
CHAPTER 2 

PROPOSITIONAL INTUITIONISTIC LOGIC 

PROOF THEORY 

0 1. Beth tableaus 

In this section we present a modified version of a proof system due 
originally to Beth. It is based on [2,§ 1451, but at the suggestion of 
R. Smullyan, we have introduced signed formulas and single trees in 
place of the unsigned formulas and dual trees of Beth. 

By a signed formula we mean TX or FX where X is a formula. If S is a 
set of signed formulas and H is a single signed formula, we will write 
Su { H }  simply as {S, H }  or sometimes S, H. 

First we state the reduction rules, then we describe their use; S is any 
set (possibly empty) of signed formulas, and X and Yare any formulas: 

T A  S, T ( X A  Y) F A S, F ( X  A Y) 
S ,  FX I S ,  FY 

T v  S , T ( X v Y )  F v  S , F ( X v Y )  
S, F X ,  FY 

S, T X ,  T Y  

S, T X  IS, T Y  

T -  S , T ( - X )  F -  S , F ( - X )  
S, F X  STY T x  

T I >  S , T ( X 3  Y )  F = Y  S , F ( X r > Y )  
S , F X ( S , T Y  ST, T X ,  FY 

In rules F -  and F z  above, ST means { TX I TXES] .  
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Remark 1.1 : S is a set, and hence (S, TX} is the same as {S, TX, TX} .  
Thus duplication and elimination rules are not necessary. 

If U is a set of signed formulas, we say one of the above rules, cal1 it rule 
R, applies to U if by appropriate choice of S, X and Y the collection of 
signed formulas above the line in rule R becomes U. 

By an application of rule R to the set U we mean the replacement of 
U by U, (or by U, and U, if R is F A ,  T v  or T D )  where U is  the set 
of formulas above the line in rule R (after suitable substitution for S, 
X and Y )  and U, (or U,, U,) is the set of formulas below. This assumes 
R applies to U. Otherwise the result is again U. For example, by applying 
rule F Z I  to the set { TX, FY,  F ( Z 3  W ) }  we may get the set ( TX, TZ,  FW}. 
By applying rule T v  to the set { TX, FY, T ( Z v  W)} we may get the two 
sets ( T X ,  FY, T Z }  and (TX,  FY, TW} .  

By a conjiguration we mean a finite collection {S,, S,, ..., S,,} of sets 
of signed formulas. 

By an application of the rule R to the configuration {S,, S2, ..., S,} 
we mean the replacement of this configuration with a new one which is 
like the first except for containing instead of some Si the result (or results) 
of applying rule R to S,. 

By a tableau we mean a finite sequence of configurations V,, V,, .. ., Vn 
in which each configuration except the first is the result of applying one 
of the above rules to the preceding configuration. 

A set S of signed formulas is closed if it contains both TX and FX for 
some formula X. A configuration (Sl, S,, ..., S,,} is closed if each Si in it 
is closed. A tableau V,, V2, ..., V,, is closed if some Vi in it is closed. 

By a tableau for a set S of signed formulas we mean a tableau V,, 
V2, ..., W,, in which V, is (S}.  A finite set of signed formulas S is 
inconsistent if some tableau for S is closed. Otherwise S is consistent. 
X is a theorem if (FX) is inconsistent, and a closed tableau for { F X }  is 
called a proof of X.  If X is a theorem we write t, X. 

We will show in the next few sections the correctness and completeness 
of the above system relative to the semantics of ch. 1. 

Examples of proofs in this system may be found in 0 5. 
The corresponding classical tableau system is like the above, but in 

rules F- and F I  , S, is replaced by S (see [20]). The interpretations of 
the classical and intuitionistic systems are different. 
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In the classical system TX and FX mean X is true and X is false 
respectively. The rules may be read: if the situation above the line is the 
case, the situation below the line is also (or one of them is, if the rule is 
disjunctive: F A ,  T v ,  Tz). Thus TX means the same as X ,  and FX 
means -X. Classically the signs T and F are dispensable. Proof is a 
refutation procedure. Suppose X is not true (begin a tableau with FX). 
Conclude that some formula must be both true and not true (a closed 
configuration is reached). Since this can not happen, Xis true. 

