PROPOSITIONAL INTUITIONISTIC LOGIC

PROOF THEORY

§ 1. Beth tableaus

In this section we present a modified version of a proof system due originally to Beth. It is based on [2, §145], but at the suggestion of R. Smullyan, we have introduced signed formulas and single trees in place of the unsigned formulas and dual trees of Beth.

By a signed formula we mean $T X$ or $F X$ where X is a formula. If S is a set of signed formulas and H is a single signed formula, we will write $S \cup\{H\}$ simply as $\{\boldsymbol{S}, H\}$ or sometimes S, H.

First we state the reduction rules, then we describe their use; \boldsymbol{S} is any set (possibly empty) of signed formulas, and X and Y are any formulas:

$T \wedge$	$\frac{S, T(X \wedge Y)}{S, T X, T Y}$	$F \wedge$	$\frac{S, F(X \wedge Y)}{S, F X \mid S, F Y}$
$T \vee$	$\frac{S, T(X \vee Y)}{S, T X \mid S, T Y}$	$F \vee$	$\frac{S, F(X \vee Y)}{S, F X, F Y}$
$T \sim$	$\frac{S, T(\sim X)}{S, F X}$	$F \sim$	$\frac{S, F(\sim X)}{S_{T}, T X}$
$T \supset$	$\frac{S, T(X \supset Y)}{S, F X \mid S, T Y}$	$F \supset$	$\frac{S, F(X \supset Y)}{S_{T}, T X, F Y}$

In rules $F \sim$ and $F \supset$ above, S_{T} means $\{T X \mid T X \in S\}$.

Remark 1.1: S is a set, and hence $\{S, T X\}$ is the same as $\{S, T X, T X\}$. Thus duplication and elimination rules are not necessary.

If \boldsymbol{U} is a set of signed formulas, we say one of the above rules, call it rule R , applies to U if by appropriate choice of S, X and Y the collection of signed formulas above the line in rule R becomes \boldsymbol{U}.

By an application of rule \mathbf{R} to the set \boldsymbol{U} we mean the replacement of U by U_{1} (or by U_{1} and U_{2} if R is $F \wedge, T \vee$ or $T \supset$) where \boldsymbol{U} is the set of formulas above the line in rule R (after suitable substitution for S, X and Y) and U_{1} (or U_{1}, U_{2}) is the set of formulas below. This assumes \boldsymbol{R} applies to \boldsymbol{U}. Otherwise the result is again \boldsymbol{U}. For example, by applying rule $F \supset$ to the set $\{T X, F Y, F(Z \supset W)\}$ we may get the set $\{T X, T Z, F W\}$. By applying rule $T \vee$ to the set $\{T X, F Y, T(Z \vee W)\}$ we may get the two sets $\{T X, F Y, T Z\}$ and $\{T X, F Y, T W\}$.

By a configuration we mean a finite collection $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of sets of signed formulas.

By an application of the rule R to the configuration $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ we mean the replacement of this configuration with a new one which is like the first except for containing instead of some S_{i} the result (or results) of applying rule R to S_{i}.

By a tableau we mean a finite sequence of configurations $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{n}$ in which each configuration except the first is the result of applying one of the above rules to the preceding configuration.

A set S of signed formulas is closed if it contains both $T X$ and $F X$ for some formula X. A configuration $\left\{\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{n}\right\}$ is closed if each \boldsymbol{S}_{i} in it is closed. A tableau $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{n}$ is closed if some \mathscr{C}_{i} in it is closed.

By a tableau for a set S of signed formulas we mean a tableau \mathscr{C}_{1}, $\mathscr{C}_{2}, \ldots, \mathscr{C}_{n}$ in which \mathscr{C}_{1} is $\{S\}$. A finite set of signed formulas S is inconsistent if some tableau for S is closed. Otherwise S is consistent. X is a theorem if $\{F X\}$ is inconsistent, and a closed tableau for $\{F X\}$ is called a proof of X. If X is a theorem we write $\vdash_{1} X$.

We will show in the next few sections the correctness and completeness of the above system relative to the semantics of ch .1 .

Examples of proofs in this system may be found in §5.
The corresponding classical tableau system is like the above, but in rules $F \sim$ and $F \supset, S_{T}$ is replaced by S (see [20]). The interpretations of the classical and intuitionistic systems are different.

