
A BASIS FOR A MATHEMATICAL THEORY OF 
COMPUTATION 1) 

JOHN McCARTHY 

Computation is sure to become one of the most important of the sciences. 
This is because it is the science of how machines can be made to carry 
out intellectual processes. We know that any intellectual process that can 
be carried out mechanically can be performed by a general purpose digital 
computer. Moreover, the limitations on what we have been able to make 
computers do so far clearly come far more from our weakness as pro- 
grammers than from the intrinsic limitations of the machines. We hope 
that these limitations can be greatly reduced by developing a mathemati- 
cal science of computation. 

There are three established directions of mathematical research 
relevant to a science of computation. The first and oldest of these is 
numerical analysis. Unfortunately, its subject matter is too narrow to be 
of much help in forming a general theory, and it has only recently begun 
to be affected by the existence of automatic computation. 

The second relevant direction of research is the theory of computability 
as a branch of recursive function theory. The results of the basic work 
in this theory, including the existence of universal machines and the 
existence of unsolvable problems, have established a framework in which 
any theory of computation must fit. Unfortunately, the general trend of 
research in this field has been to establish more and better unsolvability 
theorems, and there has been very little attention paid to positive results 
and none to establishing the properties of the kinds of algorithms that 
are actually used. Perhaps for this reason the formalisms for describing 
algorithms are too cumbersome to be used to describe actual algorithms. 

The third direction of mathematical research is the theory of finite 
automata. Results which use the finiteness of the number of states tend 
not to be very useful in dealing with present computers which have so 

l) This paper is a corrected version of the paper of the same title given at the Western 
Joint Computer Conference, May 1961. A tenth section discussing the relations 
between mathematical logic and computation has been added. 



34 JOHN MCCARTHY 

many states that it is impossible for them to go through a substantial 
fraction of them in a reasonable time. 

The present paper is an attempt to create a basis for a mathematical 
theory of computation. Before mentioning what is in the paper, we shall 
discuss briefly what practical results can be hoped for from a suitable 
mathematical theory. This paper contains direct contributions towards 
only a few of the goals to be mentioned, but we list additional goals in 
order to encourage a gold rush. 

1. To develop a universal programming language. We believe that 
this goal has been written off prematurely by a number of people. Our 
opinion of the present situation is that ALGOL is on the right track 
but mainly lacks the ability to describe different kinds of data, that 
COBOL is a step up a blind alley on account of its orientation towards 
English which is not well suited to the formal description of procedures, 
and that UNCOL is an exercise in group wishful thinking. The formalism 
for describing computations in this paper is not presented as a candidate 
for a universal programming language because it lacks a number of 
features, mainly syntactic, which are necessary for convenient use. 

2. To define a theory of the equivalence ofcomputationprocesses. With 
such a theory we can define equivalence preserving transformations. Such 
transformations can be used to take an algorithm from a form in which 
it is easily seen to give the right answers to an equivalent form guaran- 
teed to give the same answers but which has other advantages such as 
speed, economy of storage, or the incorporation of auxiliary processes. 

3. To represent algorithms by symbolic expressions in such a way 
that significant changes in the behavior represented by the algorithms 
are represented by simple changes in the symbolic expressions. Pro- 
grams that are supposed to learn from experience change their behavior 
by changing the contents of the registers that represent the modifi- 
able aspects of their behavior. From a certain point of view, having 
a convenient representation of one’s behavior available for modifica- 
tion is what is meant by consciousness. 

4. To represent computers as well as computations in a formalism 
that permits a treatment of the relation between a computation and the 
computer that carries out the computation. 

5. To give a quantitative theory of computation. There might be a 
quantitative measure of the size of a computation analogous to Shannon’s 
measure of information. The present paper contains no information 
about this. 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 35 

The present paper is divided into two sections. The first contains 
several descriptive formalisms with a few examples of their use, and 
the second contains what little theory we have that enables us to prove 
the equivalence of computations expressed in these formalisms. The 
formalisms treated are the following: 

1. A way of describing the functions that are computable in terms 
of given base functions, using conditional expressions and recursive 
function definitions. This formalism differs from those of recursive 
function theory in that it is not based on the integers, strings of sym- 
bols, or any other fixed domain. 

2. Computable functionals, i.e. functions with functions as arguments. 
3. Non-computable functions. By adjoining quantifiers to the compu- 

table function formalism, we obtain a wider class of functions which are 
not a priori computable. However, such functions can often be shown 
to be equivalent to computable functions. In fact, the mathematics of com- 
putation may have as, one of its major aspects, rules which permit us to 
transform functions from a non-computable form into acomputable form. 

4. Ambiguous functions. Functions whose values are incompletely 
specified may be useful in proving facts about functions where certain 
details are irrelevant to the statement being proved. 

5.  A way of defining new data spaces in terms of given base spaces 
and of defining functions on the new spaces in terms of functions on 
the base spaces. Lack of such a formalism is one of the main weaknesses 
of ALGOL, but the business data processing languages such as FLOWMATIC 
and COBOL have made a start in this direction, even though this start 
is hampered by concessions to what the authors presume are the prejudices 
of business men. 

The second part of the paper contains a few mathematical results 
about the properties of the formalisms introduced in the first part. 
Specifically, we describe the following : 

1. The formal properties of conditional expressions. 
2. A method called recursion induction for proving the equivalence of 

recursively defined functions. 
3. Some relations between the formalisms introduced in this paper 

and other formalisms current in recursive function theory and in pro- 
gramming. 

We hope that the reader will not be angry about the contrast be- 
tween the great expectations of a mathematical theory of computation 
and the meager results presented in this paper. 



36 JOHN MCCARTHY 

FORMALISMS FOR DESCRIBING COMPUTABLE FUNCTIONS 
AND RELATED ENTITIES 

In this part we describe a number of new formalisms for expres- 
sing computable functions and related entities. The most important 
section is 1, the subject matter of which is fairly well understood. The 
other sections give formalisms which we hope will be useful in construct- 
ing computable functions and in proving theorems about them. 

1. Functions Computable in Terms of Given Base Functions. Suppose 
we are given a base collection 9 of functions (including predicates) 
having certain domains and ranges. In the case of the non-negative 
integers, we may have the successor function and the predicate of 
equality, and in the case of the S-expressions discussed in reference 7, 
we have the five basic operations. Our object is to define a class of 
functions C { 9 }  which we shall call the class of functions computable in 
terms of 9. 

Before developing C { 9 }  formally, we wish to give an example, 
and in order to give the example, we first need the concept of condi- 
tional expression. In our notation a conditional expression has the 
form 

(pi  -+ e1,pz -+ ez, . . . , p  n -+ en) 

which corresponds to the ALGOL 60 reference language (12) expression 

i fp l  then el else i fp z  then ez ... else i fpn  then en. 

Here p l , .  . . , p n  are propositional expressions taking the values T or F 
standing for truth and falsity respectively. 

The value of (PI  -+ el,  p z  -+ e2 , .  . . , pn  -+ en) is the value of the e 
corresponding to the first p that has value T. Thus 

(4< 3 -+ 7 , 2  > 3  +- 8 , 2 <  3 -+ 9 , 4 <  5 -+ 7) = 9. 

Some examples of the conditional expressions for well known func- 
tions are 

1x1 = ( x  < 0 -+ -x ,x 2 0 -f x) 
611 = (i=j -+ 1, i # j  + 0) 

and the triangular function whose graph is given in figure 1 is represented 



A BASIS FOR A MATHEMATICAL. THEORY OF COMPUTATION 37 

by the conditional expression 
tri(x) = (XI - 1  + 0 , x s  0 + x +  1, x <  1 + 1-x, x > 1 + 0). 

Fig. 1 

Now we are ready to use conditional expressions to define functions 
recursively. For example, we have 

n! = (n = 0 + 1, n # 0 + n*(n- I)!) 

Let us evaluate 2! according to this definition. We have 

2! = (2 = 0 + 1,2 # 0 + 2.(2- I)!) 
= 2.1! 

= 2 * 1 * 0 !  

= 2 . 1 - 1  
= 2. 

= 2.(1 = 0 + 1, 1 # 0 + l ’ (1-  I)!) 

= 2 . 1 * ( 0 = 0 + 1 , 0  #O+O.(O-l)!) 

The reader who has followed these simple examples is ready for 
the construction of C{S} which is a straightforward generalization 
of the above together with a tying up of a few loose ends. 

Some notation. Let 9 be a collection (finite in the examples we shall 
give) of functions whose domains and ranges are certain sets. C { 9 }  
will be a class of functions involving the same sets which we shall call 
computable in terms of S. 

Suppose f is a function of n variables, and suppose that if we write 
y = f(x1,. . . , x,), each xi takes values in the set Ut and y takes its value 
in the set V. It is customary to describe this situation by writing 

f :UlX  UZX ... x Un + V 

The set U1 x . . . X Un of n-tuples (XI,. . . , x,) is called the domain of f, 
and the set V is called the range off. 



