of sets of functions. Whether
thls approach could have any effect on category theory is a matter of
speculation.
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At thils point, mentlon should also be made of TAIT'S paper [18].
He called hls work "Constructive Reasoning" and seemed to make a con-
scious effort not to define validity. He does of course discuss the
GUDEL interpretation, but that 1s not the same thing. Also he uses 1n
an essentlal way definltional equality which we have not found necessary,
though it 1s a notion favored by KREISEL. Furthermore, TAIT'S use of
comblnators leads to a theory of species that does not seem as elemen-

tary as the one presented here. The author does, however, agree with
TAIT on the introduction of specles of trees used to index quite general
iterations and will discuss this in detall below.

In summary, then, based on the motlvatlons and contacts Jjust ex-
plained, we are golng to propose a theory of constructions and specles
and to show how it applies in making precise the meanings of the logi-
cal notions. This theory involves the primitive 1deas of sums, products
and lteratlons applied to the finite species to generate the basic
specles which provide the background for constructive mathematical
thought.

LANGUAGE

We shall distinguish as usual between terms and formulas; however,
only the terms will be compounded not the formulas. Thus as formulas
we have:

ceT1T and o = 1

where ¢ and 1 are terms. The first means that the (construction)

o belongs to the (species) 1 ; while the second is an equation (between
constructions or species). There seems to be no need at all to have a
two-sorted theory (ilndeed later it would actually be inconvenilent), so
we have just one type-free sort of variable (usually, lower-case

Roman letters with the Greek letters reserved for metatheory) ranging
over both constructions and speciles, variables are terms.

Among the terms we mention next the constants, namely:

O’O, 1:6:is 2:

of these @ ,4, and 2 are thought of as specles and the others as
(atomic) construections. (One may guess the membership relations now,
but they are made explicit later by axioms.)
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Further we have some simple compound terms, namely:

o), 00,01,[0;\ ], O(c),0+, T(s),

where o and 1 are previously obtalned terms. Explanations of mean-

ings now deserve speclal sections below.

Finally we have the complex compound terms which involve bound

varlables:

Vxea[o], Jxaa[g], Pxealo], and Rv[a,8,0].

Here o,B,0 are terms and in place of x and v we may have any other
variables. One should not worry now about the use of e: it could be
just another punctuation mark. The reason for the placement of brackets
is that our's is more a postfix rather than a prefix notation. This
coulll be modified, but it makes formulas even less beautiful. The reason
for writing «,B8 1s that our conventlon is such that the variable

(x or v) 1s bound only in the ¢ not in the o or the 8. One defines
free and bound occurrences of variables in the usual way as well as the

notion of rewriting bound variables.

We shall often have to indicate the substitution of a term o for
all free occurences of a variable (x, say) with the implied rewrlting
of varilables free in ¢ 4if they occur bound in the context (t, say)
into which we substitute. We use the notation

[o/x] [T]

(sometimes without the second pailr of brackets) and remark that this
i1s a notation of the metalanguage not the object language.

INFERENCE
Connections between formulas are asserted by sequents

A s
where A 1s a (finite) sequence of formulas and & 1s a single
formula. The meaning is clear: the conJunction of the formulas in A
implies the formula § . We provide no brackets because this implication
1s never iterated.

A stock of these assertlons 1s provided later by the axioms; while
the theorems are derived from them by these well-known rules:



- 244 -

(11) i,i 5 (Weakening)

(12) %f%%%%f%—fi% (Interchange)

(13) ks b ke (Cut)

() %*%E%. (Rewrite)

(15) s p=s (Substitution)
(a/x]a F=[o/x] 6

where in the rewrite rule, &' results from & by rewriting a bound
variable. (It may be possible that (Il) follows from substitution if
we made the substitution conventions really preclse, but never mind.)

The author does not know whether it 1s true - or even linteresting
to suppose that there is a "cut-free" formulation of the theory. This
question might be related to some decision problems mentioned below.

EQUALITY - Two axlioms are required:
(E1) -x = x
(E2) x =y,s[y/x]s

these hardly need explanation.

We note these obvious consequences:

s s
X=y, X=2 =y =2
x=y by=x .

It is possible that equality could be eliminated from the system, but
it does not seem pleasant to do so.

FUNCTIONS

We mean by f(x) the ordinary functlon value f of x . In as much

as functions can take functions as values, we can write f(x)(y) for
functions of two arguments, and similarly for more arguments. All our
functlons are total, so that f(x) always means something even if x
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1s outside the princlpal domailn of f. In that case, we would, if we
so desired, let f(x) = f, but we shall formulate no axiom to that
effect leaving the matter open.

For the most part a theory of functlons 1s quite uninteresting un-
less there is some method for introducing new functions by (explicit)
definition. We provide such definitions through functlonal abstraction.
Thus 1f ¢ 1s a term (with the variable x free in ¢ , say) and 1if
a 1s a glven species, then we can think of the function f defined
on a with value ¢ for xea . Our notation for this function is:

f =Vxealo] .

Most people will consider the author slightly mad to use the uni-
versal quantifier for functional abstraction. Nevertheless, there 1s
method in hls madness as wlll be clear 1n the next section. In the
meantime, the reader may rub out the V/ and replace if by » , 1f fthat
makes him happler. The 1dea of functional abstraction 1s formalized in
the axiom of conversion:

(F1) f =Vxealo], xea pf(x) = o.

Note the variations of the axiom that can be obtained by substitution.

To the non-constructive mind it would seem reasonable to adjoln at
thils point the rule of extensionality;

A,xaal—o =T

A b= Wxealo] = Vxea[r]

where x 1s not free in . Exactly why this is unreasonable the author
cannot argue convineingly at the moment. However, to leave open possible
“intensional" interpretations of the axloms (the same functions may be
given by different GUDEL numbers, say), it seems better to avoild it. In
any case it was_ng required for the interpretation of logic.

We make one apparently harmless concession to extensionallty though:

(F2) f =VWxealo] b £ = Vxea[f(x)] .

This may not really be needed, but the equation on the right is a way
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of saying that the principal domain of f 1s a. (We alsc considered
having an operator Df = a for computing domains, but dropped the
idea as unnecessary.)

So much for single functions, we must now turn to the conslideration
of species of functions.

PRODUCTS

Famlliar from set theory, topology, and algebra 1s the cartesian
(direct) product. Familiar too 1s 1ts fundamental role, and so 1t will
be here. Glven species o(x) indexed by xea, we consider all

functions f defined on a such that f(x)eoc(x) for all xea.
These form a (basic) specles, whose existence we wish to postulate.
First being influenced by ordinary mathematics, we might call it:

Xxeal[o(x)].