In the classical system $T X$ and $F X$ mean X is true and X is false respectively. The rules may be read: if the situation above the line is the case, the situation below the line is also (or one of them is, if the rule is disjunctive: $F \wedge, T \vee, T \supset$). Thus $T X$ means the same as X, and $F X$ means $\sim X$. Classically the signs T and F are dispensable. Proof is a refutation procedure. Suppose X is not true (begin a tableau with $F X$). Conclude that some formula must be both true and not true (a closed configuration is reached). Since this can not happen, X is true.

In the intuitionistic case $T X$ is to mean X is known to be true (X is proven). $F X$ is to mean X is not known to be true (X has not been proved). The rules are to be read: if the situation above the line is the case, then the situation below the line is possible, i.e. compatible with our present knowledge (if the rule is disjunctive, one of the situations below the line must be possible). For example consider rule $F \supset$. If we have not proved $X \supset Y$, it is possible to prove X without proving Y, for if this were not possible, a proof of Y would be 'inherent' in a proof of X, and this fact would constitute a proof of $X \supset Y$. But we have S_{T} below the line in this rule and not S because in proving X we might inadvertently verify some additional previously unproven formula (some $F Z \in S$ might become $T Z$). Similarly for $F \sim$. The proof procedure is again by refutation. Suppose X is not proven (begin a tableau with $F X$). Conclude that it is possible that some formula is both proven and not proven. Since this is impossible, X is proven.

We have presented this system in a very formal fashion because it makes talking about it easier. In practice there are many simplifications which will become obvious in any attempt to use the method. Also, proofs may be written in a tree form. We find the resulting simplified system the easiest to use of all the intuitionistic proof systems, except in some cases, the system resulting by the same simplifications from the closely related one presented in ch. $6 \S 4$. A full treatment of the corresponding classical tableau system, with practical simplifications, may be found in [20].

§ 2. Correctness of Beth tableaus

Definition 2.1: We call a set of signed formulas

$$
\left\{T X_{1}, \ldots, T X_{n}, F Y_{1}, \ldots, F Y_{m}\right\}
$$

realizable if there is some model $\langle\mathscr{G}, \mathscr{R}, \vDash\rangle$ and some $\Gamma \in \mathscr{G}$ such that $\Gamma \vDash X_{1}, \ldots, \Gamma \neq X_{n}, \Gamma \nexists Y_{1}, \ldots, \Gamma \neq Y_{m}$. We say that Γ realizes the set.

If $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a configuration, we call it realizable if some \boldsymbol{S}_{i} in it is realizable.

Theorem 2.2: Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{n}$ be a tableau. If \mathscr{C}_{i} is realizable, so is \mathscr{C}_{i+1}.

Proof: We have eight cases, depending on the rule whose application produced \mathscr{C}_{i+1} from \mathscr{C}_{i}.

Case (1): \mathscr{C}_{i} is $\{\ldots,\{S, T(X \vee Y)\}, \ldots\}$ and \mathscr{C}_{i+1} is $\{\ldots,\{S, T X\}$, $\{S, T Y\}, \ldots\}$. Since \mathscr{C}_{i} is realizable, some element of it is realizable. If that element is not $\{S, T(X \vee Y)\}$, the same element of \mathscr{C}_{i+1} is realizable. If that element is $\{S, T(X \vee Y)\}$, then for some model $\langle\mathscr{G}, \mathscr{R}, F\rangle$ and some $\Gamma \in \mathscr{G}, \Gamma$ realizes $\{S, T(X \vee Y)\}$. That is, Γ realizes S and $\Gamma \vDash(X \vee Y)$. Then $\Gamma \vDash X$ or $\Gamma \vDash Y$, so either Γ realizes $\{S, T X\}$ or $\{S, T Y\}$. In either case \mathscr{C}_{i+1} is realizable.

Case (2): C_{i} is $\{\ldots,\{S, F(\sim X)\}, \ldots\}$ and \mathscr{C}_{i+1} is $\left\{\ldots,\left\{S_{T}, T X\right\}, \ldots\right\}$. \mathscr{C}_{i} is realizable, and it suffices to consider the case that $\{S, F(\sim X)\}$ is the realizable element. Then there is a model $\langle\mathscr{G}, \mathscr{R}, \vDash\rangle$ and a $\Gamma \in \mathscr{G}$ such that Γ realizes S and $\Gamma \nexists \sim X$. Since $\Gamma \nexists \sim X$, for some $\Gamma^{*} \in \mathscr{G}, \Gamma^{*} \vDash X$. But clearly, if Γ realizes S, Γ^{*} realizes S_{T} (by theorem 1.4.4). Hence Γ^{*} realizes $\left\{S_{T}, T X\right\}$ and \mathscr{C}_{i+1} is realizable.