38 JOHN MCCARTHY 

Forms and functions. In order to make properly the definitions that 
follow, we will distinguish between functions and expressions involving 
free variables. Following Church [ l ]  the latter are called forms. Single 
letters such asf ,  g, h, etc. or sequences of letters such as sin are used 
to denote functions. Expressions such as f(x,y), f(g(x),y), x2+y are 
called forms. In particular we may refer to the function f defined by 
f(x,y) = X ~ + J J .  Our definitions will be written as though all forms 
involving functions were written f(, . . . ,) although we will use expressions 
like x + JJ with infixes like + in examples. 

Composition. Now we shall describe the ways in which new functions 
are defined from old. The first way may be called (generalized) compo- 
sition and involves the use of forms. We shall use the letters x,y, ... 
(sometimes with subscripts) for variables and will suppose that there 
is a notation for constants that does not make expressions ambiguous. 
(Thus, the decimal notation is allowed for constants when we are dealing 
with integers.) 

The class of forms is defined recursively as follows: 
(i) A variable x with an associated space U is a form, and with this 

form we also associate U. A constant in a space U is a form and we also 
associate U with this form. 

(ii) If el, .  . . ,en are forms associated with the spaces U1, . . . , Un respecti- 
vely, then f(e1, .  . . ,en) is a form associated with the space V. Thus the 
form f(g(x,y),x) may be built from the forms g(x,y) and x and the 
function f. 

If all the variables occurring in a form e are among X I , .  . . , Xn, we 
can define a function h by writing h(x1,. . . , xn) = e.  We shall assume 
that the reader knows how to compute the values of a function defined 
in this way. If fi,. .., fm are all the functions occurring in e we shall 
say that the function h is defined by composition from fi,...,fm. The 
class of functions definable from given functions using only composition 
is narrower than the class of function computable in terms of these 
functions. 

Partial functions. In the theory of computation it is necessary to 
deal with partial functions which are not defined for all n-tuples in 
their domains. Thus we have the partial function minus, defined by 
minus (x,y) = x-y ,  which is defined on those pairs (x,y) of positive 
integers for which x is greater than y. A function which is defined for 
all n-tuples in its domain is called a total function. We admit the limiting 
case of a partial function which is not defined for any n-tuples. 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 39 

The n-tuples for which a function described by composition is de- 
fined is determined in an obvious way from the sets of n-tuples for 
which the functions entering the composition are defined. If all the 
functions occurring in a composition are total functions, the new func- 
tion is also a total function, but the other processes for defining functions 
are not so kind to totality. When the word “function” is used from here 
on, we shall mean partial function. 

Having to introduce partial functions is a nuisance, but an unavoidable 
one. The rules for defining computable functions sometimes give com- 
putation processes that never terminate, and when the computation 
process fails to terminate, the result is undefined. It is well known that 
there is no effective general way of deciding whether a process will 
terminate. 

Predicates and propositional forms. The space 17 of truth values whose 
only elements are T (for truth) and F (for falsity) has a special role 
in our theory. A function whose range islTis called apredicate. Examples 
of predicates on the integers are prime defined by 

T if x is prime 
F otherwise prime@) = 

and Iess defined by 
T i f x < y  
F otherwise Iess(x,y) = 

We shall, of course, write x < y instead of Iess(x,y). 
U there is a predicate equ of two arguments defined by 

For any space 

We shall write x = y instead of equ(x,y), but some of the remarks 
about functions might not hold if we tried to consider equality a single 
predicate defined on all spaces at once. 

A form with values in 17 such as x < y, x = y, or prime(x) is called a 
propositional form. 

Propositional forms constructed directly from predicates such as 
prime(x) or x <  y may be called simple. Compound propositional 
forms can be constructed from the simple ones by means of the proposi- 
tional connectives A ,  V, and N .  We shall assume that the reader is 
familiar with the use of these connectives. 



40 JOHN MCCARTHY 

Conditional forms or conditional expressions. Conditional forms 
require a little more careful treatment than was given above in con- 
nection with the example. The value of the conditional form 

(pi + el,. . . ,pn + en) 

is the value of the e corresponding to the first p that has value T; if 
all p’s have value F ,  then the value of the conditional form is not defined. 
This rule is complete provided all the p’s and e’s have defined values, 
but we need to make provision for the possibility that some of the 
p’s or e’s are undefined. The rule is as follows: 

If an undefined p occurs before a true p or if all p’s are false or if the e 
corresponding to the first true p is undefined, then the form is undefined. 
Otherwise, the value of the form is the value of the e corresponding to the 
first true p.  

We shall illustrate this definition by additional examples : 

(2<1+1,2>1+3)=3 
(1<2+4,1<2+ 3)=4 
(2 < 1 --f 1,3 < 1 + 3) is undefined 
(O/O < 1 -+ 1,1 < 2 -+ 3) is undefined 
(1 < 2 + O/O, 1 < 2 + 1) is undefined 
(1 < 2 + 2,l < 3 + O/O) = 2 

The truth value T can be used to simplify certain conditional forms. 
Thus, instead of 

we shall write 
1x1 = (x < 0 -+ -x, x# 0 + x), 

1x1 = (X < 0 + -x, T + x). 

The propositional connectives can be expressed in terms of condi- 
tional forms as follows: 

P A 4 = ( P + 4 , T + F )  
P v 4 = (p+ T, T + 4)  

P=4 = ( p - + q , T + T )  
- p  = ( p + F , T + T )  

Considerations of truth tables show that these formulae give the same 
results as the usual definitions. However, in order to treat partial functions 
we must consider the possibility that p or q may be undefined. 

Suppose that p is false and 4 is undefined; then according to the 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 41 

conditional form definition p A q is false and q A p is undefined. This 
unsymmetry in the propositional connectives turns out to be appropriate 
in the theory of computation since if a calculation of p gives F as a 
result q need not be computed to evaluate p A q, but if the calculation 
of p does not terminate, we never get around to computing q. 

It is natural to ask if a function c o d a  of 2n variables can be defined so 
that 

(pi + el , .  . . ,pn + en) = condn(p,. . . ,pn,ei,. . . ,en). 

This is not possible unless we extend our notion of function because 
normally one requires all the arguments of a function to be given be- 
fore the function is computed. However, as we shall shortly see, it 
is important that a conditional form be considered defined when, for 
example, pl is true and el is defined and all the other p’s and e’s are 
undefined. The required extension of the concept of function would 
have the property that functions of several variables could no longer 
be identified with one-variable functions defined on product spaces. We 
shall not pursue this possibility further here. 

We now want to extend our notion of forms to include conditional 
forms. Suppose PI,. . . ,pn are forms associated with the space of truth 
values and el ..., en are forms each of which is associated with the 
space V. Suppose further that each variable xt occurring in p l , .  . . ,pn  
and el , .  . .,en is associated with the space U. Then (p1 -+ el, .  . . ,pn -+ en) 
is a form associated with V. 

We believe that conditional forms will eventually come to be gener- 
ally used in mathematics whenever functions are defined by considering 
cases. Their introduction is the same kind of innovation as vector nota- 
tion. Nothing can be proved with them that could not also be proved 
without them. However, their formal properties, which will be discussed 
later, will reduce many case-analysis verbal arguments to calculation. 

De$nition of functions by recursion. The definition 

n! = (n = 0 -+ 1, T -+ n-(n  - I)!) 

is an example of definition by recursion. Consider the computation of O! 

O! = (0 = 0 + 1, T + O.(O - l)!) = 1. 

We now see that it is important to provide that the conditional form 
be defined even if a term beyond the one that gives the value is undefined. 
In this case (0 - l)! is undefined. 



42 JOHN MCCARTHY 

Note also that if we consider a wider domain than the non-negative 
integers, n! as defined above becomes a partial function, since unless n 
is a non-negative integer, the recursion process does not terminate. 

In general, we can either define single functions by recursion or 
define several functions together by simultaneous recursion, the former 
being a particular case of the latter. 

To define simultaneously functions 5,. . . , fk, we write equations 

fib.. . , xn )  = el 

fk(x1,. . . ,&) = ek 

The expressions el,. . . ,ek must contain only known functions and 
the functions fi,...,fk . Suppose that the ranges of the functions are 
to be V1,. . . , V k  respectively; then we further require that the expressions 
el,. . . , ek  be associated with these spaces respectively, given that within 
el,. . . ,ek the f’s are taken as having the corresponding V‘s as ranges. 
This is a consistency condition. 

fr(xt,.  . . ,Xk) is to be evaluated for given values of the x’s as follows. 
1. If ec is a conditional form then the p’s are to be evaluated in the 

prescribed order stopping when a true p and the corresponding e have 
been evaluated. 