But let us stop to think a moment. We have distingulshed between speciles
and functions, because we must give the functions a special place. (In
mathematics the 1ldea of function really is more primitive than most
other notions.) In particular there is absolutely no reason to identify
a function with a set of ordered pairs as i1s usual in (pure) set theory.
For one thing such an identification is not particularly constructive;
for another, our specles are rather more restricted that those allowed
in set theory. So another plan may be considered.

Let us reason as follows: for the moment functlons and specles are
separated. Maybe an identification can be reestablished that is even
more convenlent than the usual one., (An identification i1s a simplifi-
cation - hopefully - that avoids proliferation of entities.) In our
case the product Xxea[o(x)] is completely determined by the function
vanEU(x)]. Conversely, assuming as we do that no specles 1is known to
be empty, then the product also determines the function (this point is
not too essential), Hence, no one can stop us from making the ldentifi-
cation:

Xxea[o(x)] =Vxealo(x)],

and we therefore drop the X notation. Of course, it remains to be seen
whether the identification (which was partly suggested by Professor de
BRUIJN'S style) is actually useful.
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Now that we have the idea of products as functlions, we can formulate
the abvious axioms. In the first place we have an analogue to (F1):

(P1) feVxea[ol, xea Ff(x)eo .

Next we also take an analogue to (F2):

(P2) feVxealo] £ = Vxealt(x)] .

Finally we must assume what would be an analogue to the rule of
extensionality:

(P3) A, Xea l— GET

A bW¥xealo]le Vxealr]

where x 1s not free in 48 . Axioms (P1) and (P2) tell us that the
elements of a product have the proper character; while (P3) expresses
the fact that any function of the proper kind must belong. In contra-
distinction to extensionality, thils rule 1s harmless: even though there
may be several "copies" of the same function (given by different de-
finitions, say), we can obviously demand that all the coples belong to
the product. Note that (P3) is very much like the rule of universal
generallzation, and this apt analogy wlll be exploited later.

Once we can form products, they can be specialized to what are
usually called powers. For reasons that will eventually become apparent,
we use this definition (which may be considered as a new axliom by pre-
fixing the |):

DEFINITION
[a»b] = Vxea[b] .

As a function [a+b] is the constant function on a, as a specles
the use of the notation [a»b] does not differ too much from the use
of the usual category-theoretic notation f : a-+b, but we have to

write fe[a-b], We also find that + does indeed behave like (intul-
tlonistic) implication, but before we discuss this in detail the reader
might try this theorem as an exercilse:

xea FVre VXsa[c][f(X)Je[V&ea[o] + a] .

The assertion results from (P1) by the rule (P3), and the part under-
lined should be considered as a whole. What is interesting is to the
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right of the principal e, an expression reminding one of the loglecal
axiom of universal Instantilation.

Here 1s another simple exerclse:

f~Vxea[Wyeb[x]] « [a +[b » a]] .
Is this not also suggestive? Would you care to fill in the blank in the
theorem:

b ¢ [[a~Db~>cl]~[la~>0b]~+T[a~c]]] .

(The format is deceptive because considerably more space for writing
the answer 1s required than is indicated !) Once you have the idea such
examples may be multiplied at will. (This was clear to LAUCHLI and
LAWVERE, for instance.)

SUMS

Dual to products are (disjoint) sums. At thls stage we cannot expect
any new, clever notational lnovations because our previous identifi-
cations have exhausted the raw materlal provided by the functions. So
if o(x) are specles for x € a, the disjoint sum (union) of these
species wlll be denoted by a new symbol:

Ixea[a(x)].

(Note that we can usually omit the "of x" by consldering x a free
variable of 6 ; this is a more formal approach but a lilttle harder to
read.) In ordinary set theory the disjolint union 1s identifiled with:

U txr = sx)y,

X€a
but in our theory the ordered pairs cannot be combined in such an ar-
bitrary fashion. For one reason, we are trylng to keep our species
disjoint (baslc specles are very much like - a generalization of - the
types in the theory of types), and so the same ordered pair cannot
belong to distinct specles. For another reason, the reduction of dis-
joint union to ordinary (cumulative) unlon 1s not constructive (inform-
ation is lost in a cumulatlve unlon). These considerations thus lead
to a related but 1lndependent analysis of the notilon.
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What we seem to have to do next 1s to provide a separate notlon of
ordered palr for each district sum. This 1s just a blt clumsy, but the
author could not find a slimpler device. Thus the palring function appro-
priate to the sum Jxealo(x)] is called:

Pxealo(x)] ,
and we can state the first two axioms governing thils pairing function:

(s1) f = ana[c], Xea, yeo }-—f(x)(y)eaxaa[c]

(82) ¢ = pxealo] bf = VxealWyeo[£(x)(¥)]] .

Obvilously, the limport of these axloms is that the pairing function
1s a function of the correct type wlth values in the deslred specles.
This does not yet characterize the values as ordered pairs, however.

It seemed necessary to provide a distinct palring for distinct sums,
because the coordinates of the pair do not determine the context of
their occurence (at most the a and the one o(x) 1s determined by
Xea and yeo(x))., On the other hand, we are quite free to assume
that the resulting pair (PXea[c](x)(y)) does indeed completely de-
termine not only the coordinates but the whole sum. Hence we can now
simplify matters by introducing universal inverse pairing operatlons
that require no speclal mention of context. The notation 1s given by
the (bold-face) subscripts O and 1, and we have these straight-for-
ward axloms:

(83) £ = Pxealo],xca,yeo = £(x)(y), = %,
(sh) £ = Pxealo] ,xca,yeo - £(x)(y)y = Vs
(s5) £ = Pxeaf[o],zedxealo] | £(z2)(zy) = 2,
(86) zeJxealo] |- Z €8,

(s7) zeIxeafo],x = 2 b= 2 e0 .

It takes several statements, but all we have sald here is that the
elements of Jx € a[o] really do correspond to ordered pairs with
well-behaved coordinates.

If the reader wlshes a simple exerclse, he may prove:

l~Pxeao sVXea[[c > Hxaa[c]]] .
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GENERATORS

As of now our theory is empty, because we have not yet introduced
any species, and so there are no domains on which to define functilons.
Thls gap we now fill by providing the finite species from which all
the other basic species will be generated. In view of the products and
sums, we will only need the first few of these species: @, M, and 1 .
These seem to be independent, and the author doubts that any further
simplification is possible.

The species O is to be empty, but we shall not assume the axiom

xe o

at the present. The author cannot put hls finger on the precise reason,

but somehow this assumption is too strong (there is some connection

here with extenslonality). Instead we merely remain silent: no axiom or

theorem will ever produce an element of @ .(Thils cautiousness is actual-

ly unnecessary.)

Hence, i1f we find one 1in a hypothetical proof, we know something is
absurd or trivial. So much for @ .

The species 4 is to be the one-element specles, It has a much more
"positive" character than , and so 1ts axloms are clear:

(G1) }—Oe'ﬂ
(G2) xeqd bx=0.