The other six cases are similar.
Corollary 2.3: The system of Beth tableaus is correct, that is, if $\vdash_{\mathrm{I}} X$, X is valid.

Proof: We show the contrapositive. Suppose X is not valid. Then there is a model $\langle\mathscr{G}, \mathscr{R}, \vDash\rangle$ and a $\Gamma \in \mathscr{G}$ such that $\Gamma \neq X$. In other words $\{F X\}$ is realizable. But a proof of X would be a closed tableau $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{n}$ in which \mathscr{C}_{1} is $\{\{F X\}\}$. But \mathscr{C}_{1} is realizable, hence each \mathscr{C}_{i} is realizable. But obviously a realizable configuration cannot be closed. Hence $\forall_{1} X$.

§ 3. Hintikka collections

In classical logic a set \boldsymbol{S} of signed formulas is sometimes called downward saturated, or a Hintikka set, if

$$
\begin{aligned}
& T X \wedge Y \in S \Rightarrow T X \in S \text { and } T Y \in S \\
& F X \vee Y \in S \Rightarrow F X \in S \text { and } F Y \in S
\end{aligned}
$$

$$
\begin{aligned}
& T X \vee Y \in S \Rightarrow T X \in S \quad \text { or } \\
& F X \wedge Y \in S \Rightarrow F X \in S \\
& T \sim X \in S \\
& T \sim F X \in S, \\
& T X \supset Y \in S \Rightarrow F X \in S \\
& F \sim X \in S \\
& F \sim X \in S \\
& F X \supset Y \in S \Rightarrow T X \in S, \\
& \\
& F X \in S
\end{aligned}
$$

Remark 3.1: The names Hintikka set and downward saturated set were given by Smullyan [20]. Hintikka, their originator, called them model sets.

Hintikka showed that any consistent downward saturated set could be included in a set for which the above properties hold with \Rightarrow replaced by \Leftrightarrow. From this follows the completeness of certain classical tableau systems. This approach is thoroughly developed by Smullyan in [20].

We now introduce a corresponding notion in intuitionistic logic, which we call a Hintikka collection. While its intuitive appeal may not be as immediate as in the classical case, its usefulness is as great.

Definition 3.2: Let \mathscr{G} be a collection of consistent sets of signed formulas. We call \mathscr{G} a Hintikka collection if for any $\Gamma \in \mathscr{G}$

$$
\begin{aligned}
& T X \wedge Y \in \Gamma \Rightarrow T X \in \Gamma \text { and } T Y \in \Gamma, \\
& F X \vee Y \in \Gamma \Rightarrow F X \in \Gamma \text { and } F Y \in \Gamma, \\
& T X \vee Y \in \Gamma \Rightarrow T X \in \Gamma \text { or } T Y \in \Gamma, \\
& F X \wedge Y \in \Gamma \Rightarrow F X \in \Gamma \text { or } F Y \in \Gamma, \\
& T \sim X \in \Gamma \Rightarrow F X \in \Gamma, \\
& T X \supset Y \in \Gamma \Rightarrow F X \in \Gamma \text { or } T Y \in \Gamma, \\
& F \sim X \in \Gamma \Rightarrow \text { for some } \Delta \in \mathscr{G}, \Gamma_{T} \subseteq \Delta \text { and } T X \in \Delta, \\
& F X \supset Y \in \Gamma \Rightarrow \text { for some } \Delta \in \mathscr{G}, \Gamma_{T} \subseteq \Delta, T X \in \Delta, F Y \in \Delta .
\end{aligned}
$$

Definition 3.3: Let \mathscr{G} be a Hintikka collection. We call $\langle\mathscr{G}, \mathscr{R}, \vDash\rangle$ a model for \mathscr{G} if
(1). $\langle\mathscr{G}, \mathscr{R}, \vDash\rangle$ is a model,
(2). $\Gamma_{T} \subseteq \Delta \Rightarrow \Gamma \mathscr{R} \Delta$,
(3). $T X \in \Gamma \Rightarrow \Gamma \vDash X$,
$F X \in \Gamma \Rightarrow \Gamma \not \vDash X$.
Theorem 3.4: There is a model for any Hintikka collection.
Proof: Let \mathscr{G} be a Hintikka collection. Define \mathscr{R} by: $\Gamma \mathscr{R} \Delta$ if $\Gamma_{\mathrm{T}} \subseteq \Delta$.