2. If e{ has the formg(el*, . . . ,em*), then el*, . . . ,em* are to be evaluated 
and then the function g applied. 

3. If any expressionfr(el*, . . .,en*) occurs it is to be evaluated from the 
defining equation. 

4. Any subexpressions of e{ that have to be evaluated axe evaluated 
according to the same rules. 

5 .  Variables occurring as subexpressions are evaluated by giving them 
the assigned values. 

There is no guarantee that the evaluation process will terminate 
in any given case. If for particular arguments the process does not 
terminate, then the function is undefined for these arguments. If the 
function5 occurs in the expression et, then the possibility of termination 
depends on the presence of conditional expressions in the er’s. 

The class of functions C { g }  computable in terms of the given base 
functions S is defined to consist of the functions which can be defined 
by repeated applications of the above recursive definition process. 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 43 

2. Recursive Functions of the Integers. In Reference 7 we develop the 
recursive functions of a class of symbolic expressions in terms of the 
conditional expression and recursive function formalism. 

As an example of the use of recursive function definitions, we shall 
give recursive definitions of a number of functions over the integers. 
We do this for three reasons: to help the reader familiarize himself 
with recursive definition, to show how much simpler in practice our 
methods of recursive definition are than either Turing machines or 
Kleene’s formalism, and to prove that any partial recursive function 
(Kleene) on the non-negative integers is in C { 9 }  where 9 contains 
only the successor function and the predicate equality. 

Let Z be the set of non-negative integers {0,1,2,. . .} and denote the 
successor of an integer n by n‘ and denote the equality of integers n1 

and n2 by nl = n2. If we define functions succ and eq by 

succ(n) = n’ 

then we write 9 = {succ,eq}. We are interested in C{9} .  Clearly all 
functions in C { S }  will have either integers or truth values as values. 

First we define the predecessor function pred (not defined for n = 0) by 

pred(n) = pred2(n,0) 

pred2(n,m) = (m‘ = n + m, T + pred2(n,m’)). 

We shall denote pred(n) by n-. 
Now we define the sum 

m + n  = (n = 0 + m, T -+ m’+n-),  

mn = (n = 0 + 0, T -+ m+mn-), 

m - n  = (n = 0 + m, T + m--n-)  

the product 

the difference 

which is defined only for m 2 n.  The inequality predicate m I n is 
defined by 

m I n = (rn = 0)  V ( -  (n = 0) A (m- I n-) ) .  



44 JOHN MCCARTHY 

The strict inequality m < n is defined by 

m < n = ( m < n )  A - ( m = n ) .  

The integer valued quotient rnln is defined by 

m/n = ( m  < n + O,T -+ ( ( m  -n)/n)’). 

The remainder on dividing m by n is defined by 

rem(m/n) = (m < n -+ m,T -+ rem((m-n)/n)), 

and the divisibility of a number n by a number m,  

mln = ( n  = 0) V ((n 2 m) A (ml(n-m))).  

The primeness of a number is defined by 

prime(n) = (n # 0) A (n # 1) A prime2(n,2) 

prime2(m,n) = ( m  = n) V ( -  (mln) A prime2(n,m’)). 
where 

The Euclidean algorithm defines the greatest common divisor, and 

gcd(m,n) = (m > n -+ gcd(n,m),rem(n/m) = 0 + m,  

we write 

T -+ gcd(rem(n/m),m)) 
and we can define Euler’s pfunction by 

944 = vz(n,n) 
where 

q~z(n,rn) = ( m  = 1 + 1, gcd(n,m) = 1 -+ p)z(n,m-)’,T -+ vz(n,rn-)). 

q (n)  is the number of numbers less than n and relatively prime to n. 
The above shows that our form of recursion is a convenient way of 

defining arithmetical functions. We shall see how some of the proper- 
ties of the arithmetical functions can conveniently be derived in this 
formalism in a later section. 

3. Computable Functionals. The formalism previously described enables 
us to define functions that have functions as arguments. For example, 

E ar 
i-m 

can be regarded as a function of the numbers m and n and the sequence 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 45 

{ut}. If we regard the sequence as a function f we can write the recursive 
definition 

sum (m,n,f) = (m > n +- 0, T -+ f ( m )  + sum(m + 1 ,nf)) 

or in terms of the conventional notation 

9 f ( i )  = (m > n + 0,T .+ f ( m )  + 2 f ( i ) ) .  
t = m  t=m+l 

Functions with functions as arguments are called functionuls. 

integer n such that p(n) for a predicate p .  We have 
Another example is the functional feast(p) which gives the least 

least(p) = least 2(p,O) 

leust2(p,n) = (p(n)  -+ n,T -+ leust2(p,n+ 1)). 
where 

In order to use functionals it is convenient to have a notation for 
naming functions. We use Church's [ l ]  lambda notation. Suppose we 
have a function f defined by an equation f(x1, ..., xn) = e where e is 
some expression in X I , .  . . , xn.  The name of this function is A( ( X I , .  . . ,xn),e). 
For example, the name of the function f defined byf(x,y) = x 2 + y  is 
4 (XYY),  x2 + Y). 

Thus we have 
% ( X , Y ) Y X 2 +  Y)(3,4) = 13, 

4cv,x),x2 + Y)(3,4) = 19. 
but 

The variables occurring in a il definition are dummy or bound variables 
and can be replaced by others without changing the function provided 
the replacement is done consistently. For example, the expressions 

4 ( X Y Y ) Y  x2 + Y ) ,  
4(u,v),u2 + 4, 

and 

all represent the same function. 
n 

t -1 
In the notation i 2  is represented by sum(l,n,il((i),i2)) and the least 

integer n for which n2 > 50 is represented by 

leust (A( (n),n2 > 50)). 



46 JOHN MCCARTHY 

When the functions with which we are dealing are defined recursively, 
a difficulty arises. For example, consider factorial defined by 

fuctoriul(n) = (n = 0 + 1,T + n-fuctoriuZ(n-1)). 

A((n),(n = 0 + 1,T + n.fuctoriul(n-1))) 

cannot serve as a name for this function because it is not clear that 
the occurrence of “factorial” in the expression refers to the function 
defined by the expression as a whole. Therefore, for recursive functions 
we adopt an additional convention. Namely, 

lubel(f,l((xl,...,x,),e)) 

stands for the function f defined by the equation 

The expression 

f(x1, ..., xn)  = e 

where any occurrences of the function letter f within e stand for the 
function being defined. The letter f is a dummy variable. The factorial 
function then has the name 

lubeZ(fuctoriul, A( (n), (n = 0 + 1, T + n - fuctoriuZ(n - l ) ) ) ) ,  

and since factorial and n are dummy variables the expression 

lubel(g,A((r),(r = 0 -+ 1,T + r - g ( r - 1 ) ) ) )  

represents the same function. 
If we start with a base domain for our variables, it is possible to 

consider a hierarchy of functionals. At level 1 we have functions whose 
arguments are in the base domain. At level 2 we have functionals taking 
functions of level 1 as arguments. At level 3 are functionals taking 
functionals of level 2 as arguments, etc. Actually functionals of several 
variables can be of mixed type. 

However, this hierarchy does not exhaust the possibilities, and if 
we allow functions which can take themselves as arguments we can 
eliminate the use of Zubel in naming recursive functions. Suppose that 
we have a function f defined by 

f(x) = 4m 
where S(x,f, is some expression in x and the function variable5 This 
function can be named 

,ubelCfAI((x),b(x,f))). 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 47 

However, suppose we define a function g by 

g(xYv) = A((&?4X,d)) 

g = (xyv)9&x, (X)Y&Yd 1) 1. 
or 

We then have 
f(x) = 

since g(x,g) satisfies the equation 

g(x,g) = a(xY4(x),g(x,g))). 

f = mx), w , 9 v ( y Y  m h ? J ( u 9 d ) ) )  (x, W l d Y  

Now we can write f as 

m),v(uYv))))>). 
This eliminates label at what seems to be an excessive cost. Namely, 
the expression gets quite complicated and we must admit functionals 
capable of taking themselves as arguments. These escape our orderly 
hierarchy of functionals. 

4. Non-Computable Functions and Functionals. It might be supposed that 
in a mathematical theory of computation one need only consider com- 
putable functions. However, mathematical physics is carried out in terms 
of real valued functions which are not computable but only approxi- 
mable by computable functions. 

We shall consider several successive extensions of the class C { 9 } .  
First we adjoin the universal quantifier y to the operations used to 
define new functions. Suppose e is a form in a variable x and other 
variables associated with the space 17 of truth values. Then 

V( ( 4 9 4  
is a new form in the remaining variables also associated with 17. V( (x), e) 
has the value T for given values of the remaining variables if for all val- 
ues of x, e has the value T. V((x),e) has the value F if for at least one 
value of x, e has the value F. In the remaining case, i.e. for some values of 
xy e has the value T and for all others e is undefined, V( (x), e) is undefined. 