Thus 0 is the only element of'ﬂ . (There is absolutely no real saving
in mixing types by the identification @=0, as we do in set theory.)
Note that we can easily define functions on # , since such a function
has only one value (y, say) and can be defined as:

Vx e 4(y] = [1~ v] .

It 1s quite possible that 1t is senslble to generalize (G2) to the
followlng instance of extensionality.

(@2) f=Vx e d4[f(x)] £ = [4~+£0)] .

This is generallzation because (G2) can be derived by substituting
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Vx ¢ 4[x] for f. (The reader may carry out this simple exercilse.) Ex-
tensionality of function on finite species seems unexceptional. (The
reader may also use (G2') to derive the rule:

by, x e AH£(x) = g(x)
b Vx e 4[8(0)] = Vx ¢ 4[g(x)]

where x 1is not free in a ).

The species 2 1s to be the two-element specles, Since 1t must be
kept (potentially) disjoint with 4, it has its own elements 8 and 1.
Thus:

(@3) Fo ¢« 2,
(Gb) F1e 2.
To say that these are the only elements, we must resort to a rule:
(GS) X = 6, A '_6 X = T, A '_6
Xed, A s

So much 1s clear; what 1s not yet clear is how to obtain functions onZ,
Constant or identity functions are already at hand, but the function
that interchanges 0 and T is not. In general we must obtain with the
ald of a new primitive operation the arbitrarily defined function on Z.
Suppose its values are to be a and b corresponding to 0 and 1 ,

then we call this function [a A b] and assume:

(Gg6) F[a » b](0) = a,

(G7) la A b](I) = b,

(a8) la ab] =¥x e 2[[a 4 b](x)],

(G9) £ =Vx eZ[p(x)] Fr = [£(D)ar(D)] .

This last is extensionality for the species Z..

Here is a useful exercise: prove the following:

[xayl elaan] Fxea,
[yl c(anbl yeo,
x €a,yeb k[xay]le [aab].

Thus the reader can see that nat only does [a A b] play the role of an
ordered pair, but it 1s also the same as the finite cartesian product
we usually call [a A b]. (But the ordered palrs are necessarily distinct
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from the pairs we needed for sums; sad but true.) If he likes, the
reader may also fill 1n the blanks in these theorems:

=~ ¢ [[aA~b] »a],

~ e [[a A b] + b],

— e fa~ [b~> [anb]]].
Suggestive?

Now that we have finite products we should also try to obtain finite
sums. Fortunately, these can naturally be identified with combinatlons

already available. By analogy with (G8) we have this definition instead
of a new axiom:

DEFINITION
(2 vb]l = 3x e R[[a » b](x)].

We find here a new quality of the expression [a A b](x). In fact, this
1s what is usually called in computer science now the conditional ex-
pression. If x = 0, the value is a; otherwise 1f x = 1, the value
1s b. Ready for your exercises? P11l in the blanks, please:

- e [a > [avl],
- e[b—»[avbu,
- e f[[a~cl~[Ibacl+[[avb]~cll.

After so many of these exercise, surely the reader is getting the
point and can begin to guess at a general statement.

It would be possible to identify Z with [4v14], but note we could
not define v without the aid of 2 . Thus, this circularity does not seem
to get us anywhere. However, 1f we needed the speciles, we could define

B-[2v1l, 4 = Bv4], ete.
The reader should check (and 1t 1s not all that pleasant to do so)
that arbitrary functions can indeed be defined on these finite species

In terms of the constructs already available.

TRANSFINITE CONSTRUCTIONS

The mathematician has the advantage over the "ordinary" mortal (a
finite mind) of grasping (some of the properties of) infinite species.
Or at least that 1s his conceilt, and the author has no desire to argue
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against that attitude. Nelther does he want to waste the time to glori-
fy this ability but rather wishes to make "visible" the underlying
mechanism. What 1s about to be formulated is hardly original, but the
new theory 1in which 1t occurs does seem to possess advantages over
previous proposals.

The idea is simple. Suppose one is given a specles a, then many
functions can be defined on this species (assuming some elements are
known !). In particular suppose we have a special object O (better:
0(a) to show its dependence on a) which will be an element of a yet-
to-be specified species T (better: T (a)). Now we can at one form a
function from a into'ﬂﬁ namely the constant function [a + 0]. Call
bhis function u for the moment., Why not put u & T and assume u
and O are dlstinct? Thils way we canh try to form even more functions
in Ea-*qr], because some new values for functions are now avallable,
And then we want to put those functions in T a2nd to continue this
process 1n an i1terative fashion. There 1s only one defect wlth the plan:
the functions u already belong to certain specles (u € Da-*TF]) and
are not avallable for other jobs. The solutlon is easy: we send instead
of u a proxy called u+. To be precise, we assume these axlioms:

(T1) I o(a) € T (a),
(T2) u€Efa-T@] ~ue T .

So far the axioms give positive results about certaln elements
belonging, but we need more: a principle of (transfinite) induction to
assure that these are the only elements (cf.(G5) 1n the finite case).
Here 1s a possible formulation:

(T3)

A [o(a)/t] (o] e(0(a)/t] []
A, uelarT(a)], Vxea[[u(x)/t[o]]e Vxea[[u(x)/t] [x]] = /el lelefu*/t] [x]
A, teT (@) b= ocet ,

where u,t are not free in A. We can also take = instead of e, but

this only seems useful for finite a. Nevertheless, let us assume it as
(T3'). The lack of extensionality for functions on infinite a may make
the use of these axloms somewhat less interesting.

Intuitively (following Tait [18]) the elements of W' (a) can be
considered as trees. Thus O 1s the null tree and [a - O]+ is the
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tree of rank 4 . There are (in general) many trees of rank 2. Suppose
we take a = 2, then any diagram such as

can be considered as determining a functlon. Here u = [OA[OAO]I and
uwto1s our (abstract) tree of rank %, . An so on to the higher ranks.

The case a = 2 1leads to the more beautlful diagrams, but the case
a =4 1s also of interest (while a = © 1s not). Indeed T'(4) can be
considered to be the species of integers. Let us write IN ='1T'(1) and,
for the moment, O for O(f) and nt  for “ - n]+. Then a moments
thought shows us that (T1), (T2), (T3), and (T3') speciallze to obvious
closure and induction principles for the integers.

Just as with finite sets, we do not have enough functions on the
new specles unless we assume some additional axloms. In the case of an
inductively defined species such as T(a), the proper method is to
supply functions defined by recursion. That is the purpose of the
operator R :

(T4) £ = R v[a,b,0] b f£(0(a)) = b
(15) £ =R y[a,b,0], ue [a~>T()],v = Vx « alt(u(N] + rh) = o,
(T6) °f R v[a,b,o] =Vt ¢ Ta) [f(t):[-

This completes the list of fundamental axloms.

