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1 Propositions

Please write simple realizers that provide the evidence for the following propositions. It might be
that one or two of them are not constructively true and thus have no realizers. In any such case,
explain why there is no realizer (program) for the task.

1. (P ⇒ Q)⇒ (¬Q⇒ ¬P )

2. (P ⇒ (Q⇒ (P ∧Q)))

3. (P ∧Q)⇒ (P ∨Q)

4. (P ∨Q)⇒ (Q ∨ P )

5. P ⇒ ¬(¬P )

6. ¬(P ∧Q)⇒ (¬P ∨ ¬Q)

7. ¬(P ∨Q)⇒ ¬P ∧ ¬Q

8. (¬P ∨ ¬Q)⇒ ¬(P ∧Q)

2 Proof Rules and Proof Expressions

Each rule has a name that is the outer operator of the proof expression with slots to be filled in
as the proof is developed. The partial proofs are organized as a tree generated in two passes. The
first pass is top down, driven by the user creating terms with slots to be filled in on an algorithmic
bottom up pass.

` A⇒ (B ⇒ A) by λ(x.slot1(x))
x : A ` (B ⇒ A) by slot1(x)

In the next step, slot1(x) is replaced at the leaf of the tree by λ(y.slot2(x, y)) to give:
` A⇒ (B ⇒ A) by λ(x.slot1(x))

x : A ` (B ⇒ A) by λ(y.slot2(x, y)) for slot1(x)
x : A, y : B ` A by slot2(x, y)

When the proof is complete, we see the slots filled in at each inference step as in:
` A⇒ (B ⇒ A) by λ(x.λ(y.x))

x : A ` (B ⇒ A) by λ(y.x)
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x : A, y : B ` A by x

The variable x fills slot2 and the lambda term λ(y.x) fills slot1. The complete proof expression
is thus the lambda term λ(x.λ(y.x)). It is easy to see intuitively that the meaning of this term is
precisely the evidence needed to show that the formula is true. If we used typed lambda terms, the
proof term would be λ(a : A.(λ(y :B.x))). (We could make the proof expression more standard
if we used a name such as impin instead of λ; we prefer to use notation that makes the semantic
ideas clearer than the traditional rule names.

The rules are organized with the construction rules first, often called the introduction rules
because they introduce the canonical proof terms also called the right hand side rules because they
apply to terms on the right hand side of the turnstile, ` .. Typical names seen in the literature are:
for & say AndIntro or AndR; for ⇒ say ImpIntro or ImpR; for ∨ say OrIn-r or OrIn-l, and for ∀x
say AllIntro or AllR, and for ∃ say ExistsIntro or ExistsR.

The decomposition rules for A ⇒ B and ∀x.B(x) are the most delicate to motivate and use
intuitively. The evidence for A ⇒ B is a function λ(x.b(x)), a reader might expect to see a
decomposition rule name such as apply(f ; a) or abbreviated to ap(f ; a). However, a Gentzen
sequent-style proof rule for decomposing an implication has this form:

H, f : A⇒ B,H ′ ` G by ImpL on f
1. H, f : A⇒ B,H ′ ` A
2. H, f : A⇒ B, v : B,H ′ ` G

As the proof proceeds, the two subgoals 1 and 2 with conclusions A and G respectively will be
refined, say with proof terms g(f, v) and a respectively. The rules need to indicate that the value
v is ap(f ; a), but at the point where the rule is applied, there are only slots for these subterms and
a name v for the new hypothesis B. So the rule form is apseq(f ; slota; v.slotg(v)) where we know
that v will be assigned the value ap(f ; slota) to “sequence” the two subgoals properly. So apseq
is a sequencing operator as well as an application. When the subterms are created the proof term
can be further evaluated as shown below.

H, f : A⇒ B,H ′ ` G by apseq(f ; slota; v.slotg(v))
H, f : A⇒ B, v : B,H ′ ` G by slotg(v)
H, f : A⇒ B,H ′ ` A by slota

We can evaluate the term apseq(f ; a; v.g(v)) to g(ap(f ; a)) or more succinctly to g(f(a)). This
simplification can only be done on the final bottom up pass of creating a closed proof expression,
one with no slots.

2.1 First-order refinement style proof rules over domain of discourse D

Minimal Logic
Construction rules

• And Construction
H ` A&B by pair(slota; slotb)
H ` A by slota
H ` B by slotb

• Exists Constructiona

H ` ∃x.B(x) by pair(d; slotb(d))
H ` d ∈ D by obj(d)
H ` B(d) by slotb(d)

aAlso see Alternative Rules below.
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• Implication Construction
H ` A⇒ B by λ(x.slotb(x)) new x
H, x : A ` B by slotb(x)

• All Construction
H ` ∀x.B(x) by λ(x.slotb(x)) new x
H, x : D ` B(x) by slotb(x)

• Or Construction - left
H ` A ∨B by inl(slotl)
H ` A by slotl

• Or Construction - right
H ` A ∨B by inr(slotr)
H ` B by slotr

Decomposition rules

• And Decomposition

H,x : A&B,H ′ ` G by spread(x; l, r.slotg(l, r)) new l, r
H, l : A, r : B,H ′ ` G by slotg(l, r)