If we allow the use of the universal quantifier to form new propositional 
forms for use in conditional forms, we get a class of functions H a { 9 }  
which may well be called the class of functions hyper-arithmetic over 9 
since in the case where 9 = {successor, equality} on the integers, H a { 9 }  
consists of Kleene’s hyper-arithmetic functions. 



48 JOHN MCCARTHY 

Our next step is to allow the description operator 1. i((x),p(x)) stands 
for the unique x such that p(x )  is true. Unless there is such an x and 
it is unique, L( (x),p(x)) is undefined. In the case of the integers L( ( (x ) ,p (x ) )  
can be defined in terms of the universal quantifier using conditional ex- 
pressions, but this does not seem to be the case in domains which are 
not effectively enumerable, and one may not wish to do so in domains 
where enumeration is unnatural. 

The next step is to allow quantification over functions. This gets us 
to Kleene’s [5 ]  analytic hierarchy and presumably allows the functions 
used in analysis. Two facts are worth noting. First V(cf>,tp(f>) refers to 
all functions on the domain and not just the computable ones. If we 
restrict quantification to computable functions, we get different results. 
Secondly, if we allow functions which can take themselves as arguments, 
it is difficult to assign a meaning to the quantification. In fact, we are 
apparently confronted with the paradoxes of naive set theory. 

5. Ambiguous Functions. Ambiguous functions are not really functions. 
For each prescription of values to the arguments the ambiguous function 
has a collection of possible values. An example of an ambiguous function 
is less(n) defined for all positive integer values of n. Every non-negative 
integer less than n is a possible value of less@). First we define a basic 
ambiguity operator amb(x,y) whose possible values are x and y when 
both are defined: otherwise, whichever is defined. Now we can define 
less(n) by 

less (n) = amb (n - 1, less (n - 1)). 

less(n) has the property that if we define 

ult(n) = (n = 0 + 0,T + ulr(less(n))) 
then 

v( (n) ,u l t (n)  = 0) = T. 

There are a number of important kinds of mathematical arguments 
whose convenient formalization may involve ambiguous functions. In 
order to give an example, we need two definitions. 

Iff and g are two ambiguous functions, we shall say thatfis a descendant 
of g if for each x every possible value of f ( x )  is also a possible value of 

Secondly, we shall say that a property of ambiguous functions is 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 49 

hereditary if whenever it is possessed by a function g it is also possessed 
by all descendants of g .  The property that iteration of an integer valued 
function eventually gives 0 is hereditary, and the function less has this 
property. So, therefore, do all its descendants. Therefore any integer- 
function g satisfying g(0) = 0 and n > 0 = g(n) < n has the property 
that g*(n) = (n = 0 +- 0,T +- g*(g(n))) is identically 0 since g is a 
descendant of less. Thus any function, however complicated, which 
always reduces a number will if iterated sufficiently always give 0. 

This example is one of our reasons for hoping that ambiguous functions 
will turn out to be useful. 

With just the operation amb defined above adjoined to those used to 
generate C{F}, we can extend F to the class C * { Y }  which may be 
called the computably ambiguous functions. A wider class of ambiguous 
functions is formed using the operator Am(x,n(x))  whose values are all 
x’s satisfying n(x). 

6. Recursive Definitions of Sets. In the previous sections on recursive de- 
finition of functions the domains and ranges of the basic functions were 
prescribed and the defined functions had the same domains and ranges. 

In this section we shall consider the definition of new sets and the 
basic functions on them. First we shall consider some operations whereby 
new sets can be defined. 

1. The Cartesian product A x B of two sets A and B is the set of 
all ordered pairs ( a - b )  with a E A and b E B. If A and B are finite 
sets and n(A) and n(B) denote the numbers of members of A and B 
respectively then n(A x B)  = n(A)*n(B).  

Associated with the pair of sets (A,B) are two canonical mappings: 

ZA,B : A  x B + A defined by nA,B((a*b)) = a 
@ A , B  : A  X B +- B defined by @A,B((a*b)) = b .  

The word “canonical” refers to the fact that ZA,B and @A,B are defined 
by the sets A and B and do not depend on knowing anything about the 
members of A and B. 

The next canonical function y is a function of two variables YA,B:A,B +- 

A x B defined by 
y ~ , ~ ( a , b )  = ( a - b ) .  

For some purposes functions of two variables, x from A and y from B, 
can be identified with functions of one variable defined on A x B. 



50 JOHN MCCARTHY 

2. The direct union A o B of the sets A and B is the union of two 
non-intersecting sets one of which is in 1 - 1 correspondence with A and 
the other with B. If A and B are finite, then n(A o B)  = n(A)+ n(B) 
even if A and B intersect. The elements of A o B may be written as 
elements of A or B subscripted with the set from which they come, i.e. 

The canonical mappings associated with the direct union A 8 B are 
U A  Or bB. 

~ A , B : A  + A 0 B defined by iA,B(a) = a ~ ,  
j A , B : B  + A 0 B defined by jA,B(b) = be, 
PA,B:A o B + 17defined by P A , B ( X )  = T if and only i f x  comes fromd, 
qA,B: A O B +. 17 defined by qA,B(X) = T if and only if x comes from B. 

There are two canonical partial functions rA,BandsA,B. ~ A , B : A  0 B-+ A 
is defined only for elements coming from A and satisfies rA,B(iA,B(U)) = a. 
Similarly, SA,B: A O B + B satisfies sA,B(jA,B(b)) = b. 

3. The power set AB is the set of all mappingsf: B + A. The canonical 
mapping OIA,B: AB x B + A is defined by aA,B(f,b) = f(b).  

Canonical mappings. We will not regard the sets A x ( B  x C )  and 
( A  x B) x C as the same, but there is a canonical 1-1 mapping between 
them, 

gA,B,C:(A X B) X c -+ A X ( B  X c) 

to express the fact that these sets are canonically isomorphic. 
Other canonical isomorphisms are 

1. fA,B:A X B + B X A defined by t(u) = ~B,A(eA,B(u),~A,B(~)) 
2. d ~ : A X ( B O C ) - + A X B O A x C  
3. u ~ : ( A  O B)  O C +- A O ( B  Q C )  
1. &:AC x BC + ( A  X B)c 
5. d3:ABX Ac +- AB@C 
6. s~:(AB)C +- ABxC 

We shall denote the null set (containing no elements) by 0 and the set 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 51 

consisting of the integers from 1 to n by n. We have 

A O O 2 : A  
A x O l l O  
A x l l l A  
A x 2 21 A 8 A (n terms, associate to left by convention) 
AOII 1 (by convention) 
Al- A 
An II AX . . . x A (n terms, associate to left by convention) 

Suppose we write the recursive equation 

S = { A }  e A x S .  

We can interpret this as defining the set of sequences of elements of A as 
follows : 

1. Interpret A as denoting the null sequence. Then the null 'sequence 
(strictly an image of it) is an element of S. 

2. Since a pair consisting of an element of A and an element of S is 
an element of S, a pair (a,A) is an element of S. So, then, are 

al-(a2.A)) and al~(a~-(u~~A))) etc. 

Thus S consists of all sequences of elements of A including the null 
sequence. 

Suppose we substitute {A> 8 A x S for S in the right side of 
S = { A }  8 A x S . W e g e t  

s = {A} 8 A x ({A} 8 A x S).  

If we again substitute for S and expand by the distributive law expressed 
in equation (2) above we get 

s = { A } o A x { A } 8 A x A x { A > o  ... 
which, if we now denote the set {A} by 1, becomes 

S = l  8 A O A 2 Q A S Q  ... 
which is another way of writing the set of sequences. We shall denote 
the set of sequences of elements of A by seq(A). 

We can also derive this relation by writing S = 1 8 A x S and solving 
formally for S, getting S = 1/(1 -A) which we expand in geometric series 
to get S =  1 8 A 8 A2 8 ... j ust as before. 



52 JOHN MCCARTHY 

Another useful recursive construction is 

S = A O S x S. 

Its elements have the forms a or (al-a2) or ((uI*u~)*u~) or (a1-(a2-a3)) etc. 
Thus we have the set of S-expressions on the alphabet A which we may 
denote by sexp(A). This set is the subject matter of Reference 7, and the 
following paragraph refers to this paper. 

When sets are formed by this kind of recursive definition, the canonical 
mappings associated with the direct sum and Cartesian product opera- 
tions have significance. Consider, for example, sexp(A). 

We can define the basic operations of Lisp, i.e. atom, eq, car, cdr and 
cons by the equations 

atom(x) = P A , S ~ S ( X )  

eq(x,y) = ( ~ A , S X S ( X )  = iA,sxs(y)) 

assuming that equality is defined on the space A .  