As an example of a definltion by recursion, we define the ilmportant
notion of the nodes of a tree. We will define an operation
nd(a) =¥t ¢ T'(a)[nd(a)(t)], whose values are species. Obviously, what
we want are these two theorems:

 nd(a)(o(a)) = 4
ue [2+Ta)] Fnda(a)@’) = [1vIxealndla)(ulx))]].

The way to obtain them is to define:

DEFINITION

nd(a) =Rv[a,7,[4v3Ix ¢ a[v(x)]]] .
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Then the desired theorems will be derived from (T4) and (T5). We
can then define such notions as a labeled tree: that is a tree t e T'(a)
together with a function 1 =Vn ¢ nd(a)(t)[1(n)] and so on. (The tree
we employ seem less general at first sight than those of TAIT ]'_18], but
the idea of a labeled tree is actually more general than TAIT'S notion.)

It may be that the operator Q is defective, because the author
can see no way of defining a function (call it pred, say) such that
pred (0) = 0 and pred (u+) = u. That is, we have not allowed our
recursive functions at u+ to depend not only on the preceding functilon
values, but also on the preceding arguments - the operation pred is a
simple example. In the case of @ finite this seems to be no problem,
but for infinite a one sees no easy reductlion of the more general
kind of recursion to the simpler one. If this i1s so, we should probably
replace R, by R' with an appropriate axiom such as:

(T5") f = R'u,v[a,b,cI, u e I:a > T(a):{:
v =V¥x ¢ alf(u(x))] l—-f(u+) 9.

That may look the same as (T5), but note that u is now a bound variable
in R 'u,v[a,b,0] : that means that u occurs in the same way on both

R + .

sides of f(u' ) = o as desired.

In case @ is a finite species, then M (a) is denumerable. On the
other hand, if @ is infinite (say @ =N =T(4)), then T (N) 1is non-
denumerable (the ranks of these trees - classlcally anyway - would be
ordinals of the second number class).

We could then go on to iterate 'I" and form T(TWN), T(T(TM!N))),
and so on ~ even into the transflnite. these new specles are ever larger
and more complicated, but at the moment the author does not really know
how to make good use of anything worse than 'MT(N) - which seems to have
been BROUWER'S limit - at least for ordinary analysis. But we agree
with TAIT [18] that there appears to be nothing that will stop us at
the second step. This, by the way, seems to answer BISHOP [2], who asks
whether there 1is any structure (of a combinatorial rather than function-
space nature) beyond the integers. Thus T(N) is just the index set
one needs for the proper definition of BOREL sets, for example, which
in [1] where defined by BISHOP only in an intuitive, non-formal way.
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INTERPRETING LOGIC

We have already introduced the operators V,],A,v@ +, though the
reader may not have yet appreclated Just why we used symbols from loglc
In the way we have. All will now be explained satisfactorily, let us
hope. But before we do, we need the notation for the remaining logical
operators:

DEFINITIONS
T -4,
L =0,
“fal = la~1],
[a<>b] = [[a+b]a[b»a]] .

Let us begin with an example of a (valid) logical formula:

Wxea[[P(x) » Q(x)]] » [Alvxea[Q(x)]] > lvxealr(x)]]]] .

Now as this stands (except maybe for the pedantic bracket con-
ventions and the use of the capital Roman letters P and Q) it can be
read both as a formula of ordinary predicate calculus (with variables
restricted to a given domain a) and as a term of our theory of con-
structions. Call the formula ¥ . The reason that ¥ 1is intuitionisti-
cally (constructively, if you prefer) valid is that there 1s a specific

term 1 (involving both of the variables P and Q as well as a) such
that the assertion

F— e 8

1s provable in the theory of constructions.(The blank can be filled in,
as we did in several elementary exercises already.) It is just as
Professor HEYTING said:

"The proof of the theorem consists in this construction itself, and the
steps of the proof are the same as the steps of the mathematical con-
struction".

Of course, we have alded the "intultively clear mental acts" by our
formal rules for operating with constructions. Thus we can ask a
machine to check over our proof (as Professor DE BRUIJN wants to do).

We are a 1little hasty here : the exact term +t required above has
not yet been exhibited. It 1s rather long to write down, and so we shall
arrive at 1t indirectly. Instead of showlng why 2@ 1s valid (notation:
F= :5 ), we shall rather establish the validity of this sequent of
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loglcal formulas:

Vxeal[[lP(x) » Qx)]], n[Vx e alQ(x)]], Vx e a[P(x)] p=] .

In general, to establish the validity of a sequent of logical formulas:

s Ors sy =B

we read them as terms of the theory of constructions and provide both
a term 1 and a proof in our theory of the assertion:

AJ to Ewog tl € al’ cesy tn—l ean_l F—- T € %

where to""’tn-l are fresh, distinet varlables, A contalns the
proper information about the free variables - 1ncluding the predicate
variables - (and more on this later), and where 1t may involve all
the varliables. This means that glving the constructions establishing
the C*l we can always find (in a uniform way by means of 1) a con-
struction which establishes :6.

Returning to the example, if we have t_ & Vx¢€allP(x) » Qx)]],
ty ea[¥x ealQ(x)]] and ty e Vx e a[P(x)], then we can certainly
find a term 1t € J. Indeed, we can let:

T = ti(Vx € a[to(x)(te(x))]),

and 1t is a mlldly intersting exercise to verify that this 1s correct.
(By the way the use of subscripts here 1s not to be confused with the
subscripts Zo and 21 for disjoint sums as these subscripts 0 and 1
will be printed in bold-face type.)

As a second example consider the well-known law of contradletion

[P~ [=[p] »Ql] .
We should try to find =+t such that
ty € Py Ty e1[P] -t € Q.
This cannot be done unless @= _J_ is really assumed empty, which we are

reluctant to do. So we side-step the 1ssue by adjolning (as part of
the A mentioned above) a side condition on the variable Q: namely
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qe [L>Q]. Then 7 = q(t,(t_ )) gives the answer. This should be done for
all the propositional variables in general - and for the predicate
variables too. Thus if we wanted to establish the validity of

VyealWxea[[P(x) » [A[P(x)] » @111,

we would prove

quL*Q], yea, Xea, tOeP(x), tleﬂ[P(X)] F— 1eQ(y),

where 1t = q(t,(t_))(y) 1in this case. Correct? No! we should also have
the hypothesis Q = Vkea[Q(x)] to be able to pass from q(ti(to))sQ
to 1eQ(y), but that 1s all quite reasonable.

We can think of A as the complete list of the declarations of the
types of the varilables. In case of predicate, we must indlcate their
domains and number of arguments, as well as providing for free such
quL»O]. We requilre no more formal statement for 4 for the present.