In the intuitionistic case TX is to mean X is known to be true (Xis 
proven). FX is to mean X is not known to be true (X has not been 
proved). The rules are to be read: if the situation above the line is the 
case, then the situation below the line is possible, i.e. compatible with 
our present knowledge (if the rule is disjunctive, one of the situations 
below the line must be possible). For example consider rule F x .  If we 
have not proved X= Y, it is possible to prove X without proving Y, for 
if this were not possible, a proof of Y would be ‘inherent’ in a proof of X, 
and this fact would constitute a proof of XI Y. But we have S, below 
the line in this rule and not S because in proving X we might inadvertently 
verify some additional previously unproven formula (some FZE S might 
become TZ).  Similarly for F-  . The proof procedure is again by refuta- 
tion. Suppose X is not proven (begin a tableau with FX). Conclude that 
it is possible that some formula is both proven and not proven. Since this 
is impossible, X is proven. 

We have presented this system in a very formal fashion because it 
makes talking about it easier. In practice there are many simplifications 
which will become obvious in any attempt to use the method. Also, 
proofs may be written in a tree form. We find the resulting simplified 
system the easiest to use of all the intuitionistic proof systems, except in 
some cases, the system resulting by the same simplifications from the 
closely related one presented in ch. 6 9 4. A full treatment of the corre- 
sponding classical tableau system, with practical simplifications, may be 
found in [20]. 

0 2. Correctness of Beth tableaus 

Dejinition 2.1 : We call a set of signed formulas 

{TXI,  ..., TX,,FYi, ..., FY,} 
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realizable if there is some model (9, W, 1) and some r e g  such that 
C X I ,  . . . , k X,,, r pC Y,, .. ., pC Y,. We say that 
If {Sl, S,, ..., Sn} is a configuration, we call it realizable if some Si 

realizes the set. 

in it is realizable. 

Theorem 2.2: Let gl, V2,.. . ,  V,, be a tableau. If Vi is realizable, so is 
Vi+l. 

Pro08 We have eight cases, depending on the rule whose application 
produced gi+l from gi. 

Case(1): Vi is { ..., {S ,T(Xv Y ) } ,  ...I and Vi+, is { ..., {S,TX),  
{S,TY) ,...}. Since Vi is realizable, some element of it is realizable. If 
that element is not (S,T(Xv Y)}, the same element of Vi+ is realizable. 
If that element is (S,T(Xv Y)}, then for some model (Q,@, k) and some 
r e g ,  r realizes {S,T(Xv Y)}. That is, r realizes Sand rC(X v Y). Then 
r k X  or I ' k  Y, so either r realizes {S,TX} or {S,TY).  In either case 
Vi+, is realizable. 

Case (2): Ci is (..., ( S , F ( - X ) }  ,...} and %i+l is { ..., {ST,TX},. . .} .  
Vi is realizable, and it suffices to consider the case that {S,F( N X )  } is the 
realizable element. Then there is a model (9, 9, I=)  and a re9 such 
that r realizes S and r pC -X .  Since r pC - X ,  for some r * E 9 ,  r* k X .  
But clearly, if r realizes S, I'* realizes S, (by theorem 1.4.4). Hence r* 
realizes { S J X }  and Vi+l  is realizable. 

CoroZZury2.3: The system of Beth tableaus is correct, that is, if FIX, 
X is valid. 

Proofi We show the contrapositive. Suppose X i s  not valid. Then there 
is a model (9, W, C )  and a r E  Q such that r y X.  In other words ( F X }  
is realizable. But a proof of X would be a closed tableau V,, V2, ..., Vn 
in which is ( ( F X } } .  But Vl is realizable, hence each Vi is realizable. 
But obviously a realizable configuration cannot be closed. Hence y IX. 

The other six cases are similar. 

8 3. Hintikka collections 

In classical logic a set S of signed formulas is sometimes called down- 
ward saturated, or a Hintikka set, if 

T X A  Y E S  e- T X E S  and TYES, 
F X v  Y E S  * F X E S  and F Y E S ,  
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T X V Y E S  * T X E S  or T Y E S ,  
F X A Y E S  * FXES or F Y E S ,  
T - X E S  => F X E S ,  
T X ~ Y E S  => F X E S  or T Y E S ,  
F - X E S  * T X E S ,  
F X D Y E S  T X E S  and F Y E S .  

Remark 3.1 : The names Hintikka set and downward saturated set were 
given by Smullyan [20]. Hintikka, their originator, called them model 
sets. 

Hintikka showed that any consistent downward saturated set could be 
included in a set for which the above properties hold with * replaced by 
c>. From this follows the completeness of certain classical tableau 
systems. This approach is thoroughly developed by Smullyan in [20]. 

We now introduce a corresponding notion in intuitionistic logic, 
which we call a Hintikka collection. While its intuitive appeal may not 
be as immediate as in the classical case, its usefulness is as great. 