Definition of the set of integers. Let 0 denote the null set as before. 
We can define the set of integers I by 

I = (0) 0 (0) x I. 
Its elements are then 

O,(O.O), (O.(O.O)), etc. 

which we shall denote by 0,1,2,3 etc. The successor and predecessor 
functions are then definable in terms of the canonical operations of 
the defining equation. We have 

PROPERTIES OF COMPUTABLE FUNCTIONS 

The first part of this paper was solely concerned with presenting 
descriptive formalisms. In this part we shall establish a few of the proper- 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 53 

T T T  
T T F  
T T u  

T F T  
T F F  
T F u  

T u T  
T u F  
T u u  

F T T  
F T F  
F T u  

F F T  
F F F  
F F u  

F u T  
F u F  
F u u  

u T T  
u T F  
u T u  

u F T  
u F F  
u F u  

u u T  
u u F  
u u u  

T a a a a 
T a a b a 
T a a U a 

F b b a b 
F b b b b 
F b b U b 

U U U a U 

U U U b U 

U U U U U 

T a a a a 
F b a b b 
U U a U U 

T a b a a 
F b b b b 
U U b U U 

T a U a a 
F b U b b 
U U U U U 

U U a a U 

U U a b U 

U U a U U 

U U b a U 

U U b a U 

U U b U U 

U U U a U 

U U U b U 

I( U U U U 



54 JOHN MCCARTHY 

ties of the entities we previously introduced. The most important section 
is section 8 which deals with recursion induction. 

7. Formal Properties of Conditional Forms. The theory of conditional 
expressions corresponds to analysis by cases in mathematics and is only 
a mild generalization of propositional calculus. 

We start by considering expressions called generalized Boolean forms 
(gbf) formed as follows: 

1. Variables are divided into propositional variables p ,  q, r, etc. and 
general variables x,  y, z, etc. 

2. We shall write (p -+ x,y) for (p --f x,T -+ y). (p -+ x,y) is called 
an elementary conditional form (ecf) of which p ,  x,  and y are called 
the premiss, conclusion and the alternative, respectively. 

3. A variable is a gbf, and if it is a propositional variable it is called a 
propositional form (pf). 

4. If n is a pf and 01 and B are gbfs, then (n +or$) is a gbf. If, in 
addition, 01 and /? are pfs, so is (n -+ 01,p). 

The value of a gbf 01 for given values (T, F or undefined) of the proposi- 
tional variables will be T or F in case 01 is a pf or a general variable 
otherwise. This value is determined for a gbf (n -+ 01,m according to the 
table 

value (n) value ((n -+ or,B)) 

T value (a) 
F value (B) 

undefined undefined 

We shall say that two gbfs are strongly equivalent if they have the 
same value for all values of the propositional variables in them including 
the case of undefined propositional variables. They are weakly equivalent 
if they have the same values for all values of the propositional variables 
when these are restricted to F and T. 

The equivalence of gbfs can be tested by a method of truth tables 
identical to that of propositional calculus. The table for ((p -+ q,r) -+ a,b 
and (p -+ (q  -+ a,b)(r -+ a$)) is given on the foregoing page. 

According to the table, ((p -+ q,r) -+ a,b) and (p -+ (q -+ a,b),(r + a$)) 
are strongly equivalent. 

For weak equivalence the u case can be left out of the table. 
Consider the table 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 55 

t t 1. t t t 
P 4  3 W rn 4 4 4 W 

rn 

T T  a C a U b a 
T F  b d b a b b 
F T  a C C C d C 

T T  b d d C d d 

which proves that (p -+ (q -+ a,b),(q -+ c,d)) and (q  + (p -+ a,c),(p -+ 
b,d)) are weakly equivalent. They are also strongly equivalent. We shall 
write f a  and -w for the relations of strong and weak equivalence. 

There are two rules whereby an equivalence can be used to generate 
other equivalences. 

1. If dc = /I and al= is the result of substituting any gbf for any 
variable in dc = p, then dc1= PI. This is called the rule of substitution. 

2. If a = p and a is subexpression of y and 6 is the result of replacing 
an occurrence of a in y by an occurrence of /?, then y = 6. This is called 
the rule of replacement. 

These rules are applicable to either strong or weak equivalence and in 
fact to much more general situations. 

Weak equivalence corresponds more closely to equivalence of truth 
functions in propositional calculus than does strong equivalence. 

Consider the equations 

1) ( p  -+ a,a) -w a 
2) (T -+ a,b) -g  u 
3) (F -+ a,b) -8 b 
4) (p -+ T , F ) r g p  

6)  ( p  -+ a,(p -+ b ~ ) )  ? s ( p  -+ W )  
5 )  (p --f (p a,b),c) (p a,c) 

7) ((p q,r) - S ( p  (4  a,b),(r a,b)) 
8) ((p (4 + a,b)7(q -+ c,d)) (4  (p j -+ b 7 d ) )  

All are strong equivalence except the fmt, and all can be proved by truth 
tables. 

These eight equations can be used as axioms to transform any gbf 
into any weakly equivalent one using substitution and replacement. 



56 JOHN MCCARTHY 

In fact, they can be used to transform any gbf into a canonical form. 
This canonical form is the following. Let PI,. . . ,pn be the variables of 
the gbf a taken in an arbitrary order. Then a can be transformed into the 
form 

where each at has the form 
(p1 + ao,a1) 

at = (p2 + Ut0,Uil) 

at l...fk = (Pk+l  -+ at l...tkO, afl...tk 1) 

and in general for each k = 1, ..., n-1 

and each at,, . ..,at is a truth value or a general variable. 
For example, the canonical form of 

((P -+ 494 -+ 4) 
with the variables taken in the order r, q, p is 

( r  +. (4 +. ( p  + a,a),(p + b,a)),(q + (P + a,b),(p -+ b,b))). 

In this canonical form, the 212 cases of the truth or falsity of p l , .  . . ,pn 
are explicitly exhibited. 

An expression may be transformed into canonical form as follows: 
1) Axiom 7 is used repeatedly until in every subexpression the n in 

(n --f a$) consists of a single propositional variable. 
2) The variable p~ is moved to the front by repeated application of 

axiom 8. There are three cases: (q + (PI + a,b),(pl -+ c,d)) to which 
axiom 8 is directly applicable; (q -+ a,(pl -+ c,d)) where axiom 8 becomes 
applicable after axiom 1 is used to make it (q -+ (pl  -+ a,a),(pl -+ c,d)); 
the case (q + (p l  + a,b),c) which is handled in a manner similar to that 
of case 2. 

Once the main expression has the form ( p l  -+ a$) we move any 
pl’s which occur in a and p to the front and eliminate them using axioms 
5 and 6 .  We then bringpz to the front ofa and j3 using axiom 1 if necessary 
to guarantee at least one occurrence of p2 in each of LY and p. The process 
is continued until the canonical form is achieved. 

There is also a canonical form for strong equivalence. Any gbf a 
is strongly equivalent to one of the form (p l  + or$), where a and j3 
do not contain p l  and are themselves in canonical form. However, 
the variable p l  may not be chosen arbitrarily but must be an inevitable 
propositional variable of the original gbf and can be chosen to be any 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 57 

inevitable variable. An inevitable variable of a gbf (n -+ a$) is defined 
to be either the first propositional variable or else an inevitable variable 
of both a and /?. Thus p and q are the inevitable variables of 

(P +. ( r  + (4  -+ a,b),(q +. c,d)),(q +. e,f)). 

A gbf a may be put in strong canonical form as follows: 
1) Use axiom 7 to get all premises as propositional variables. 
2) Choose any inevitable variable, say P I ,  and put a in the form 

(p l  -+ a,/?) by using axiom 8. 
3) The next step is to eliminate occurrences of p l  in a and B. This 

can be done by the general rule that in any ecf occurrences of the premiss 
in the conclusion can be replaced by T and occurrences in the alternative 
by F. However, if we wish to use substitution and replacement on 
formulas we need the additional axioms 

(9) 

(10) 

( p  +. (4  +. a,b),c) -8 (P -+ (4  +. (P +. w),O,  +. b,b)),c) 

( p  + a,(q + b,c)) -8 ( p  + a,(q + ( P  -+ W,(P +. c,c))). 

and 

Suppose there is an occurrence of p l  in the conclusion; we want to 
replace it by T. To do this, we use axioms 9 and 10 to move in a p l  
until the objectionable pl occurs as the inner p l  of one of the forms 

or 

In either case, the objectionable p l  can be removed by axiom 5 or 6, 
and the pl’s that were moved in can be moved out again. 