If A is atomic, let $\Gamma \vDash A$ if $T A \in \Gamma$, and extend \vDash to produce a model $\langle\mathscr{G}, \mathscr{R}, \vDash\rangle$. To show property (3) is a straightforward induction on the degree of X. We give one case as illustration. Suppose X is $\sim Y$ and the result is known for Y. Then

$$
\begin{aligned}
T \sim Y \in \Gamma & \Rightarrow(\forall \Delta \in \mathscr{G})\left(\Gamma_{T} \subseteq \Delta \Rightarrow T \sim Y \in \Delta\right) \\
& \Rightarrow(\forall \Delta \in \mathscr{G})\left(\Gamma_{T} \subseteq \Delta \Rightarrow F Y \in \Delta\right) \\
& \Rightarrow(\forall \Delta \in \mathscr{G})(\Gamma \mathscr{R} \Delta \Rightarrow \Delta \forall Y) \\
& \Rightarrow \Gamma \vDash \sim Y,
\end{aligned}
$$

and

$$
\begin{aligned}
F \sim Y \in \Gamma & \Rightarrow(\exists \Delta \in \mathscr{G})\left(\Gamma_{T} \subseteq \Delta \text { and } T Y \in \Delta\right) \\
& \Rightarrow(\exists \Delta \in \mathscr{G})(\Gamma \mathscr{R} \Delta \quad \text { and } \Delta \vDash Y) \\
& \Rightarrow \Gamma \neq Y .
\end{aligned}
$$

It follows from this theorem that to show the completeness of Beth tableaus we need only show the following: If $\not_{\mathrm{I}} X$, then there is a Hintikka collection \mathscr{G} such that for some $\Gamma \in \mathscr{G}, F X \in \Gamma$.

§ 4. Completeness of Beth tableaus

Let S be a set of signed formulas. By $\mathscr{P}(S)$ we mean the collection of all signed subformulas of formulas in S. If S is finite, $\mathscr{S}(S)$ is finite.

Let S be a finite, consistent set of signed formulas. We define a reduced set for S (there may be many) as follows:

Let S_{0} be S. Having defined S_{n}, a finite consistent set of signed formulas, suppose one of the following Beth reduction rules applies to $S_{n}: T \wedge$, $F \wedge, T \vee, F \vee, T \sim$ or $T \supset$. Choose one which applies, say $F \wedge$. Then S_{n} is $\{U, F X \wedge Y\}$. This is consistent, so clearly either $\{U, F X \wedge Y$, $F X\}$ or $\{U, F X \wedge Y, F Y\}$ is consistent. Let S_{n+1} be $\{U, F X \wedge Y, F X\}$ if consistent, otherwise let S_{n+1} be $\{U, F X \wedge Y, F Y\}$. Similarly if $T \wedge$ applies and was chosen, then S_{n} is $\{U, T X \wedge Y\}$. Since this is consistent, $\{U, T X \wedge Y, T X, T Y\}$ is consistent. Let this be S_{n+1}. In this way we define a sequence $S_{0}, S_{1}, S_{2}, \ldots$. This sequence has the property $S_{n} \subseteq S_{n+1}$. Further, each S_{n} is finite and consistent. Since each $S_{n} \subseteq \mathscr{S}(S)$, there are only a finite number of different possible S_{n}. Consequently there must be a member of the sequence, say S_{n}, such that the application of any one of the rules (except $F \sim$ or $F \supset$) produces S_{n} again. Call such an S_{n} a reduced set of S, and denote it by S^{\prime}. Clearly any finite, consistent set of
signed formulas has a finite, consistent reduced set. Moreover, if S^{\prime} is a reduced set, it has the following suggestive properties:

$$
\begin{aligned}
& T X \wedge Y \in S^{\prime} \Rightarrow T X \in S^{\prime} \quad \text { and } \\
& F X \vee Y \in S^{\prime}, \\
& T X \vee Y \in S^{\prime} \Rightarrow T X \in S^{\prime} \text { and } F Y \in S^{\prime}, \\
& F X \wedge Y \in S^{\prime} \Rightarrow F X \in S^{\prime} \text { or } \quad \text { or } \quad F Y \in S^{\prime} \\
& T \sim X \in S^{\prime} \\
& T X \supset F \in S^{\prime} \Rightarrow F \in S^{\prime}, \\
& S^{\prime} \text { is consistent. }
\end{aligned}
$$

