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Chapter 8
First-Order Logic

8.1 Overview

First-Order Logic is the calculus one usually has in mind when using the word
“logic”. It is widely used in mathematics and computer science because it is expres-
sive enough for all of mathematics, except for those concepts that rely on a notion
of construction or computation. However, dealing with more advanced concepts is
often somewhat awkward and researchers often design specialized logics for that
reason.

In our account of propositional logic we already made use of first-order logic to
describe metamathematical concepts such as tautologies, soundness, or complete-
ness. For instance, the definition of a formula X being a tautology, which requires
the boolean value of X under an arbitrary assignment of values to the variables of
X to be true, is expressed as Vv:Var(X)—B. (bval(X,v)=t, and the goal of tableaux
proofs (find a falsifying assignment) as Jv:Var(X)—B. (bval(X,v)=f. Using for-
mulas to represent metamathematical concepts makes the descriptions more precise
and provides a foundation for the implementation of logical calculi on a computer.

Our account of first-order logic will be similar to the one of propositional logic.
We will present
e The syntax, or the formal language of first-order logic, that is symbols, formulas,

sub-formulas, formation trees, substitution, etc.

The semantics of first-order logic

Proof systems for first-order logic, such as the axioms, rules, and proof strategies

of the first-order tableau method and refinement logic
o The meta-mathematics of first-order logic, which established the relation be-

tween the semantics and a proof system

In many ways, first-order logic is a straightforward extension of propositional
logic. One must, however, be aware that there are subtle differences.
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104 8 First-Order Logic

8.2 Syntax

The syntax of first-order logic is essentially an extension of propositional logic by
quantification V and . Propositional variables are replaced by n-ary predicate sym-
bols (P, Q, R) which may be instantiated with either variables (x, y, z, ...) or param-
eters (a, b, ...). Here is a summary of the most important concepts.

Definition 8.1 (Syntax of first-order logic).

(1) Atomic formulas are expressions of the form Pc;..c,, where P is an n-ary predi-
cate symbol and the ¢; are variables or parameters.

(2) The formulas of first-order logic are recursively defined as follows
a. Every atomic formula is a formula.
b. If A is a formula then so is —A.
c. If A and B are formulas then so are (A=-B), (ArB), and (AvB).
d. If B is a formula and x a variable then (Vx)B and (Jx)B are formulas.

(3) Pure formulas are formulas without parameters.

(4) The scope of a quantifier is the smallest formula that follows the quantifier.

(5) The degree d(A) of a formula A is the number of logical connectives and quanti-
fiers in A.

Note that many accounts of first-order logic use terms built from variables and func-
tion symbols instead of parameters. This makes the formal details a bit more com-
plex but the fundamental concepts remain the same.

Note that conventions about the scope of quantifiers differ in the literature and
that many accounts of logic provide preference rules that permit dropping parenthe-
ses. As this usually leads to confusion we require that parentheses should always
be used to avoid ambiguities. Outer parentheses and parentheses around quantified
formulas may be omitted.

Thus in (Vx)PxvQx the scope of (Vx) is just Px, while Qx is outside the scope
of the quantifier. To include Qx in the scope of (Vx) one has to add parentheses:
(Vx)(PxvQOx).

Definition 8.2 (Free and bound variables / Substitution).

(1) A variable x occurs bound in A if it occurs in the scope of a quantifier (Vx) or
(3x). Any other occurrence of x in A is free.

(2) Closed formulas (or sentences) are formulas without free variables.

(3) Substitution: A[} (or Ala/x]) is the result of replacing every free occurrence of
the variable x in A by the parameter a.!

(4) Subformulas are defined similar to propositional logic. The only modification is
that for any parameter a the formula B[} is an immediate subformula of (Vx)B
and (3x)B.

(5) The formation tree of a formula F is a representation of all subformulas of A in
tree format.

a. The root of the tree is F.

I Since we only allow variables to be substituted by terms, issues like capture cannot occur
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b. The sucessor of a formula of the form —A is A.

c. The successors of AAB, AvB, A=-B are A and B.

d. The successors of (Vx)B and (3x)B are A[;, for all parameters a;.
Note that quantifiers usually have infinitely many successors.

e. Atomic formulas have no successors.

From now on, closed formulas are the default when we use the word “formula”.