DeJinition 3.2: Let 9 be a collection of consistent sets of signed formulas. 
We call 9 a Hintikka collection if for any 9 

T X A  Y E r  T X E r  and T Y E T ,  
F X v  Y E r  => F X E r  and F Y E r ,  
TX v Y E r  * T X E r  or T Y E r ,  
F X A Y E ~  F X E r  or F Y E r ,  
T - X E r  =+ F X E r ,  
T X = Y E r  =- F X E r  or T Y E r ,  
F - X E T  * forsome d E 9 , f T C A  and T X E A ,  
FX 3 Y E r  => for some A E ~ ,  rT c A ,  T X E A ,  F Y E A .  

Definition 3.3:  Let 9 be a Hintikka collection. We call (9, 9, C) a 
model for 99 if 

(1). (9, W, 1) is a model, 
(2). r T  E A * TBA, 
(3). TxEr a r u ,  

FxEr =>rpcx. 
Theorem 3.4: There is a model for any Hintikka collection. 

Pro08 Let 9 be a Hintikka collection. Define W by: r W A  if r T s A .  
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If A is atomic, let r I = A  if T A E ~ ,  and extend k to produce a model 
(9, W, I=>. To show property (3) is a straightforward induction on the 
degree of X. We give one case as illustration. Suppose Xis - Y and the 
result is known for Y. Then 

T - Y E r  => ( V ' 4 ~ 9 )  (I", 5 '4 * T - Y E A )  
* ( V ' 4 € 9 ) ( r , c d + F Y € A )  
* (VA E 9) (TWd + '4 pc Y )  
=> r k - Y ,  

and 
F - Y E ~  e. ( 3 A ~ 9 ) ( r , ~ d a n d T Y ~ d )  

=> (34 E 9) (r9'4 
=> rpc - Y. and A P Y )  

It follows from this theorem that to show the completeness of Beth 
tableaus we need only show the following: If y ,X, then there is a 
Hintikka collection 9 such that for some r e g ,  F X e r .  

5 4. Completeness of Beth tableaus 

Let S be a set of signed formulas. By Y ( S )  we mean the collection of 
all signed subformulas of formulas in S. If S is finite, Y ( S )  is finite. 

Let S be a finite, consistent set of signed formulas. We define a 
reduced set for S (there may be many) as follows: 

Let So be S. Having defined S,,, a finite consistent set of signed formulas, 
suppose one of the following Beth reduction rules applies to S,,: T A  , 
F A ,  T v ,  F v ,  T -  or T D .  Choose one which applies, say F A .  
Then S,, is { U, FXA Y } .  This is consistent, so clearly either { U, FXA Y, 
FX} or {U, F X A  Y,  FY} is consistent. Let S,,,, be { U, FXA Y, F X }  if 
consistent, otherwise let S,,,, be {U, F X A  Y, FY}.  Similarly if T A  
applies and was chosen, then S,, is { U, TXA Y } .  Since this is consistent, 
{ U ,  T X A  Y, TX, T Y }  is consistent. Let this be S,,,,. In this way we 
define a sequence So, S,, S,, .. . . This sequence has the property S,,CS,,~. 
Further, each S,, is finite and consistent. Since each S , , s Y ( S ) ,  there are 
only a finite number of different possible S,,. Consequently there must be 
a member of the sequence, say S,,, such that the application of any one 
of the rules (except F- or F D )  produces S,, again. Call such an S,, a 
reduced set of S, and denote it by S'. Clearly any finite, consistent set of 
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signed formulas has a finite, consistent reduced set. Moreover, if S' is 
a reduced set, it has the following suggestive properties: 

T X A  Y E S '  * T X E S '  and T Y E S ' ,  
FX v Y E S '  3 F X E S '  and F Y f S ' ,  
T X v  Y E S '  3 T X E S '  or T Y f S ' ,  
F X A Y E S ' ~  F X E S '  or F Y E S ' ,  

T X Z Y E S '  * F X E S '  or T Y E S ' ,  
S' is consistent. 

T - X E S '  * F X E S ' ,  

Now, given any finite, consistent set of signed formulas S, we form the 
collection of associated sets as follows : 

If F- XE S,  {ST,TX} is an associated set. 
If F X 3  Y E S ,  {S,,TX,FY} is an associated set. 

Let d ( S )  be the collection of all associated sets of S. d ( S )  is finite, 
since U E ~ ( S )  implies U C Y ( S )  and Y ( S )  is finite. d ( S )  has the 
following properties: if S is consistent, any associated set is consistent 
and 

F - X E S  
F X D  Y E S  => forsome UECCP(S) S,E U, T X E U ,  F Y E U .  

Now we proceed with the proof of completeness. 
Suppose y ,X. Then { F X }  is consistent. Extend it to its reduced set So. 