Now, given any finite, consistent set of signed formulas S, we form the collection of associated sets as follows:

If $F \sim X \in S, \quad\left\{S_{T}, T X\right\}$ is an associated set.
If $F X \supset Y \in S, \quad\left\{S_{T}, T X, F Y\right\}$ is an associated set.
Let $\mathscr{A}(S)$ be the collection of all associated sets of $S . \mathscr{A}(S)$ is finite, since $U \in \mathscr{A}(S)$ implies $U \subseteq \mathscr{S}(S)$ and $\mathscr{S}(S)$ is finite. $\mathscr{A}(S)$ has the following properties: if S is consistent, any associated set is consistent and

$$
\begin{aligned}
& F \sim X \in S \Rightarrow \text { for some } U \in \mathscr{A}(S) S_{T} \subseteq U, T X \in U, \\
& F X \supset Y \in S \Rightarrow \text { for some } U \in \mathscr{A}(S) S_{T} \subseteq U, T X \in U, F Y \in U .
\end{aligned}
$$

Now we proceed with the proof of completeness.
Suppose $\psi_{1} X$. Then $\{F X\}$ is consistent. Extend it to its reduced set S_{0}. Form $\mathscr{A}\left(S_{0}\right)$. Let the elements of $\mathscr{A}\left(S_{0}\right)$ be $U_{1}, U_{2}, \ldots, U_{n}$. Let S_{1} be the reduced set of U_{1}, \ldots, S_{n} be the reduced set of U_{n}. Thus, we have the sequence $S_{0}, S_{1}, S_{2}, \ldots, S_{n}$.

Next form $\mathscr{A}\left(S_{1}\right)$. Call its elements $U_{n+1}, U_{n+2}, \ldots, U_{m}$. Let S_{n+1} be the reduced set of U_{n+1} and so on. Thus, we have the sequence $S_{0}, S_{1}, \ldots, S_{n}$, S_{n+1}, \ldots, S_{m}. Now we repeat the process with S_{2}, and so on.

In this way we form a sequence $S_{0}, S_{1}, S_{2}, \ldots$. Since each $S_{i} \subseteq \mathscr{S}(S)$, there are only finitely many possible different S_{i}. Thus we must reach a point S_{k} of the sequence such that any continuation repeats on earlier member.

Let \mathscr{G} be the collection $\left\{S_{0}, S_{1}, \ldots, S_{k}\right\}$. It is easy to see that \mathscr{G} is a Hintikka collection. But $F X \in S_{0} \in \mathscr{G}$. Thus we have shown:

Theorem 4.1: Beth tableaus are complete.

Remark 4.2: This proof also establishes that propositional intuitionistic logic is decidable. For, if we follow the above procedure beginning with $F X$, after a finite number of steps we will have either a closed tableau for $\{F X\}$ or a counter-model for X. Moreover, the number of steps may be bounded in terms of the degree of X.

The completeness proof presented here is in essence the original proof of Kripke [13]. For a different tableau completeness proof see ch. $5 \S 6$, where it is given for first order logic. For a completeness proof of an axiom system see ch. $5 \S 10$, where it also is given for a first order system. The work in ch. $1 \S 6$ provides an algebraic completeness proof, since the Lindenbaum algebra of intuitionistic logic is easily shown to be a pseudo-boolean algebra. See [16].

§ 5. Examples

In this section, so that the reader may gain familiarity with the foregoing, we present a few theorems and non-theorems of intuitionistic propositional logic, together with their proofs or counter-models.

We show
(1). $\vdash_{\mathrm{I}} A \vee \sim A$,
(2). $\vdash_{\mathrm{I}} \sim \sim(A \vee \sim A)$,
(3). $\vdash_{\mathrm{I}} \sim \sim A \supset A$,
(4). $\vdash_{\mathrm{I}}(A \vee B) \supset \sim(\sim A \wedge \sim B)$,
(5). $\forall_{\mathrm{I}} \sim \sim(A \vee B) \supset(\sim \sim A \vee \sim \sim B)$.