8.3 Evidence Semantics

As in the propositional case, the meaning of formulas will be defined through evi-
dence. A formula X is considered valid if we are able to provide evidence that justi-
fies the validity of X. Evidence will described in the form of terms that can be used
in a computational fashion. In a sense, evidence terms form a primitive functional
programming language that can be executed on a computer.

e Evidence for atomic formulas
A predicate symbol P is a placeholder for some arbitrary unknown predicate and
an atomic formula A = Pc..c, is a placeholder for some unknown proposition.
As such, it cannot have a fixed evidence and the type of its evidences [A] remains
unspecified.”

e The evidence terms for A= B, AAB, Av B, —A are formal justifications for impli-
cations, conjunctions, disjunctions, and negations as in the case of propositional
logic. They are summarized in the upper part of table 8.1.

e Evidence for (Vx)B
To know (Vx)B we must know how to generate some evidence b for B for every
possible instance of the variable x. Thus the evidence for (Vx)B must be a func-
tion f that generates the evidence b : [B] for every possible value a that we may
provide as input.

To some extent the evidence for (Vx)B is similar to the one for A=>B as in both
cases the type of evidences is a function type. There are, however, some important
differences. While in the case of implication the input type is some evidence type
[A] the input for evidences for (Vx)B is taken from some (unspecified) universe
of objects, which we denote by U. Furthermore, since the formula B may contain
x as free variable, there is some dependency between the value of the input a : U
and the type of the output of the evidence function.

Consider, for instance, the formula (Vx)(Pa=-Px). Here the subformula B =
(Pa=>Px) has evidence if we instantiate x with a and no evidence otherwise.
So the evidence type for B clearly depends on the object we choose as input for
the evidence function f : [(Vx)B].

2 This may change when we study advanced logics in which certain predicate symbols like the
equality symbol have a predefined meaning. Atomic formulas like 0=0 will then have atomic evi-
dences.
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As a consequence, the evidence type of (Vx)B cannot be a simple function type

like U—[B] but has to be a function type that captures the dependency between

input value and output type. In programming, such types are called dependent
function types.

Adopting programming notation we write [(Vx)B] = x: U—[B] 3

Let us look at two simple concrete examples.

— (Vx)(Px=-Px): The evidence must be a function f : (x:U—([Px]—[Px])) that
takes some object x and produces evidence for Px=> Px. The latter is a func-
tion that takes some evidence p : [Px] and produces evidence for Px. Using
identity function Ap. p as solution for that the overall evidence has the form
Ax.(Ap.p).

— ((Vx)Px)=>Pa: The evidence must be a function that takes as input some
evidence f : [(Vx)Px] and produces evidence for Pa. Since f has the type
x : U—[Px], applying f to the parameter a will result in an element of [Pa],
which we can use as the desired evidence. Thus the overall evidence will have
the form A f. fa.

e Evidence for (dx)B

To know (3x)B we must be able to generate evidence for B for at least one pos-

sible instance of the variable x. As in the case of the universal quantifier the

formula B may contain x as free variable, which means that there is some depen-

dency between element that instantiates x and the type of the evidence for B that

we need to provide. Therefore we cannot simply provide some element of [B]

as evidence for (3x)B but we also have to provide the specific element a : U for

which we claim B to be valid.

Therefore the evidence for (3x)B must give us the concrete witness a and the

evidence b : Bla/x], that is a pair (a,b) where a : U and b : [B[a/x]]. Thus the type

of evidences [(3x)B] is a dependent product type.

We write [(3x)B] =x: Ux|[B].

Again let us look at a few concrete examples

— Pa=((3x)Px): The evidence must be a function that takes some evidence
p : [Pa] and produces a pair (x, p’) where x : U and p’ is evidence for Px. The
obvious choice is x = a and p’ = p and the the overall evidence is A p. (a, p).

— ((3x)Px)=-((Jy)Py): The evidence must be a function that takes as input an
element z : (x : Ux[Px]), i.e. a pair z (a,p), where a : U and p is evidence
for Pa, and produces a pair (x,p’) where x: U and p’ is evidence for Px.
The obvious choice is again x = a and p’ = p and the the overall evidence
is Az.(z1,22). Since (z1,z2) is identical to z we can simplify the evidence to
Az.z.?

3 Dependent function types are often written as x : S—T7 [x], where T[x] expresses that the output
type T may contain x as free variable. x : S—T[x] is the the type of functions that on input s : S
return a value of a type T'[s/x].