Form &(So). Let the elements of &(So) be U,, U,, ..., U,. Let S, be 
the reduced set of U,, .. ., S, be the reduced set of U,. Thus, we have the 
sequence So, S,, S,, ..., S,. 

Next form d(S,) .  Call its elements Un+,, Un+,, ..., Urn. Let S,+, be the 
reduced set of U,,,, and so on. Thus, we have the sequence So, S,, . . ., S,,, 
Sn+,, ..., S,. Now we repeat the process with S,, and so on. 

In this way we form a sequence So, S,, S,, .... Since each S i s 9 ( S ) ,  
there are only finitely many possible different S,. Thus we must reach a 
point S, of the sequence such that any continuation repeats on earlier 
member. 

Let Q be the collection {So, S,, ..., Sk}. It is easy to see that 9 is a 
Hintikka collection. But FXE So E 9. Thus we have shown: 

Theorem 4.1 : Beth tableaus are complete. 

=- for some U E ~ ( S )  S,s U, T X E U ,  
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Remark 4.2: This proof also establishes that propositional intuitionistic 
logic is decidable. For, if we follow the above procedure beginning with 
FX, after a finite number of steps we will have either a closed tableau for 
{FX} or a counter-model for X. Moreover, the number of steps may be 
bounded in terms of the degree of X .  

The completeness proof presented here is in essence the original proof 
of Kripke [13]. For a different tableau completeness proof see ch. 5 9 6, 
where it is given for first order logic. For a completeness proof of an 
axiom system see ch. 5 5 10, where it also is given for a iirst order system. 
The work in ch. 1 Q 6 provides an algebraic completeness proof, since 
the Lindenbaum algebra of intuitionistic logic is easily shown to be a 
pseudo-boolean algebra. See [16]. 

9 5. Examples 

In this section, so that the reader may gain familiarity with the fore- 
going, we present a few theorems and non-theorems of intuitionistic 
propositional logic, together with their proofs or counter-models. 

We show 
(1). Y I A V  -A ,  
(2). kr--(Av -A) ,  
(3). Y p - A 3 A ,  
(4). I-,(AvB)r>-(--A/\ -I?), 
(5). 1 f 1 - - ( A V B ) + - A V  -4). 

(1). YIAV - A .  
For the general principle connecting (1) and (2) see ch. 4 5 8. 

A counter example for this is the following: 

g = {r, A }  
rwr, r a ,  A W A .  

A !=A is the != relation for atomic formulas, and 1 is extended to all for- 
mulas as usual. We may schematically represent this model by 

r 
I 
A!=A 
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We claim rpC A v  -A .  Suppose not. If rt A v  - A ,  either rC A or 
r C -A .  But r pC A .  If rC - A  then since I ' g A ,  A pC A .  But A 1 A, hence 
rpCAv - A .  

A tableau proof for this is the following, where the reasons for the steps 
are obvious: 

(2). I- ,--(AV -A).  

{{I; - - N ( A  v - A ) } } ,  
{ { T  ( A  v - A)}}  9 

{ { T - ( A v - A ) , F ( A  - A ) ) ) ,  
{ { T  - ( A  v - A ) ,  FA, F - A } } ,  
{{T - ( A  v - A), T A ) )  , 
{ { F  ( A  v N A), T A } }  , 
{{FA, F - A,  T A } ) .  

(3). y1- - A 3 A .  
The model of example (1) has the property that TI= - - A  but r pC A. 

The following is a proof: 
(4). k , (AvB)= ,  - ( - J A A  -B). 

{ { F  ( (A  v B )  2 - ( - A A - B))} }  , 
{{ T ( A  v B), P - ( - A A - B ) ) }  , 

{ { T ( A  v B), T - A ,  T - B } } ,  
{ { T ( A  v B), FA, T - B } } ,  

{ { T ( A  v B), T ( - A  A -q}}, 

{ { T ( A  v B), FA, F B } } ,  
{ { TA, FA, FB}, { TB, FA, FB}} . 

(5). y 1- - ( A  v B) 3 ( - - A  v - -B)# 
A counter example is the following: 

s = { r , A , Q } ,  
rwr, A ~ A ,  QWQ, 
TWA, rBQ 

A t= A ,  SL C B is the C relation for atomic formulas, and C is extended as 
usual. We may schematically represent this model by 

r 
n 

A C A  SLkB 
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Now A 1  A, so A!=Av  B. Likewise Dk A v  B. It follows tha t rk -  - ( A v  B )  
But if r k - - A v - - - B ,  either r ! = - - A  or r ! = - - - B .  If T k - - A ,  it 
would follow that D k A. I f  r I= - -3, it would follow that A != B. Thus 
T Y - N A V - N B .  