As a third example we establish the validity of a law of double

negation
Wxea[[A[A[P(x)]] » P(x)]1]->[[[Vxea[P(x)]]]>Vxea[P(x)]]].
Thus suppose that ¢t _cVxea[[q[q[P(x)]]+P(x)]] and that tea[[tkeaP(x)]]].

Then as the reader can easily verify - if he has the patience - the
construction that belongs to Vxea[P(x)] 1is

V&ea[to(x)(Vuej[P(x)][tl(VVeVXEa[P(x)][u(V(X))])])] .

(The main point of this particular example was to show how complicated
and overloaded with brackets the terms can become. This is not to be
regarded as a conceptual drawback, however.)

One major point has been left unexplained : our examples were com-
pound formulas, but when we exhibited constructions we broke the impli-

cations up into simpler parts. The justification of this procedure lles
in the proof of the deduction theorem : if

o,a, ... =5

1s valid, then so is

O, ... ko8] .
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(Let 1 be the term establishing the validity of the first sequent then
V%Oedg[r] - except for a quibble about subscripts - is the term we need

to establish the validity of the second sequent.) It may safely be left

to the reader to establish modus ponens :

ao’ [ao > 1:I |=al ’

and since the analogues of all the inference rules (I1)-(I5) for logle
are also clearly valid, we have all we need for intuitionistic impli-
catlon,

Furthermore, the reader, without realizing what he was about (or
maybe he did!), has verified in the previous sections all the other
axioms of intultionistic propositional calculus. Thus we can take that
as firmly established.

Finishing up the predicate calculus, we note that we have already
done the axioms of instantiation. Therefore, 1t only remains to dlscuss

the rules of generalization

o, o, ... =%
ao) al, e ?VXE&&]

where x 1s not free in the Cli, and

0t 0, - =%
Ixealog], 0, ... =36

where this time x 1s not free in Cll, ey, (Let 1 be the term
establishing the validity of the hypothesis of the first rule. Then
V&ea[r] establishes the conclusion. Let o , on the otherhand, establish
the validity of the hypothesls of the second rule. Then
[(to)o/xJ[(to)i/to]c is the required term for the conclusion. (Note

the bold-face subscripts!))

Though our examples were restricted to monadic formulas, the pro-
cedure is qulte general; and we can clalm that we have given a "mathe-
matical" basis (foundation) for the whole of intuitionistic predicate
logic. (By the way, our pedantic notation for binary relationships is
P(x)(y), and similarly for more arguments.) It seems qulte reasonable to
suppose that the proof of LAUCHLI [14] can be transposed to this theory,
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and that we can establish the faithfulness of the interpretion (formulas
valid on our interpretation are indeed provable in HEYTING'S calculus).
The author has not yet had time to work out the detalls, however,
LAUCHLTI did not discuss higher-order loglc (though LAWVERE did), and

we wish soon to consider a partlcularly mathematically important theory:
higher-order analysls - but withouf the free cholce sequences. Before

we do this, however, we must review the progress of our program.

REVIEW

We began by regarding species and constructions as mathematical
objects and found that there were some simple axioms governing their
properties. It then became slowly apparent that these properties were
highly analogous to properties familiar from formal loglc. We then
turned this analogy into a dogma by insisting that the loglcal formulas
be read (better : interpreted) as (mathematically meaningful) terms of
the theory of constructions. This interpretatlon requires that validity
be asserted by the act of giving an explicit construction belonging to
the (interpretation of the) formula. Validity is established by giving
a proof from the axioms for constructions of the membership assertion.

The next step is to argue that the interpretation is "correct", but
so far all we have done is to check the valldlty of the expected formulas.
Thus the situation must be examined in more detall. For one thing
have we verified BROUWER'S "main thesis" ? Which is prior : loglc or
mathematics? Well, the answer all depends on what one means by loglc
{(what is mathematical seems much clearer). In order to organlze the
mathematical properties of the constructions into a coherent body of
knowledge, we had to set up some rules of deduction (I1) - (I5) and
some general axloms such as (E1) - (E2). This represents simply a codi-
fication of hypothetical argument (if such and such conditions are ful-
filled, then another condition follows). If one can hazard a guess, these
principles are so self-evident that BROUWER may never have ever given
them a moments' thought. This is the realm of urloglc, without which
(in the author's opinion) mathematics (and even coherent thought) 1s
impossible. All of these principles are used naturally in an unconscilous
fashion. What BROUWER probably meant by "loglec" was the elaborate
RUSSELL~-WHITEHEAD theory of propositional operators, quantifilers and
propositional functions and the kind of logle that 1s meant when RUSSELL
says that mathematics 1s reduced to logic. The author considers that
today there is a general agreement that RUSSELL was wrong (or at least
over-optimistic). The type-theoretic / set-theoretic foundation for
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mathematics is not pure loglc, because axloms about abstract entities
are required - and thils falls on the mathematical side of the line bet-
ween the subjects.

Now what the author feels he has demonstrated here 1s that - granted
urlogic - the combinatorial aspects of (constructive) logic can be
given a "mathematical" foundation by the theory of constructions. Of
course, the axloms for constructions are not so different from the
axloms for logic ((P3) 1s a rule of universal generalization). Never-
theless a certain reduction has been effected (implication and quanti-
fication out of the same operator V, for example) and a consilderable
amount of clarlty has been gained : one can prove the various proposi-
tional formulas from the more elementary principles about constructions.

Professor CURRY hoped for a similar reductlon based on his theory
of combinators, but the author does not feel that illative comblnatory
logic (cf.[3] and [4]) has reached a high enough of development to
Judge 1t successful.

In particular the author wonders whether CURRY'S long struggle with
the many headed monster of the partilal function was a serlous tactical
error. (Note in this connection the remark in footnote 3, p.296 of [4]:
"It seems best to proceed with these features (of partilal functions) and
introduce refinements later in the 1llatilve theory".)

One of the author's statements in next to last paragraph requires
further discussion : why are properties of constructions "more element-
ary" than valid propositional formulas? From the point of view of class-
ical two-valued logic this i1s simply not so. But one must keep in mind
that we are investigating propositions here 1n a constructive way. Thus
a proposition does not simply degenerate to one of two truth values but
instead 1s represented by a complex species of possible constructions
that conceivably can be used in its validation. From this constructive
point of view propositional formulas are not so trivial.

Now what about the interpretations of the loglcal connectives : are
they "correct"? Take Ilmplication first. Assuming for simplicity that no
hypothesls of declarations are required, what must be done in order to
establish [ﬂt*éﬁ]? One must produce a construction together with a
proof that this construction transforms every construction that could
establish 8¢ into a construction for .
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The constructlion 1s an object of the theory while the proof is an
elementary argument about the theory. KREISEL [13] calls such proofs
'judgements' and asks for an abstract theory of them. We have not pro-
vided this because we did not see why such a theory was needed. The
reader may declde : have we or have we not carried out the spirit of
HEYTING'S i1nterpretation of implication? Of course, this is not new
the KREISEL-GOODMAN theory can be justified by a similar discussion.
The author only wants to claim that his theory is simple, and as yet
tha t there 1s no demonstrated need for "abstract" proofs. (But see
postsecript.)