4 One could also attempt to argue semantically, claiming that (3x)Px and (3y)Py must express the
same, and provide Ax.x as overall evidence. But the justification for this claim is the argument that
we just provided.
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Table 8.1 summarizes the evidence terms and types for the first-order quanti-
fiers. Note that the evidence terms associated with universal quantifiers are the same
as those associated with implication and that he evidence terms associated with
existential quantifiers are the same as those associated with conjunction. The dif-
ference is only in the evidence types — quantifiers require dependent types while
“ordinary”’function and product types are sufficient for the propositional connec-
tives.

proposition A evidence type [A]  evidence term evidence decomposition

A=B [A]—[B] Aa.b f(a)

ANB [A] x[B] (a,b) P, P2

AvB [A] + [B] inl(a), inr(b) case e of inl(a) —s|inr(b) —1
-A A]l—{} Aa.b f(a)

(Vx)B x:U—(B] Aa.b f(a)

(3x)B x:Ux[B] (a,b) Pls D2

Table 8.1 Evidence terms for first-order logic

We conclude this section by posing a few problems that should be elaborated
in groups. For each of the formulas below the group should find the evidence that
validates the formula or explain why evidence cannot be constructed.

(1) ((Vx)(PxrQx)) = ((Vx)Px A (¥x)Ox):

The evidence must be a function that takes as input a function f : (x:U—[Px] x [Qx])

and produces a pair of functions (g, /) : (x:U—[Px]) x (x:U—[Qx]). To construct

g and g we take an input x:U and generate the evidence for [Px] by applying f

to x and selecting the first and second component. Thus the overall evidence is
Af (Ax.(fx)1,Ax.(fx)2)
(2) ((Vx)Pxn(Vx)0Ox)= ((Vx)(PxAQx)): The evidence is Az. (Ax.(z1x,22x))
(3) ((Vx)Pxv (Vx)0Ox) = ((Vx)(PxvQx)):

The evidenceis Az.(Ax.(case z of inl(f) — inl(fx) | inr(g) — inr(gx)))
4) ((Vx)(PxvQx))=((Vx)Pxv(¥x)0Ox): This formula is not valid.

A possible counterexample is Px being odd (x) and Qx being even (x).
(5) ((Fx)(Pxn0x))=((3x)Pxr(Ix)Ox): The evidenceis Az.((z1,221),(z1,222))
(6) ((Fx)Pxn(Fx)0x)= ((Ix)(PxrOx)): This formula is not valid.

A possible counterexample is Px being odd (x) and Qx being even (x).
(7) ((3x)Pxv(Ix)0x) = ((3x)(PxvOx)):

The evidenceis Az.(case z of inl(x) — (x1,inl(x2)) | inr(y) — (y1,inr(y2)))
(8) ((Fx)(PxvOx))=((Ix)Pxv(3x)0x):

The evidenceis Az.(case zp of inl(x) — inl(zj,x) | inr(y) — inr(z,y))

©) (Ix)(Px=(Vy)Py):

The evidence must be a pair (a,f) where a:U and f is a function that takes

evidence p for Pa as input and generates a function g : (x:U—[Px]). There is
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no way to construct the generic “evidence function” g solely on the basis of the
evidence for a specific Pa.
(10) (Vx)((Vy)Py=-Px): The evidence is Ax. (Af. fx)
(11) (3x)((Jy)Py=Px):
The evidence must be a pair (a, f) where a:U and f is a function that takes a
pair (b, p) : (y:Ux([Py]) as input and generates evidence for Pa. The only way
to construct f is to make sure that @ matches its input b — then the evidence for
Pa would be the second input component. There is no way to do this without
knowing the input.
(12) =((Zx)Px)= ((Vx)(((3y)Py)=Px)): The evidenceis Af.(Ax.(Az.any(fz)))
(13) ((Fx)Px)= ((Vx)(Px=-0x)=((3y)Qy)): The evidence is
Az (Af(z1,(fz1)22))
(14) =((3x)Px) = ((vx)~(Px)):
The evidence must be a function that takes as input a function f: (x:Ux [Px])—{}
and produces a function g : (x:U—([Px]—{})). To construct g we take an input

x:U and evidence p : [Px] and create the element of {} by applying f to the pair
(x,p). Thus the overall evidence is Af.(Ax. (Ap. f(x,p)))
(15) ((Vx)=(Px))=—((3x)Px): The evidence is Af.(Az.(fz1)z2)
(16) ((Fx)Px)=—((Vx)—(Px)): The evidence is Az. (A f.(fz1)z2)
(17) —((Vx)Px)= ((Ix)—(Px)):
The evidence must be a function that takes as input a function f : (x:U—[Px])—{}
and produces a pair z : (x:Ux ([Px]—{})). To construct g we have to find an ele-

ment a:U and evidence p for Pa. There is no uniform way to construct these two
evidences solely from f.