For the general principle connecting (1) and (2) see ch. $4 \S 8$.
(1). $\forall_{\mathrm{I}} A \vee \sim A$.

A counter example for this is the following:

$$
\begin{aligned}
& \mathscr{G}=\{\Gamma, \Delta\} \\
& \Gamma \mathscr{R} \Gamma, \quad \Gamma \mathscr{R} \Delta, \quad \Delta \mathscr{R} \Delta .
\end{aligned}
$$

$\Delta F A$ is the k relation for atomic formulas, and k is extended to all formulas as usual. We may schematically represent this model by

We claim $\Gamma \nvdash A \vee \sim A$. Suppose not. If $\Gamma \vDash A \vee \sim A$, either $\Gamma \vDash A$ or $\Gamma \vDash \sim A$. But $\Gamma \nexists A$. If $\Gamma \vDash \sim A$ then since $\Gamma \mathscr{R} \Delta, \Delta \not \vDash A$. But $\Delta \vDash A$, hence $\Gamma \nexists A \vee \sim A$.
(2). $\vdash_{1} \sim \sim(A \vee \sim A)$.

A tableau proof for this is the following, where the reasons for the steps are obvious:

$$
\begin{aligned}
& \{\{F \sim \sim(A \vee \sim A)\}\}, \\
& \{\{T \sim(A \vee \sim A)\}, \\
& \{\{T \sim(A \vee \sim A), F(A \vee \sim A)\}\}, \\
& \{\{T \sim(A \vee \sim A), F A, F \sim A\}\}, \\
& \{\{T \sim(A \vee \sim A), T A\}\}, \\
& \{\{F(A \vee \sim A), T A\}\}, \\
& \{\{F A, F \sim A, T A\}\} .
\end{aligned}
$$

(3). $\forall_{\mathrm{I}} \sim \sim A \supset A$.

The model of example (1) has the property that $\Gamma \neq \sim \sim A$ but $\Gamma \not \equiv A$.
(4). $\vdash_{1}(A \vee B) \sqsupset \sim(\sim A \wedge \sim B)$.

The following is a proof:

$$
\begin{aligned}
& \{\{F((A \vee B) \supset \sim(\sim A \wedge \sim B))\}\}, \\
& \{\{T(A \vee B), F \sim(\sim A \wedge \sim B)\}\}, \\
& \{\{T(A \vee B), T(\sim A \wedge \sim B)\}\}, \\
& \{\{T(A \vee B), T \sim A, T \sim B\}\}, \\
& \{\{T(A \vee B), F A, T \sim B\}\} \\
& \{\{T(A \vee B), F A, F B\}\}, \\
& \{\{T A, F A, F B\},\{T B, F A, F B\}\},
\end{aligned}
$$

(5). $\forall_{\mathrm{I}} \sim \sim(A \vee B) \supset(\sim \sim A \vee \sim \sim B)$.

A counter example is the following:

$$
\begin{aligned}
& \mathscr{G}=\{\Gamma, \Delta, \Omega\}, \\
& \Gamma \mathscr{R} \Gamma, \Delta \mathscr{R} \Delta, \Omega \mathscr{R} \Omega, \\
& \Gamma \mathscr{R} \Delta, \Gamma \mathscr{R} \Omega
\end{aligned}
$$

$\Delta \vDash A, \Omega \vDash B$ is the \vDash relation for atomic formulas, and \vDash is extended as usual. We may schematically represent this model by

Now $\Delta \vDash A$, so $\Delta \vDash A \vee B$. Likewise $\Omega \vDash A \vee B$. It follows that $\Gamma \vDash \sim \sim(A \vee B)$ But if $\Gamma \vDash \sim \sim A \vee \sim \sim B$, either $\Gamma \vDash \sim \sim A$ or $\Gamma \vDash \sim \sim B$. If $\Gamma \vDash \sim \sim A$, it would follow that $\Omega \vDash A$. If $\Gamma \vDash \sim \sim B$, it would follow that $\Delta \vDash B$. Thus $\Gamma \nexists \sim \sim A \vee \sim \sim B$.