Conjunction :

To establish [((a¥] one must produce a pair of constructions the
first of which provably justifles 6( , and the second 56.

Disjunction :
To establish [ %] one must produce (another kind of) pair whose
first coordinate is either O or T : if O, then the second coordinate

justifies O0(; if T, then &b .

Truth :
The justification of T is known because Oef1.

Absurdity :
No justification of L (=@ ) 1is known.

Universal quantification

To establish Vx;awﬂ one must produce a ccnstruction that maps
every element of the domaln into a justification of the corresponding
instance of 0C.

Existential quantification

To establish QxaaBX] one must produce a pair whose first coordinate
1s an element of the domaln and whose second coordinate provably justi-
fies the corresponding instance of . This completes our review and
our argument for "correctness" (cf. also discussion in MYHILL [16] and
in TROELSTRA [20]).

One last topic before we turn to "real" mathematics. KREISEL has
often stressed that the reason for having abstract proofs is to make
the proof predicate decidable. Otherwise there 1s no reduction in logical
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complexity when one says that lmplication means that 1f you have a proof
of the hypothesis, then you know a proof of the connclusion. In our
theory we have replaced proof by construction and of by membership. But

our theory of membership is a completely 'positive' theory, and we have
no way of formulating an assertion to the effect that every object 1s
either a member or non-member of a given specles. Likewlse, we have no

superlarge functions to serve as (0 - I - valued) characteristlc funct-
ions of species. (TAIT and GOODMAN would allow such functions, but then
the door is opened to the murky combilnators. So the question is (and 1t
is a quite serious question) : are these deflclencies a real defect of
our theory and has the attempted formalization of the basls for Intuit-
ionistic logic aborted?

The question of decidabillity was asked by LACOMBE at the lecture.
The author cannot at the moment give a definite answer to this question.
The best he can do is to formulate a conjecture. You see, from the
definition of validity of logical formulas every such assertion can be
put 1in the form

= oet

(A1l the variables on the left-hand side of the | can be moved over

by (P3) to the right-hand side. Likewise for the side conditions in-
cluding pe[l>P]. There only remain the equations of the form

P = Vxea[P(x)]; but by (F2) these will disappear, if we substitute
VXEa[P(x)] for P. Of course, the formula is no longer either beautiful
or readable, but that 1s beslde the point.) So then, we have the

FUNDAMENTAL CONJECTURE
There 1is a (primitive recursive) decision method for the provability

in the theory of constructions for assertions of the from |— oet.

Even if the answer is yes to thils question, it may not satisfy
KREISEL., The decidability 1s external to the system rather than a con-
dition having an internal formulation. The question may also be related
to the "normal-form" problem that de BRUIJN has encountered in his
system. It may be that the current proof theoretical work on GUODEL'S
theory T’ (by TAIT and HOWARD, among others) sheds light on the problem,
because the theories are related. The only thing the author can definite-
ly contribute to the discussion at thilis moment is that there can be no

decislon method for assertions of the hypothetlcal form
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0,€Tys 04ETqs <22y O €T

oo n-1 - 'n€tn -

n-1
We will prove thils result even for the fragment based on (Fi) - (F2),
(P1) - (P3). (This is a stronger not weaker result, because it seems
reasonable to suppose that a theorem in the pure theory of functions

and products that 1s proved with the ald of the other notlons can be
proved without them. But this has not been formally established.) Now

if we allowed equatlons in the hypothesis, the undicidability is immed-
late : any calculus of conditlonal equations between arbitrary functions
is undecidable in view of the word problem for semigroups. For example,

we can easily prove 1n our system

felara], gel[a+al, Vxea[r(g(x))] = Vxealg(g(£(x)))], xea
(£ (g(x))) = fglgleg(£(£(x)))))) .

In other words, any deduction from generators and relations written as
functional equations can be carried out for the "semigroup" of functilons
on a domain in our calculus. Now we have not dicussed models for the
theory and shall not be able to do so in this paper, but with their aid
we can see that, conversely, every equational result proved by pure
semigroup methods. Hence, there can be no decision method for the
calculus.

We note in passing that the equation in the conclusion - which was
written between elements and not between functions in view of the lack
of extensionality - could even have been eliminated in favor of member-
ship statements, Thus (and this no doubt can be established with the
aid of models) an assertion a o = 1t 1s provable if and only if a4,

h(o)eb |- h(t)eb is provable, where h and b are new variables. Or
even 1f this 1s not the case 1n full generality, enough is true to apply
to "semigroup" equatlons; because for them we need only consider domains
with a characteristic functlion for identity. This simple-minded approach
does not, however, eliminate the equations in the hypothesis.

To express deductlions with semigroup equations entirely with member-
ship statements, we imagine a function e such that for x,yea the
value e(x)(y) 1is T 1in case x =y, and is 1. otherwise. We will
require nothing special about T and _ and could just think of them
as free variables - in fact,_L wlll not even appear but was just
mentioned for definiteness. With this 1dea about e we recognize several
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correct statements about it (where we omit some tiresome brackets)
(1) Vxea VeeT[t] eVxea[Toe(x) (x)]

(11) Vxea Vyea Vzea VteTWuee(x)(y)Wvee(x) (2) [t]cVxea Vyea Vzea[T>[e(x) (y)~
[e(x) (z)»e(y) (2)]]]

(111) VYre[ara]Vxea Vyea VeeT Yuee(x) (y) [t]eVre[aalVxea Vyea [T |e(x) (y)~
e(£(x)) (s(y)]]

Statements (1) - (iii) express that e 1s very much like an equality
relation on the domain - at least in some formal sense. Next we con-
sider a typical (defining) relation between given (generating) functions
f and g for our “"semigroup"

(1v) Vxea VteT[t]e Vxea[T+e(f(g(x))) (glag(f(x)))] .

We can call (iv) the translation of the 'equation' fg = ggf. Now if we
let A be the sequence (i), (i1), (1i1), (iv), fe[a»a], ge[a+a], then
it is fairly simple to see that A |8 can be proved, where & 1s the
translation of the equation ffg = ggggff. Furthermore, if & 1s the
translation of some other equation, then it 1s intultively clear that

A }=8 1s provable in our calculus if and only if there 1s a semigroup

deduction of the equation from the given fg = ggf. Hence, the undecildab-
111ty result follows with 95% certainty. The status of the conjecture
remains open, however. (The undecidabllity result 1is not all that inter-
esting, but it 1s a non-trivial exercise in the theory of constructions
that glves some insight into the expressive power of the calculus.)