8.4 First-Order refinement proofs and evidence construction

Similar to evidence semantics, the proof calculus of refinement logic can be ex-
tended from propositional to first-order logic. Most rules follow immediately from
an intuitive understanding of the logical operators. As in our discussion of evidence
we investigate each connective separately.
e Refinement rules for atomic formulas
An atomic formula A = Pc;..c, cannot be decomposed into smaller components
because it is a placeholder for an unknown proposition. But if A is also one of
the assumptions in the hypotheses, we can prove A it using the axiom rule.
H,aAHFA ev=a by axiom
e Refinement rules for A= B, AnB, AvB, —A are the refinement rules for impli-
cations, conjunctions, disjunctions, and negations that we already know from
propositional logic. They are summarized in the upper part of table 8.2.
e Refinement rules for (Vx)B
To prove a universally quantified formula (Vx)B we have to be able to prove B
for every possible instance of the variable x. The only way to do this formally is
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to come up with a generic proof for B that does not depend on how x is being
instantiated. For this purpose we substitute x by a new parameter @’ that does not
occur elsewhere in the sequent and prove Bld’/x|. The fact that @’ is new makes
sure that nothing is known about «’ in the proof of B[d’ /x|, which means that the
proof will in fact apply to every possible instance of x.°
H*F (Vx)B by allR
H I\ Bld /x]
To describe the evidence constructed by this rule we assume that we have some
evidence b for the the subgoal sequent H - B[d'/x|. This means that we must
have found a generic way to generate the evidence b for Bla' /x] for arbitrary @’ In
other words, there is a function that on input @’ computes b and this function must
be the evidence for (Vx)B. Using the A-notation for evidence terms introduced
previously, we can write the rule as
HF (Vx)B ev=Ad.b by allR
HFB[d/x] ev=b
In addition to refining a universal quantifier in the conclusion of a sequent we
also need rules for decomposing quantifiers in assumptions. To prove a goal C
by decomposing the assumption (Vx)B we introduce the assumption B|a/x] for
some parameter a and prove C on that basis.
For the construction of evidence let us assume that f is a label for (Vx)B in the
main goal, that b is a label for Bla/x] in the subgoal, and that ¢ the evidence for
C. The latter means that there is a function that computes evidence ¢ for C from
arbitrary evidences b for Bla/x]. Since f(a) is a specific evidence for Bla/x] we
can apply this function, i.e. Ab.c, to f(a), evaluate it and get the desired evidence
for C in the main goal. If we integrate evidence construction into the rule we get
H,f:(Vx)B,H' - C ev=c[f(a)/b] by alll a
H,f:(Vx)B,b:Bla/x],H' -C ev=c
Note that the parameter a has to be provided when executing the rule since the
parameter that instantiates the formula (Vx)B is not determined by the context of
the rule. The user applying the rule has to choose it.
Let us look at two simple concrete examples.
— (Vx)(Px=Px): The refinement proof is straightforward.
F (Vx)(Px=Px) ev=Aa.(Ap.p) by allR
1 + Pa=Pa ev=Ap.p by impliesR
1.1 p:Pa - Pa ev=p by axiom

— ((Vx)Px) = Pa: The obvious choice for instantiating x is the parameter a.

F ((Vx)Px)=Pa ev=Af.f(a)by impliesR

1 f:(Vx)Px - Pa ev=p|f(a)/p/by alll a

1.1 f«(Vx)Px,p:Pa - Pa ev=pby axiom
In both cases the constructed evidence is the same as we had in section 8.3.
Note that the rule al1L explicitly re-introduces the assumption (Vx)B in the sub-
goal. The reason for this is that univerally quantified formulas in the assumptions
may have to be instantiated several times in order to complete the proof. Any

5 In our description of the formal rules we use the stroke only to emphasize the fact that @’ is new,
which is a side condition on the parameters that may actually be chosen when the rule is applied.
Apart from that condition, any parameter may be chosen.
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proof of ((Vx) Px)=-(Pa A Pb) must instantiate the variable x with both a and b.
If a11L would drop the assumption (Vx)B, then some proof attempts would not
succeed as they cannot show both Pa and Pb. Here is a proof of that statement in
refinement logic.