Thus we have (PI  + a,/?) with p l  missing from a and /?. 
4) Inevitable variables are then brought to the front of a andpand so 

forth. 
Two gbfs are equivalent (weakly or strongly) if and only if they have 

the same (weak or strong) canonical form. One way this is easy to prove; 
if two gbfs have the same canonical form they can be transformed into 
each other via the canonical form. Suppose two gbfs have different weak 
canonical forms when the variables are taken in the same order. Then 
values can be chosen for the p’s giving different values for the form 
proving non-equivalence. In the strong case, suppose that two gbfs do 
not have the same inevitable propositional variables. Let p be inevitable 



58 JOHN MCCARTHY 

in a but not in b. Then if the other variables are assigned suitable values 
b will be defined with p undefined. However, a will be undefined since 
p is inevitable in a which proves non-equivalence. Therefore, strongly 
equivalent gbfs have the same inevitable variables, so let one of them 
be put in front of both gbfs. The process is then repeated in the conclusion 
and alternative etc. 

The general conditional form 

(pi -+ el , .  . . ,pn -+ en) 

can be regarded as having the form 

(pi  -+ el,(p2 -+ ez, ..., (pn .+ en,U),.. .)) 

where u is a special undefined variable and their properties can be derived 
from those of gbf's. 

The relation of functions to conditional forms is given by the distribu- 
tive law 

f ( ~ i , .  . . ,xi-i,(pi -+ el, .  . . ,pn -+ en),xi+i,. . . , x k )  = 
(pi  -+ f(xi,. . . ,xi-i, ei,xr+i,. . . , xk) ,  . . . ,Pn -+ 

-+ f(xi,. . . , xi-i, en,xt+i,. . . , x k ) ) .  

The rule of replacement can be extended in the case of conditional 
expressions. Suppose a is an occurrence of a subexpression of an ex- 
pression p. We define a certain propositional expression n called the 
premiss of a in /3 as follows: 

1) The premiss of 01 in 01 is T 
2) The premiss of 01 in f (x1 , .  . . , xr, . . . ,xn) where 01 is part of x{ is the 

premiss of a in xg. 
3) If 01 occurs in eg and the premiss of a in er is n, then the premiss 

of a in (pi -+ el ,... ,pi -+ et ,... ,pn -+ en) is ( N  p i  A ... A N pt-1) 
A pr A n. 

4) If a occurs in pt and the premiss of a in pg is n, then the premiss 
of 01 in (pi -+ el , .  . . ,pi -+ et,. . . ,pn -+ en) is N p i  A . . . N pi-i A Z. 

The extension of the rule of replacement is that an occurrence of 
01 in (n -+ a') where n is the 
premiss of a in p. Thus in a subcase one needs only prove equivalence 
under the premiss of the subcase. 

may be replaced by a' if (n -+ a) 

8. RecursionInduction. Suppose a function f is defined recursively by 

(1) f (x1, .  . . , xn) = g(x1,. . e ,  x n f }  



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 59 

where d is an expression that in general contains $ Suppose that d 
is the set of n-tuples ( X I , .  . . ,xn) for which f is defined. Now let g and h 
be two other functions with the same domain as f and which are defined 
for all n-tuples in d. Suppose further that g and h satisfy the equation 
which defined$ We assert that 

g(X1,. . . ,xn)  = h(x1,. . . , ~ n )  

for all ( X I , .  . . ,xn) in d. This is so, simply because equation (1) uniquely 
determines the value that any function satisfying it has for arguments in 
d which in turn follows from the fact that (1) can be used to compute 
f (x1, .  . . ,xn) for (XI,. . . , x,) in d. 

We shall call this method of proving two functions equivalent by the 
name of recursion induction. 

We shall develop some of the properties of the elementary functions 
of integers in order to illustrate proof by recursion induction. We recall 
the definitions 

m + n  = (n = 0 + m,T + m‘+n-) 
mn = (n = 0 + O,T + m+mn-) 

Th. 1. m + O  = m 
Proof m + 0 = (0 = 0 + m,T + m’ + 0-) 

- m. 
Only the definition of addition and the properties of conditional ex- 
pressions were used in this proof. 

- 

Th. 2.  (m + n)’ = m‘ + n 
Proof Define f(m,n) = (n = 0 + m‘,T + f(m,n-)).  It is easily seen what 
f(m,n) converges for all m and n and hence is completely defined by 
the above equation and is computable from it. Now 

(m+n)’ = (n = 0 + m,T + m’+n-)’ 
= (n = 0 + m‘,T -+ (m’ + n-)‘), while 

m’+n = (n = 0 -+ m’,T + (m’)‘+n-). 

It is easily seen that the functions g and h defined by the equations 
g(m,n) = (m + n)’ and h(m,n) = m’ + n both satisfy the equation $ For 
example, it is clear that g(m‘,n) = (m’ + n-)’ and h(m’, n-) = (m’)’ + n-. 
Therefore, by the principle of recursion induction h and g are equivalent 
functions on the domain of where f is defined, but this is the set of all 
pairs of integers. 

The fact that the above defined f(m,n) converges for all m and n is a 



60 JOHN MCCARTHY 

case of the more general fact that all functions defined by equations of 
the form 

f (n ,x  ,..., z) = (n = 0 -+ g(x ,..., z), T -+ h(n,x ,..., z, 
f(n-,r(x, .  . . ,z),. . . , t (x , .  . . ,z)), 
f(n-,u(x, .  . . ,z), . . . , w(x,. . . ,z)),etc.)) 

converge. We are not yet able to discuss formal proofs of convergence. 
In presenting further proofs we shall be more terse. 

Th.3. ( m + n ) + p = ( m + p ) + n .  
Proof Let f(m,n,p) = (p = 0 + m + n, T -+ f(m’,n,p-)). Again f con- 
verges for all m, n,  p. We have 

(m+n)+p = (p = 0 -+ m+n,T -+ (m+n)’+p-) 
= (p = 0 -+ m + n,T -+ (m’ + n) +p-) using Th. 2. 

= (p = 0 -+ m+n,T -+ (m‘+p-)+n). 
(m+p)+n = (p = 0 -+ m,T + m’+p-)+n 

Each of these forms satisfies the equation for f(m,n,p). 
Setting m = 0 in Theorem 3 gives 

(O+n)+p = (O+A+n 

so that if we had O+m = m we would have commutativity of addition. 
In fact, we cannot prove 0 + m = m without making some assumptions 

that take into account that we are dealing with the integers. For suppose 
our space consisted of the vertices of the binary tree in figure 2, where 

Fig. 2 

m’ is the vertex just above and to the left, and m- is the vertex just below, 
and 0 is the bottom of the tree. m + n can be defined as above and of 
course satisfies Theorems 1, 2, and 3 but does not satisfy O+m = m. 
For example, in the diagram 0 + a = b although a + 0 = a. 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 61 

We shall make the following assumptions : 
1. m‘ # 0 
2. (m’)- = m 
3. (m # 0) 2 ((m-)‘ = m) 

which embody all of Peano’s axioms except the induction axiom. 

Th. 4. 0 + n = n. 
Proof Let f ( n )  = (n = 0 -+ O,T -+ f(n-)‘) 

0 + n = (n  = 0 -+ O,T -+ 0’ + n-) 
= (n =O -+ O,T -+ (0 + n-)’) 

= (n = 0 -+ O,T -+ (n-)’) 
n = (n  = 0 + n,T -+ n) 

axiom 3 

Th.5. m + n = n + m .  
Proof By 3 and 4 as remarked above. 

Th.6.  ( m + n ) + p = m + ( n + p )  
Proof ( m  + n) + p  = (m + p )  + n Th. 3. 

= ( p  + m) + n Th. 5. 
= ( p  + n) + m Th.  3. 
= m + (n + p )  Th. 5. twice. 

Th. 7. ma0 = 0. 
Proof m ~ O = ( O = O - + O , T + m + n ~ O - )  

= o  
Th. 8. 0 .n  = 0. 
Proof Let f ( n )  = (n = 0 + O,T + f (n- ) )  

0 . n  = (n = 0 + O,T -+ O+O*n) = (n = 0 -+ O,T + 0-n) 
0 = (n  = 0 -+ O,T + 0) 

Th. 9. mn’ = m + mn. 
Proof mn‘ = (n’ = 0 -+ O,T -+ m + m (n‘)-) 

= m + m n  axioms 1 and 2. 

Th. 10. m(n + p )  = mn + mp. 
Proof Let f(m,n,p) = (p = 0 -+ mn,T -+ f(m,n‘,p-)) 

m(n+p) = m(p = 0 -+ n,T -+ n’+p-)) 

mn+ mp= mn+ (p = 0 -+ O,T -+ m+ mp-) 
= (p = 0 -+ mn,T -+ m(n’ +p-) )  

= ( p = O - + m n + O , T - + m n + ( m + m p - ) )  
= ( p = O - + m n , T - + ( m n + m ) + m p - )  
= (p = 0 -+ mn,T -+ mn’ + mp-) 



62 JOHN MCCARTHY 

Now we shall give some examples of the application of recursion 
induction to proving theorems about functions of symbolic expressions. 
The rest of these proofs depend on an acquaintance with the Lisp for- 
malism. 