By the way, in the case where recursion is available in the theory
it seems very lilkely that there is no decision method for assertions
[—ocet either. For suppose the term p represents (a standard definition
of) a primitive recursive function. Surely there is no way to declde the
provability of such assertions as

(%) ne N4 p(n) =0 .
Now let 1t be introduced by recursion so that

=z(0) = 0, and

nelN  z(n*) = 8 .
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It seems reasonable to suppose that
- Vne N [z(p(n))]e [N-N]
is provable if and only if (%) is provable. Hence, there could be no

decision method. - This will require some more thought. Maybe there are
some senslble restrictions to put on the theory, or maybe one 1s only

interested in special cases of |-ocer.

INTERPRETING ANALYSIS
Of course, by analysils we understand higher-order arithmetic, since

for foundational purposes we do not need to discuss here the mathematical
theory of the real numbers - the reduction of the reals to (sequences of)
the integers 1s assumed known.

We recall that the specles of integers IN=T(4), and that we simpli-
fled the notation for O and for successors (n'= [M+n]’). By recursion
we can introduce gll the usual primitlve recursive functions and prove
at least all the basic theorems of primitive recurslve arithmetic (eg.
GOODSTEIN (7), Chapter V). In particular we can lntroduce the equality
function E e¢[N+[IN+2]] and prove :

= E(0)(0) =D

me N b E (0)(m")
ne N - E (n*)(0)
nef, meN — E (nH)(m™) = £ (n)(m),
neN, mefN, E(n)(m) =0 n=m .

’

n
Lo | [ |

L]

(as will be seen from [7], thils is not so easy, but it is elementary.)
This allows us to define the predicate of equality between integers

DEFINITION

n=,_m] = Al]l(E(n)(m)) .

[o = pgml = [TaLlCE
One can then establish the validity of all the usual logical formulas
involving equality over the domainN. It takes a little trouble, but let
us assume its done.
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The next step 1s to conslder the validity of formulas of higher-
order arithmetic. What are these formulas? In the first place they con-
taln varlables of several sorts or types. We already have at hand the
notation for these types

N, [N-N], [N-IN-NTI, [[N-INJ-NI,

and so on., We can imagine what a stratified formula should be (all the
types of arguments and values of functions in terms should match). The

atomic formulas are numerical (type N) equations, and we may use con-
stants O, +, and anyother well-known functlons.

The main effort here is seeing what the formulas are, because
validity is already understood {in theory).

We leave to the (poor) reader the verification of

(A1) = 3nelN [[n = pq0]]

(A2) e VneN [3meN[[n = pqn'11]

(a3) = VneN [ [0 = gqn'1]

(Ak) = Voo N e NI = qn1-fn = (qnlT00, -

but they are, after all, rather easy. We shall discuss, however, the
induction axiom :

(A5) = [P(0)+[[¥ne N[[P(n)+P(n*)]]+¥ne N[P(n)]1]] -

For this we must "£111 in" the =1 of
P = VnelN[P(n)], pe[l+P], teP(0), ue VneN[[(P(n)+P(n™)]] | teP .

(For this particular argument we do not requlre the pe[L+P], but the
author wanted to state the problems in full.)

The constructlion of the construction =+t will be given by - recursion,
which is hardly surprising. The only trick is to know what the values
of the function should be. The function we want has values [nat(n)]
(supposing for the moment we already knew our 1), because they can
conveniently be chosen by recursion : let

o' = R[4, [0at], [v(8)(D)Au(v(0)(5))(v(d)(IN]] .
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Then 1t = VhekJET'(n)(i)] (In the above formula, the reader is re-
minded that N=T'(1) and in (T5), v = [f-r(u(8))]. The "trick" of the
recurslon is to let the next value of the function depend not only on
the previous value but also on the previous argument.) The desired
result wlll then be proved by the induction principle (T3). The reason-
ing is not really circular : we are showing how to reduce a compound
form of induction back to a more primitive kind. Nevertheless, we do
not dec away with all assumptions. (Likewise, 1n set theory we still
need an axiom of infinity to have a set of integers.)

Next we have the axiom of choice

(A6) Vxea[ 3yeb[P(x)(y)]] k= 3fela+b] [Vrea[P(x) (£(x))]],

where we are using not only a free binary predicate variable P, but
also free "type" variables a and b as well.

Let v = Pfe[a»b] [(Vxea[P(x)(f(x))]]. Then for < take < =W (q)EP),
where we assume teVxeal Jyeb[P(x)(y)]] and let @-= VXEa[t(x)o:[ and
¥-= VXea[t(x)ll. It is that easy, because the interpretation of the
existentlial quantifiers is so constructive.

Rather more complicated is the axiom of dependent choices, a prin-
clple very important for analysils but curiously overlooked until
recently (cf.eg. the end of MYHILL [17])

(A7) Vxea[[P(x)> 3yeal[P(y) A R(x)(¥)]]]] k=
Vxea[[[P(x)a(x)]> 3re [[N-a] [[[P(£(0))a(£(0))]a¥ne N[R(£(n)) (£(n"))]1]11]].

With our bracketing conventions, this 1s an axiom that 1s harder to
wrilte than to understand. In words : i1f a finite chaln of relationships
among elements of a having property P can be indefinltely extended,
then (assuming we have a constructive verificatlon of the hypothesis)

we can find an infinite chain of elements with successive terms of the
chain related and the initial element specified. (The reader should not
overlook the generalizations of this principle to trees other than those
in 1r(1), but this is neither the time nor place to discuss them.) The
desired sequence of elements i1s found by recursilon, but one must be
careful on which species the recursion is done.
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To verify (A7), note that the hypothesls is equlvalent (in a sense to
be made precise in a moment) to the "formula"

Vue 3xea[P(0)][ 3ve 3xealP(x)] [R(u ) (v )] .

The sense of equlvalence 1s simply this : gilven a construction belong-
ing to the hypothesis of (A7), we can find a construction belonging to
the above - and conversely. (This is the meaning of <+, tco.) So let ¢
be a construction belonging to the above. As in the argument for (A6)
consider the two functions %= Wue Ixea[P(x)][t(w) ] and

F= Yue Ixea[P(x)] [t(u),]. From the assumption on t we note that we
can prove in the theory the conclusion

veVue Ixea[P(x)] [R(uo) (CP(u)O)] s

which 1s just a more explicit verslon of our main hypothesis 1f we also
remember

@e[IxealP(x)] > Txea[P(x)]] .