F ((Vx)Px)= (ParPb) ev=Af.( (u) f(b)) by impliesR
1 f:«(Vx)Px & PanPb ev=(f(a (/) by alll a
1.1 f:(Vx)Px,p,Pa & PanPb =(pa,f ))) by alll b
1.1.1 [:(Vx)Px, p,:Pa,p,:Pb & PanPb (/)“ p/))by andR

1.1.1.1  [:(Vx)Px,p.:Pa,p,:Pb = Pa =P by axiom
1.1.1.2  [:«(Vx)Px,p,:Pa,p,:Pb = Pb ev=rp, by axiom

e Refinement rules for (Jx)B
To prove an existentially quantified formula (3x)B we have to be able to prove
Bla/x] for some parameter a. If b is the evidence for Bla/x| then combining this
evidence with the parameter a is evidence for the existence of an x such that B
holds.
HFE (3x)B ev=(a,b) by exR a
HtEBla/x] ev=b
Again, the parameter a has to be provided when executing the rule.
To prove a goal C by decomposing the assumption (Jx)B we introduce the as-
sumption B[d' /x| for a new parameter ¢’ and prove C on that basis. As in the case
of allR requiring @’ to be new makes sure that nothing is known about a’ when
we use Bld'/x] to prove C except that a’ does exist. For the construction of evi-
dence let us assume that z is a label for (3x)B in the main goal, b is the evidence
for the assumption B[a/x] in the subgoal, and c¢ the evidence for C. Then z is
assumed to be the same as the evidence pair (@', b), which means that replacing
a by z; and b by 725 in ¢ gives us the evidence for the main goal.
H,z:(3x)B,H'+C ev=clz1,22/d ,b] by exL
H,b:Bld /x|,H'-C ev=c
Again let us look at a few concrete examples
— Pa=((3x)Px): Again a simple and straightforward proof

F Pa=((3x)Px) ev=Ap.(a,p) by impliesR

1 p:Pa b (I)Px  ev=(a,p) by exR a
1.1 p:Pa + Pa ev=p by axiom
= (@x)Px)=((Fy)Py):
F ((Ix)Px)=((3y)Py) ev=Az.(z1,20) by impliesR
z(I)Px F (3y)Py  ev=(z.22) by exL
1.1 p:Pa = (3y)Py ev=(a,p) by exR a
1.1.1 p:Pa + Pa ev=p by axiom

Note that (z;,z2) is idential to z so the evidence constructed is the same as in
section 8.3. Note also that the order of rule applications is important. Had we
used the rule exR « first we wouldn’t be able to complete the proof.

F ((3x)Px)=((3y)Py) by impliesR
1 z:(3x)Px = (3y)Py by exR a
1.1 z2(3x)Px F Pa by 777

Table 8.2 summarizes all the rules of the refinement calculus for first order logic.
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left right
impliesL H,f:A=B,H +C ev=c|f(a)/b] HFA=B ev=_A7Aa.b impliesR
H,[(A=BH FA ev=a H,aAFB ev=h
H,b:B,H'+C ev=c
andL H,xANB,H'-C ev=clxy,x2/a,b) H&FAAB =(a,b) andR
H,a:A,b:B,H' - C ev=c HEFA ev=a
HFB ev=>b
orL H,xAvB,H C ev=case x of inl(a)—c||HFAVB ev=1inl(a) orR1
[inr (D) — 2 HEA ev=a
H,aAH +-C ev=c
H,b:BH'-C ev=c, HFAVB ev=inr(h) orR2
H&B ev=>h
notL H,f—AH +C ev=any(f(a)) HE-A ev=A>Aa.b notR
H,f~AHFA ev=a H,aARf ev=b
H,aAHFA ev=a axiom
alllL a H,[:(Vx)B,H' FC ev=c|f(a)/b||HF (Vx)B ev=A7Ad.b allR
H,f:(Vx)B,b:Bla/x|,H'-C ev=c HEBld/x] ev=b)
exL H,z(3x)B,H' - C ev=clz,22/d,b] HF (3x)B =(a,b) exR a
H,b:Bld' /x],H' FC ev=c HF Bla/x| ev=b
a can be an arbitrary parameter while a’ must be new

Table 8.2 Rules of the first-order refinement calculus

Exercises

As an exercise the following problems should be investigated in groups. For each
of the formulas below the group should find a refinement proof and construct the
evidence from the proof. In cases where no proof can be found, try to explain why

the proof has to get stuck.