We start with the basic identities. 
cur [cons [x ;y ] ]  = x 
cdr [cons [x;y] ] = y 

atom [cons [x ;y ] ]  = F 
nulZ[x] = eq[x;NIL] 

atom[x] 2 [cons [cur [x];cdr [ X I  = x 

Let us define the concatenation x*y of two lists x and y by the formula 

x*y = [nuN[x] -+ y ;  T -+ cons[cur[x];cdr[x]*y]] 

Our first objective is to show that concatenation is associative. 

Th. 11. [ x * ~ ] * z  = x*[~*z] .  
Proof 

We shall show that [x*y]*z and x*[y*z] satisfy the functional equation 

f [ x ; y ; z ]  = [null[x] -+ y*z; T -+ cons[cur[x]; f [cdr[x];y;z]]]  

First we establish an auxiliary result: 

cons[u;u]*v = [nuN[cons[u;u]] -+ v ;  T -+ cons[cur[cons[u;u]]; 
cdr [cons[a;u]]*v]] = cons[u;u*v] 

Now we write 

[x*y]*z = [null[x] + y ;  T -+ cons[cur[x]; cdr[x]*y]]*z 
= [null[x] -+ y*z; T -+ cons[cur [ X I ;  cdr [x]*y]*z] 
= [null[x] -+ y*z; T -+ cons [car [ X I ;  [cdr [x]*y]*z] ] 

and 
x*[y*z] = [null[x] + y*z; T + cons[cur[x]; cdr[x]*[y*z]]]. 

From these results it is obvious that both [x*y]*z and x*ly*z] satisfy the 
functional equation. 

Th. 12. NIL*x = x 
x*NIL = X .  

Proof NIL*x = [null[NIL] -+ x ;  T -+ cons[cur[NIL]; cdr[NIL]*x]] 

x*NIL = [nuN[x] + NIL;  T -+ cons[cur[x]; cdr[x]*NIL]]. 
= x  

Let f [ x ]  = [null[x] + NIL;  T -+ cons[cur[x];f[cdr[x]]]]. 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 63 

x*NIL satisfies this equation. We can also write for any list x 

= [nulZ[x] + NIL; T + cons[cur[x]; c d r [ x ] ] ]  
x = [nuZl[x] + X ;  T + X] 

which also satisfies the equation. 

reverse[x] = [nuN[x] + NIL; T + reverse[cdr [x]]*cons [cur [x];NIL].  

Next we consider the function reverse[x] defined by 

It is not difficult to prove by recursion induction that 
reverse [x*y] = reverse [y]*reverse[x] 

reverse [reverse [x]  ] = x. 

Many other elementary results in the elementary theory of numbers 
and in the elementary theory of symbolic expressions are provable in 
the same straightforward way as the above. In number theory one gets 
as far as the theorem that if a prime p divides ub, then it divides either 
u or b. However, to formulate the unique factorization theorem requires 
a notation for dealing with sets of integers. Wilson's theorem, a moderate- 
ly deep result, can be expressed in this formalism but apparently cannot 
be proved by recursion induction. 

One of the most immediate problems in extending this theory is to 
develop better techniques for proving that a recursively defined func- 
tion converges. We hope to find some based on ambiguous functions. 
However, Godel's theorem disallows any hope that a complete set of 
such rules can be formed. 

The relevance to a theory of computation of this excursion into 
number theory is that the theory illustrates in a simple form mathe- 
matical problems involved in developing rules for proving the equiv- 
alence of algorithms. Recursion induction, which was discovered by 
considering number theoretic problems, turns out to be applicable 
without change to functions of symbolic expressions. 

and 

9. Relations to Other Formalisms. Our characterization of C(P} as the 
set of functions computable in terms of the base functions in .F cannot 
be independently verified in general since there is no other concept with 
which it can be compared. However, it is not hard to show that all 
partial recursive functions in the sense of Church and Kleene are in 
C{succ,eq}. In order to prove this we shall use the definition of partial 
recursive functions given by Davis [3]. I f  we modify definition 1.1 of page 



64 JOHN MCCARTHY 

41 of Davis [3] to omit reference to oracles we have the following: A 
function is partial recursive if it can be obtained by a finite number of 
applications of composition and minimalization beginning with the func- 
tions on the following list: 

1) x’ 

3) X + Y  

4) X-Y = (x-y > O  -+ X-y, T -+ 0) 
5 )  X Y  

2) Urn(xl,. . . ,xn) = xt, 1 5 i 5 n 

All the above functions are in C{succ,eq}. Any C{F} is closed under 
composition so all that remains is to show that C{succ,eq} is closed 
under the minimalization operation. This operation is defined as follows: 
The operation of minimalization associates with each total function 
f(y,x1,.  . . ,xn)  the function h(x1,. . . ,xn)  whose value for given X I , .  . . ,xn 
is the least y for which f (y ,x1, .  . . , x,) = 0, and which is undefined if no 
such y exists. We have to show that iff is in C{succ,eq} so is h. But h 
may be defined by 

where 
W l , .  , x n )  = hZ(O,Xl,. . . ,Xr) 

hz(y,xl,. . . , x n )  =  XI,. . . , x n )  = 0 -+ y,T + ~ z ( Y ’ , x I , .  . . ,~n)). 

The converse statement that all functions in C{succ,eq} are partial 
recursive is presumably also true but not quite so easy to prove. 

It is our opinion that the recursive function formalism based on 
conditional expressions presented in this paper is better than the for- 
malisms which have heretofore been used in recursive function theory 
both for practical and theoretical purposes. First of all, particular 
functions in which one may be interested are more easily written down 
and the resulting expressions are briefer and more understandable. 
This has been observed in the cases we have looked at, and there seems 
to be a fundamental reason why this is so. This is that both the original 
Church-Kleene formalism and the formalism using the minimalization 
operation use integer calculations to control the flow of the calculations. 
That this can be done is noteworthy, but controlling the flow in this 
way is less natural than using conditional expressions which control the 
flow directly. 

A similar objection applies to basing the theory of computation on 
Turing machines. Turing machines are not conceptually different from the 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 65 

automatic computers in general use, but they are very poor in their 
control structure. Any programmer who has also had to write down 
Turing machines to compute functions will observe that one has to 
invent a few artifices and that constructing Turing machines is like 
programming. Of course, most of the theory of computability deals 
with questions which are not concerned with the particular ways com- 
putations are represented. It is sufficient that computable functions 
be represented somehow by symbolic expressions, e.g. numbers, and that 
functions computable in terms of given functions be somehow repre- 
sented by expressions computable in terms of the expressions repre- 
senting the original functions. However, a practical theory of compu- 
tation must be applicable to particular algorithms. The same objec- 
tion applies to basing a theory of computation on Markov’s [9] normal 
algorithms as applies to basing it on properties of the integers; namely 
flow of control is described awkwardly. 

The first attempt to give a formalism for describing computations 
that allows computations with entities from arbitrary spaces was made 
by A. P. Ershov [4]. However, his formalism uses computations with the 
symbolic expressions representing program steps, and this seems to be an 
unnecessary complication. 

We now discuss the relation between our formalism and computer 
programming languages. The formalism has been used as the basis for 
the Lisp programming system for computing with symbolic expressions 
and has turned out to be quite practical for this kind of calculation. 
A particular advantage has been that it is easy to write recursive functions 
that transform programs, and this makes compilers and other program 
generators easy to write. 

The relation between recursive functions and the description of flow 
control by flow charts is described in Reference 7. An ALGOL program 
can be described by a recursive function provided we lump all the 
variables into a single state vector having all the variables as components. 
If the number of components is large and most of the operations per- 
formed involve only a few of them, it is necessary to have separate 
names for the components. This means that a programming language 
should include both recursive function definitions and ALGOL-like 
statements. However, a theory of computation certainly must have 
techniques for proving algorithms equivalent, and so far it has seemed 
easier to develop proof techniques like recursion induction for recur- 
sive functions than for ALGOL-like programs. 



66 JOHN MCCARTHY 

10. On the Relations between Computation and Mathematical Logic 
In what follows computation and mathematical logic will each be 

taken in a wide sense. The subject of computation is essentially that 
of artificial intelligence since the development of computation is in 
the direction of making machines carry out ever more complex and so- 
phisticated processes, i.e. to behave as intelligently as possible. Mathe- 
matical logic is concerned with formal languages, with the representa- 
tion of information of various mathematical and non-mathematical 
kinds in formal systems, with relations of logical dependence, and 
with the process of deduction. 

In discussions of relations between logic and computation there 
has been a tendency to make confused statements, e.g. to say that 
aspect A of logic is identical with aspect B of computation, when ac- 
tually there is a relation but not an identity. We shall try to be precise. 