• Exists Decomposition

H,x : ∃y.B(y), H ′ ` G by spread(x; d, r.slotg(d, r)) new d, r
H, d : D, r : B(d), H ′ ` G by slotg(d, r)

• Implication Decomposition

H, f : A⇒ B,H ′ ` G by apseq(f ; slota; v.slotg[ap(f ; slota)/v]) new v1

H, f : A⇒ B,H ′ ` A by slota
H, f : A⇒ B,H ′, v : B ` G by slotg(v)

• All Decomposition

H, f : ∀x.B(x), H ′ ` G by apseq(f ; d; v.slotg[ap(f ; d)/v])
H, f : ∀x.B(x), H ′ ` d ∈ D by obj(d)
H, f : ∀x.B(x), H ′, v : B(d) ` G by slotg(v)2

• Or Decomposition

H, y : A ∨B,H ′ ` G by decide(y; l.leftslot(l); r.rightslot(r))
1. H, l : A,H ′ ` G by leftslot(l)
2. H, r : B,H ′ ` G by rightslot(r)

• Hypothesis - domain (D)
H, d : D,H ′ ` d ∈ D by obj(d)

• Hypothesis - formula (A)
H,x : A,H ′ ` A by hyp(x)
We usually abbreviate the justifications to
by d and by x respectively.

Intuitionistic Rules

• False Decomposition

H, f : False,H ′ ` G by any(f)

This is the rule that distinguishes intuitionistic from minimal logic, called “ex falso quodlibet”.
We use the constant False for intuitionistic formulas and ⊥ for minimal ones to distinguish
the logics. In practice, we would use only one constant, say ⊥, and simply add the above rule
with ⊥ for False to axiomatize iFOL. However, for our results it is especially important to
be clear about the difference, so we use both notations.

1This notation shows that ap(f ; slota) is substituted for v in g(v). In the CTT logic we stipulate in the rule that
v = ap(f ; slota) in B.

2In the CTT logic, we use equality to stipulate that v = ap(f ; d) in B(v) just before the hypothesis v : B(d).
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Note that we use the term d to denote objects in the domain of discourse D. In the classical
evidence semantics, we assume that D is non-empty by postulating the existence of some d0 in it.
Also note that in the rule for False Decomposition, it is important to use the any(f) term which
allows us to thread the explanation for how False was derived into the justification for G.

Structural Rules

• Cut rule

H ` G by CutC(x.slotg(slotc)) new x
1. H,x : C ` G by slotg(x)
2. H ` C by slotc.

Classical Rules

• Non-empty Domain of Discourse

H ` d0 ∈ D by obj(d0)

• Law of Excluded Middle (LEM) Define ∼A as (A⇒ False)
H ` (A ∨ ∼A) by magic(A)
Note that this is the only rule that mentions a formula in the rule name.

Alterative Rule

• Exists Construction

H ` ∃x.B(x) by pair(slotd/X; slotb[slotd/X])
H ` D by slotd
H ` B(X) by slotb(X)
Note, the substitution of slotd propagates to B(X) as soon as the first subgoal determines
the value of the slot for the goal rule. The term X acts as a logic variable.

2.2 Computation rules

Each of the rule forms when completely filled in becomes a term in an applied lambda calculus.
The standard computation rules specify how to reduce these terms. These rules are given in detail
in papers about the lambda calculus. They are not repeated here. The reduction is to head normal
form.

The reduction rules are simple. For ap(f ; a), first reduce f , if it becomes a function term,
λ(x.b), then reduce the function term to b[a/x], that is, substitute the argument a for the variable
x in the body of the function b and continue computing. If it does not reduce to a function, then
no further reductions are possible and the computation aborts. It is possible that such a reduction
will abort or continue indefinitely. But the terms arising from proofs will always reduce to normal
form. This fact is discussed in the references.

To reduce spread(p;x, y.g), reduce the principal argument p. If it does not reduce to pair(a; b),
then there are no further reductions, otherwise, reduce g[a/x, b/y].

To reduce decide(d; l.left; r.right), reduce the principal argument d until it becomes either inl(a)
or inr(b) or aborts or fails to terminate.3. In the first case, continue by reducing left[a/l] and in
the other case, continue by reducing right[b/r].

3The computation systems of CTT and ITT include diverging terms such as fix(λ(x.x)). We sometimes let ↑
denote such terms.
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It is thus easy to see that all evidence terms terminate on all inputs from all models. This is a
fact about valid evidence structures.

Additional notations It is useful to generalize the semantic operators to n-ary versions. For
example, we will write λ terms of the form λ(x1, ..., xn.b) and a corresponding n-ary application,
f(x1, ..., xn). We allow n-ary conjunctions and n-tuples which we decompose using
spreadn(p;x1, ..., xn.b). More rarely we use n-ary disjunction and the decider,
deciden(d; case1.b1; ...; casen.bn). It is clear how to extend the computation rules and how to define
these operators in terms of the primitive ones.

It is also useful to define True to be the type ⊥⇒⊥ with element id = λ(x.x). Note that
λ(x.spread(pair(x;x);x1, x2.x1)) is computationally equivalent to id, as is

λ(x.decide(inr(x); l.x; r.x))4.

4We could also use the term λ(x.decide(inr(x); l.div; r.r)) and normalization would reduce it to λ(x.x).
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