(1) ((Vx)(PxrOx)) = ((Vx)Pxn(Vx)0Ox):
E ((Vx)(PxrQx))= ((Vx)PxA(Vx)Ox) by impliesR
1 (Vx)(PxaQx) F ((Vx)Pxa(Vx)Qx) by andR
1.1 (Vx)(PxAQx) F (Vx)Px by allR
1.1.1 (Vx)(PxnQx) b Pa by alll a
1.1.1.1 (Vx)(PxAQx),PanQa + Pa by andL
1.1.1.1.1  (Vx)(PxAQx),Pa,Qa b Pa by axiom
1.2 (Vx)(PxaQx) F (Vx)Ox by allR
1.2.1  (Vx)(PxrnQx) F Qa by alll a
1.2.1.1 (Vx)(PxAQx ,ParQa F Qa by andL
1.2.1.1.1 2Px/\gf) a by axiom
The evidence extracted from this proofls Af (Ax.(fx)1,Ax.(fx)2)
@) ((vx)Px(Vx)Qx) = ((Vx)(PxnQx)):
F ((Vx)Pxa(Vx)Qx)= ((Vx)(PxnQx)) by impliesR
1 (Vx)Pxa(Vx)Ox F (Vx)(PxAQx) by andL
1.1 (Vx)Px,(Vx)Ox + (Vx)(PxarQx) by allR
1.1.1 (Vx)Px,(Vx)Ox b PanQa by andR
1.1.1.1 (Vx)Px,(Vx)Ox + Pa by alll a
1.1.1.1.1 (Vx)Px,(Vx)Qx,Pa  Pa by axiom
1.1.1.2 (Vx)Px,(Vx)Ox + Qa by alll a
1.1.1.2.1 (Vx)Px,(Vx)0x,Qa + Qa by axiom
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(3) ((vx

((Vx)Pxv (Vx)0Ox) = ((Vx)(PxvQx))
(Vx)Pxv (Vx)Ox F (Vx)(PxvQx)
(Vx)Pxv(Vx)Ox + PavQa

@) (v

&)

At this point we have to prove either {

-
1

'_

1
1.1
1.1
1.1.
1.1.
1.1
1.1
1.1
(

1
1.
1.
.2
2.
2.

)Px v (Vx)0x) = ((Vx)(PxvQx)):
(

(Vx)Px & PavQa
Pa = PavQa

1
1.

1
1

1

Pa - Pa

(Vx)Ox F PavQa

((Vx)(Pxv0x))= ((Vx)Pxv (Vx)QOx)
(¥x) (PxvOx) £ (Vx)Pxv (Vx)Ox.

rove that.

(3x)(PxnQx)) = ((3x)Px A (3x)0x):

((3x)(Pxan0x))=
(Ix)(PxnQx) +

',

1
1.1
1.1.
1.1.
1.1
1.1
1.1

1
1.
1.
1.
1.

((3x)PxA(3x)0x)
(3x)Px A (3x)Ox)

PanrQa b (3x)Pxa(3x)0x

Pa,Qa + (3x)Pxn(3x)0x

1
1.
2
2.

1

1

Pa,Qa + (3x)Px
Pa,Qa + Pa
Pa,Qa + (3x)0x
Pa,Qa - Qa

by
by

by
by
by
by
by
by
by
by

impliesR
orL

allR
alll a
orR1
axiom

orR2
axiom

impliesR
???

impliesR
exL

andL
andR

exR a
axiom
exR a
axiom
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)(PxvOx))=((Vx)Pxv(Vx)0x): A proof attempt will get stuck
(

Vx)Px or (Vx)Qx but there is no way to
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©) (

—~

Ix)Px A (Fx)Ox) = ((Ix)(PxrQx)): Here is a proof attempt

((3x)Pxn(Ix)0x) = ((3x)(PxrQx)) Dby impliesR
(Fx)PxA(Ix)0x + (3x)(PxnrQx) by andL

.1 (Fx)Px, (I)0x = (3x)(PxaQx) by exL

.1.1 Pa,(3x)0Ox + (Ix)(PxnQx) by exL

1.1.1 Pa,Qb - (3x)(PxnQx) by 777

The proof gets stuck becausé in the second application of exL we will have to

use a new parameter instead of using a again.
(7 ((Fx)Pxv(Ix)0x) = ((Ix)(PxvOx)):
F ((3x)Pxv(3x)0x)=((3x)(PxvQx)) by impliesR