There is no single relationship between logic and computation which 
dominates the others. Here is a list of some of the more important 
relationships. 

1. Morphological parallels 
The formal command languages in which procedures are described, 

e.g. ALGOL; the formal languages of mathematical logic, e.g. first or- 
der predicate calculus; and natural languages to some extent: all may 
be described morphologically (i.e., one can describe what a grammatical 
sentence is) using similar syntactical terms. In my opinion, the im- 
portance of this relationship has been exaggerated, because as soon 
as one goes into what the sentences mean the parallelism disappears. 

2. Equivalent classes of problems 
Certain classes of problems about computations are equivalent 

to certain classes of problems about formal systems. For example, let 
El be the class of Turing machines with initial tapes, 
E2 be the class of formulas of the first order predicate calculus, 
E3 be the class of general recursive functions, 
E4 be the class of formulas in a universal Post canonical system, 
Eg be a class of each element which is a Lisp S-function f together 

Es be a program for a stored program digital computer. 
with a suitable set of arguments ul, . . . ,uk, 

About El we ask: Will the machine ever stop? 
About E2 we ask: Is the formula valid? 
About Es we ask: Isf(0) defined? 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 67 

About Eq we ask: Is the formula a theorem? 
About E5 we ask : Is f [ u l ;  . . . ; u k ]  defined? 
About E6 we ask: Will the program ever stop? 

For any pair (Et,Ej) we can define a computable map that takes 
any one of the problems about elements of Et into a corresponding 
problem about an element of E4 and which is such that the problems 
have the same answer. Thus, for any Turing machine and initial tape 
we can find a corresponding formula of the first order predicate cal- 
culus such that the Turing machine will eventually stop if and only if 
the formula is valid. 

In the case of E6 if we want strict equivalence the computer must 
be provided with an infinite memory of some kind. Practically, any 
present computer has so many states, e.g. 236.2 , that we cannot reason 
from finiteness that a computation will terminate or repeat before the 
solar system comes to an end and one is forced to consider problems 
concerning actual computers by methods appropriate to machines with 
an infinite number of states. 

These results owe much of their importance to the fact that each 
of the problem classes is unsolvable in the sense that for each class 
there is no machine which will solve all the problems in the class. This 
result can most easily be proved for certain classes (traditionally Turing 
machines), and then the equivalence permits its extension to other 
classes. 

These results have been generalized in various ways. There is the 
work of Post, Myhill, and others, on creative sets and the work of 
Kleene on hierarchies of unsolvability. Some of this work is of po- 
tential interest for computation even though the generation of new 
unsolvable classes of problems does not in itself seem to be of great 
interest for computation. 

15 

3. Proof procedures and proof checking procedures 
The next relation stems from the fact that computers can be used 

to carry out the algorithms that are being devised to generate proofs 
of sentences in various formal systems. These formal systems may 
have any subject matter of interest in mathematics, in science, or con- 
cerning the relation of an intelligent computer program to its environment. 
The formal system on which the most work has been done is the first 
order predicate calculus which is particularly important for several 
reasons. First, many subjects of interest can be axiomatized within 



68 JOHN MCCARTHY 

this calculus. Second, it is complete, i.e. every valid formula has a proof. 
Third, although it seems unlikely that the general methods for the 
first order predicate calculus will be able to produce proofs of significant 
results in the part of arithmetic axiomatizable in this calculus (or in 
any other important domain of mathematics), the development of these 
general methods will provide a measure of what must be left to subject- 
matter-dependent heuristics. It should be understood by the reader that 
the first order predicate calculus is undecidable; hence there is no 
possibility of a program that will decide whether a formula is valid. 
All that can be done is to construct programs that will decide some 
cases and will eventually prove any valid formula but which will run 
on indefinitely in the case of certain invalid formulas. 

Proof-checking by computer may be as important as proof genera- 
tion. It is part of the definition of formal system that proofs be machine 
checkable. In my forthcoming paper [9], I explore the possibilities 
and applications of machine checked proofs. Because a machine can 
be asked to do much more work in checking a proof than can a human, 
proofs can be made much easier to write in such systems. In particular, 
proofs can contain a request for the machine to explore a tree of possibili- 
ties for a conventional proof. The potential applications for computer- 
checked proofs are very large. For example, instead of trying out com- 
puter programs on test cases until they are debugged, one should prove 
that they have the desired properties. 

Incidentally, it is desirable in this work to use a mildly more general 
concept of formal system. Namely, a formal system consists of a com- 
putable predicate 

check [statement;proofl 

of the symbolic expressions statement and proof. We say that proof is a 
proof of statement provided 

check [statement;prooA 
has the value T. 

The usefulness of computer checked proofs depends both on the 
development of types of formal systems in which proofs are easy to 
write and on the formalization of interesting subject domains. It should 
be remembered that the formal systems so far developed by logicians 
have heretofore quite properly had as their objective that it should 
be convenient to prove metatheorems about the systems rather than 
that it be convenient to prove theorems in the systems. 



A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 69 

4. Use of formal systems by computer programs 
When one instructs a computer to perform a task one uses a sequence 

of imperative sentences. On the other hand, when one instructs a human 
being to perform a task one uses mainly declarative sentences describing 
the situation in which he is to act. A single imperative sentence is then 
frequently sufficient. 

The ability to instruct a person in this way depends on his possession 
of common-sense which we shall define as the fact that we can count 
on his having available any sufficiently immediate consequence of what 
we tell him and what we can presume he already knows. In my paper 
[lo] I proposed a computer program called the Advice Taker that 
would have these capabilities and discussed its advantages. The main 
problem in realizing the Advice Taker has been devising suitable formal 
languages covering the subject matter about which we want the program 
to think. 

This experience and others has led me to the conclusion that mathe- 
matical linguists are making a serious mistake in their almost exclusive 
concentration on the syntax and, even more specially, the grammar of 
natural languages. It is even more important to develop a mathematical 
understanding and a formalization of the kinds of information conveyed 
in natural language. 

5.  Mathematical theory of computation 
In the earlier sections of this paper I have tried to lay a basis for 

a theory of how computations are built up from elementary operations 
and also of how data spaces are built up. The formalism differs from 
those heretofore used in the theory of computability in its emphasis 
on cases of proving statements within the system rather than meta- 
theorems about it. This seems to be a very fruitful field for further work by 
logicians. 

It is reasonable to hope that the relationship between computation 
and mathematical logic will be as fruitful in the next century as that 
between analysis and physics in the last. The development of this relation- 
ship demands a concern for both applications and for mathematical 
elegance. 



70 JOHN MCCARTHY 

REFERENCES 

[l]  CHURCH, A., The Calculi of Lambda-Conversion, A n n a l s  of Mathematics Studies, 

[2] -, Introduction to Mathematical Logic, Princeton, 1952, Princeton University 

[3] DAVIS, M., computability and Unsolvability, New York, 1958, McGraw-Hill. 
[4] ERSHOV, A. P., On Operator Algorithms (Russian), Doklady Akademii Nauk, vol. 

[5] KLEENE, S. C., Recursive Predicates and Quantifiers, Transactions of the American 

[6] MCCARTHY, J., letter to the editor, Communications of the Association for 

[7] -, Recursive Functions of Symbolic Expressions and Their Computation by Machine, 

[8] -, The LISP Programmer’s Manual, M.I.T. Computation Center, 1960. 
[9] -, Computer Programs for Checking Mathematical Proofs, to be published in 

the Proceedings of the American Mathematical Society’s Symposium on Recursive 
Function Theory, held in New York, April, 1961. 

[lo] -, Programs wirh Common Sense, Proceedings of the TeddingtonConference 
on the Mechanization of Thought Processes, H. M. Stationery Office, 1960. 

[l 11 MARKOV, A. A., Theory of Algorithms (Russian), Moscow, 1954, USSR Academy 
of Sciences, Steklov Mathematical Institute. 

[12] NAUR, P., et al., Report on the Algorithmichnguage ALGOL 60, Communications 
of the ACM, vol. 3, May 1960. 

[13] TURINO, A. M., On Computable Numbers with an Application to the Entscheidungs 
Problem, Proceedings of the London Mathematical Society, ser. 2, vol. 43,1937, 
p. 230; correction, ibid, vol. 43, 1937, p. 544. 

[14] YANOV, Y. I., The Logical Schemes of Algorithms, from Problems of Cybernetics 
I, translated from the Russian by Nadler, Griffiths, Kiss, and Mu&, New York, 
1960, Pergamon PresslLtd.. pp. 82-140. 

no. 6, Princeton, 1941, Princeton University Press. 

Press. 

122, no. 6, pp. 967-970. 

Mathematical Society, vol. 53, 1953, p. 41. 

Computing Machinery, vol. 2, August, 1959, p. 2. 

Part I, Communications of the ACM, vol. 3, April, 1960, pp. 184-195. 