Next suppose that Zea and peP(Z) and qeQ(Z). We then iterate ¢ by
recursion obtaining q;' so that

@e[N-» Ixea[P(x)]]
¢(O)O =7, ¢(O)1 = p, and
') =P@m),

for ne[N. (We are speaking informally, but this can all be done in the
system.) Next we let f = VneN[q(n)o:[, and we find

peP(£(0)), qeQ(f(0)), and
(@ () eR(E(N)) (£(n™))

for ne N By using all manner of palring functions all these facts can
be put together to obtaln a term which can filnally be shown to belong
to the conclusion of (A7). (A note to the reader who tries this : re-
member zf contains Z and p as free variables and that you will have
to apply functional abstraction to them.)
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Very much analysis can already be carried out on the basis of
(A1) - (A7) (using intuitionistic loglc!) and we have BISHOP [1] as
evidence. However, such topics as BOREL sets and continuous functions
on BAIRE space (eg. functions of type [[IN-N] »&Jj) bring up definit-
lons by recursion on the second number class or better : on ']%hb. We
shall only discuss one toplc here : the definition of the predicate K
on [[bJ+DJ] »DJ] that determines the continuous functions and which
1s obtained by recursion.

Before giving the recursion on TV, it is convenlent to introduce
by an ordinary recursion on EJ that operator * such that

meN, fe[IN-IN] — [m * £](0) = m ,

and

mepd, fe[IN-INI1, nelN — [m * £f1(n*) = £(n)

This is simple and we need not give the explicit definition for *.
One can think of # as a kind of translation operator on BAIRE space.

To define K we define an auxililary operator 4 by recursion on

TOD such that

F Ko@) = Viee [[N-INT »INI [ 3neN[vre IN-IN1 [[[k(£) = N

and

ue[IN-T@D] F k) = Vke [[IN-IN] -~ (N]
WmelN [K(u(m)) (Vee IN-N] [k( [m * D11,

Then X can be defined by the equation :

K = Viee [[IN-IN] »IN][ 3te TOD [K(t) (x)I].

The intention of the definition is that a construction in XK(k)
when ke[[IN+IN] +IN] gives the direct evidence of why k 1is continuous.
The motivation for the definition 1s based on the well-known inductilve
analysls of continuous functions on [DJ+DJ]. Unfortunately, we do not
have the time to discuss the notion further here but can only mention
the axioms that can be validated, namely those of closure and induction:

(A8) (1) b= YneNK([[N>NI -n])]1,
(11) b= Ve (IN-[IN-INT ~INJ1 [¥meNK(k(m))] -
K(Vee N>R [k(£(0)) (Wne N [£(nH)]H ]I,
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(111) Yne NTP([[N>N] »n])],
Vie [IN>[[IN-IN1 -N11 [FVmsN[P(k(m))] >
P(Vee [IN-INJ [k(£(0)) (WnelN[r(n*)1)]1)1]
= Ve [[N-IN] ~INT[[kC0)-+P()]] .

Clearly, 1f we do not soon introduce some abbrevliations, ocur formulas
will be quite impossible to read. The worst part of the above (A8) is
the clumsy restrictions of the variables.,

Suppose we let [B= [IN»IN] ana [F= [B+N]. Further let us define
f = VneN[r(n*)]. Then for example (A8) (i1) reads

= Ve [IN> [P] [Vme N [K(k(m))]~K(Vre B [k (r(0)) ()],

where we have also left out some brackets. It could have been shortened
even further if we had given a special name to the transformation

Vie [IN- F] [vee Blk(£(0)) (H)I][[N-F] ~TF].

Another approach to practical readibility would be to have conventions
that certain variables were to range over certain species. It is hard
to stick to these conventlons when our alphabet is so finite, however.

This completes our brief survey of the foundations of analysis based on
the theory of Eonstructions. What we have given should have been enough,
though, to convince the reader that our theory is a sufficiently strong
and fertile one.

CONCLUSION

We have tried to present here with adequate motivation a theory of
constructions and to show how it is in harmony with BROUWER'S program -
at least as the program has been explalned by HEYTING. We consider the
attempt rather successful, but much remains to be done. For example, we
have not discussed quantification over specles (better : subspecies of
a given speciles). This can be done in a convenlent way within the frame-
work of the present theory, though it 1s necessary to adjoin new primitive

notions. Such considerations bring up problems of consistency, and we
have not had time here to investigate the many interesting models that

can be (non-constructively!) fashioned for the theory. Especially inter-
esting is a model (of which the author 1s 85% sure that 1t can be defined)
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that has the property that all functions are continuous. This thesis,

whilch 1s certalnly related to BROUWER'S view - except we are not making
use of choice sequences - ought to have rather interesting consequences.
But there are other thesis possible too : we might want to assume that
all baslc specles are countable - 1n the sense that they can all be

mapped one-one EEEEEDJ- Clearly that thesis also would have different
but far reaching consequences. And then there is CHURCH'S Thesis and
KRIPKE'S Schema, and these should all be investigated further. What we
have accomplished here 1s the providing of a good context within which
to compare these assumptilons.

In another direction, we find a host of proof-theoretical problems. One
must transpose LAUCHLI'S proof to this context as well as the results

of GOODMAN'S Thesis. A point to think about is whether the author has
made the transfinite part of the theory too strong. Are there theorems
of first-order arithmetic that can be validated using constructions
based on TN but not without it? And what about T(T®DD)? And what is
the strength of the theory with only finite speciles? A different
questlon : does the constructive proof of GUDEL'S Incompleteness Theorem
suggest any reffection principles that could be added to the theory
preserving 1its constructive character? Would this be a way in which an

"abstract" theory of proofs might become interesting again? There seem
to be quite a number of things to think about 1n thils area, and the
theory of constructions - in this form or another - gives us a way of
making the questions and answers precise.

POSTSCRIPT

After further discussions with KREISEL and GUDEL it has become clear
that the attempt to ellminate "proofs" (as abstract objects) and to
concentrate on the "pure"” constructions is not successful : the decidab-
11ity problems definitely show that the desired reduction of logical
complexity has not been obtained. Therefore, the theory must be revised.
(For an exact formulation of a relevant "adequacy condition", as KREISEL
calls 1t, see Problem 10 of his [13].) The author 1s still unable to
formulate any "abstract" theory of proofs that would seem convenient,
but he has a suggestion that might be sufficient for the purpose of an

adequate theory of constructlons. Namely, we replace the elementary
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assertions A |~§ by assertions e:A -8 where ¢ 1is a term denoting
a construction which measures the stage at which A -8 can be proved.
Many people have consldered stages of evidence, and it seems as though

the constructions can easlly be used to index these stages and to form-
alize the idea. For one thing proofs (and ordinals) can be related to
trees (as BROUWER did himself) and as we noted above, the constructions
can also be thought of as trees. The 1dea will require some development,
and the author did not want to publish thils paper until he was more
certaln that the approach is reasonable. But maybe the detalls we have
outlined here can be of some inspiration to others.
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