B R T

1 (I)Pxv(Ix)Ox F (3x)(PxvOx) by orL
1.1 (Ix)Px + (3x)(PxvQx) by exL
1.1.1 Pa + (3x)(PxvQx) by exR a
1.1.1.1 Pa+ PavQa by orR1
1.1.1.1.1 Pa t+ Pa by axiom
1.2 (Ix)0x F (Fx)(PxvOx) by exL
1.2.1 Qa F (3x)(PxvQx) by exR a
1.2.1.1 Qa + PavQa by orR2
1.2.1.1.1 Qa F Qa by axiom
(8) ((Fx)(PxvOx))=((Ix)Pxv(3x)0x):
F ((3x)(PxvQx))=((3x)Pxv(3x)Qx) by impliesR
1 (I)(PxvOx) F (Ix)Pxv(Ix)0x by exL
1.1 PavQa + (3x)Pxv(Ix)Qx by orL
1.1.1 Pa + (3x)Pxv(3x)Ox by orR1
1.1.1.1 Pa b (3x)Px by exR a
1.1.1.1.1 PatF Pa by axiom
1.1.2 Pa + (3x)Pxv(Ix)0x by orR1
1.1.2.1 Pa + (3x)Px by exR a
1.1.2.1.1 Pa F Pa by axiom
(9) (3x)(Px=-(Y¥y)Py): Here is a proof attempt
F (3x)(Px=(Vy)Py) by exR a
1+ Pa:>(Vy)Py by impliesR
1.1 Pa F (Vy)Py by allR

1.1.1 Pat Pb 777
The proof gets stuck because in the apphcatlon of allR we will have to use a

new parameter instead of using a again.
(10) (Vx)((Vy)Py=>Px):

F (Vx)((Vy)Py:>Px) by allR

1 + (Vy)Py=Pa by impliesR

1.1 (Vy)Py + Pa by alll a

1.1.1 PatF Pa by axiom
(11) (3x)((Fy)Py=-Px): Here is a proof attempt

F( x)((ﬂy)Py:>Px) by exR a

1 F (3y)Py=Pa by impliesR

1.1 (3y)Py b Pa by exL

1.1.1 Pa T

The proof gets stuck because in the apphcatlon of exL we will have to use a new
parameter instead of using a again.
(12) =((Fx)Px) = ((vx)(((Fy)Py) = Px)):

F =((3x)Px)= ((Vx)(((Ely)Py)éPx)) by impliesR
1 =((3x)Px) F (¥x)(((3y)Py)=Px) by allR
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1.1 =((3x)Px) F ((3y)Py)=Pa by impliesR
1.1.1 —((3x)Px),(3y)Py - Pa by notL
1.1.1.1 —((3x)Px),(3y)Py + (3x)Px by axiom
(13) ((Bx)Px) = ((Vx)(Px= 0x) = ((3y)Qy)):
- (3Px) = () (Px=0x) = (31)0y)) by impliesh
1 (I)Px F (Vx)(Px=0x)=((3y)Qy) by impliesR
1.1 (3x P)c7 (Vx)(Px=Qx) + (3y)Qy by exL
1.1.1 Pa,(Vx)(Px=0x) F (3y)Qy by alll a
1.1.1.1 Pa,PaéQa F (3y)0y by exR a
1.1.1.1.1 Pa,Pa=Qa + Qa by impliesL
1.1.1.1.1.1 Pa,Pa=Qa + Pa by axiom
1.1.1.1.1.2 Pa,Pa=Qa,Qa - Qa by axiom
(14) ~((F)Px) = ((vx)~(Px)):
F =((3x)Px) = ((Vx)~(Px)) by impliesR
1 =((3x)Px) F (¥x)—(Px) by allR
1.1 =((I)Px) b —(Pa) by notR
1.1.1 —((3x)Px),Pa - f by notL
1.1.1.1 —((3x)Px),Pa b (3x)Px by exR a
1.1.1.1.1 —((3x)Px),Pa - Pa by axiom
(15) ((Vx)=(Px))=—((3x)Px):
F ((Vx)=(Px))=—((3x)Px) by impliesR
1 (Vx)=(Px)) F =((3x)Px) by notR
1.1 (Vx)=(Px)),(3x)Px - f by exL
1.1.1 (Vx)=(Px)),Pa - f by alll a
1.1.1.1 —(Pa),Pa - f by notL
1.1.1.1.1 —(Pa),Pa - Pa by axiom
(16) ((3x)Px) = ~((vx)~(Px)):
F ((3x)Px)=—((Vx)~(Px) by impliesR
1 (I)Px F —((vx)—(Px) by exL
1.1 Pa b —((Vx)=(Px) by notR
1.1.1 Pa,(Vx)-(Px) - f by alll a
1.1.1.1 Pa,~(Pa) - f by notL
1.1.1.1.1 Pa,~(Pa) - Pa by axiom
(17) —((¥x)Px)=((3x)—(Px)): Here is a proof attempt
F =((Vx)Px)= ((Elx)ﬂ(Px))) by impliesR
Eo—((Y)Py) F ((3x)o(Px))) by 777

8 First-Order Logic

At this point we’re stuck. If we apply notL we will lose the conclusion ((3x)—(Px
and have to prove (Vx)Px, which clearly won’t work. But there are no other proof

rule that can be applied here.

)



Chapter 9
First-Order Proof Systems

9.1 Boolean Semantics

The boolean semantics of first-order logic, like the one of propositional logic, is
based on a concept of valuations. In propositional logic, it was sufficient to assign
values to all propositional variables and then extend the evaluation from atoms to
formulas in a canonical fashion by showing how to calculate the value of a com-
posed formula from values of the subformulas. In first-order logic, our starting point
has to be atomic formulas instead of propositional variables and we have to explain
how to calculate the value of quantified formulas that may have infinitely many
subformulas.

The standard approach is to interpret parameters by elements of some universe
% and n-ary predicates by subsets of %7". A closed formula Pa; ..a, then expresses
the fact that the interpretations k; €% of the a;, taken together as n-tuple (ky, .., k),
form an element of the interpretation of P.

Smullyan’s approach is similar but avoids set theory altogether. Instead, he intro-
duces 7% -formulas, where the elements of the universe %/ are used as parameters
and defines first-order valuations as canonical extensions of boolean valuations on
the set £7 of all closed % -formulas. The semantics of arbitrary formulas is then
defined by a mapping ¢ from the set of parameters into % .

Definition 9.1 (first-order valuations).
A first-order valuation v of £% is an assignment of truth values to elements of

w
(q:) vsllslca hgfean valuation of E? , i.e
v[-A] = tiff v[A] = f
v[AAB] =tiff v[A] =tand v[B] =t
v[AvB] = tiff v[A]=tor v[B] =t
v[A=B] =tiff v[A]=forv[B] =t
(2) v[(Vx)B] = tiff v[B|}] = t for every ke %
[ |

( Bl
v[(3x)B] = tiff v[B[}] = t for at least one ke %

115
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All valuations can be defined as canonical extensions of aromic valuations,
i.e. assignments of truth values to the atomic formulas in E%. A valuation tree
for a formula A is the formation tree of A together with a consistent assignment of
truth values to all the nodes in that tree.

Note that since formation trees are usually infinite, one cannot expect to compute
the truth value of a formula A solely on the basis of a given atomic valuation.

As in propositional logic, the semantics of formulas can also be described via via

truth sets.

Definition 9.2. A first-order truth set S (w.r.t. %) is a subset of of £% such that
(1) S statisfies the requirements on propositional truth sets, i.e.

AcSiff ~A¢S
AnB e Siff AcSand BeS
AvB e Siff AcSor BeS
A=B e Siff A¢SorBeS
(2) (Vx)B < Siff B|; €S for every ke %
(Ix)B  Siff B|} S for at least one ke %
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It is easy (though tedious) to show that truth sets correspond to valuations in the
sense that every first-order truth set is exactly the set of all formulas that are true
under a fixed first-order valuation.

The definition of first-order valuations can be extended to sentences with param-
eters as follows. Let ¢ be a mapping from the set of parameters to % . For a formula
A define A? to be the result of replacing every parameter g; in A by ¢(a;). We say
that A is true under @ and v if v[A?] = 1.

The standard semantics of first-order formulas can be linked to the above as
follows. Let E define the set of all closed formulas. An interpretation of E is a
triple I = (%, ¢,1), where % is an arbitrary set, ¢ is a mapping from the set of
parameters to %/, and 1 is a function that maps each n-ary predicate symbol P to a
set I(P)C%" (or an n-ary relation over %).

An atomic sentence Paj..a, is true under I if (¢(ay),..¢(a,)) €1(P). In this man-
ner, every interpretation induces an atomic valuation vg (together with ¢), defined by
volPay..al] =t iff (¢(ay),..¢(a,)) €1(P), and vice versa (1(P) = {@(a;),..¢(ay)) |
vo[Pay ..a,(f] =1}). From now on we will use whatever notion is more convenient.

A formula A is called satisfiable if it is true under at least one interpretation /
(i.e. under at least one universe %/, one mapping ¢, and one interpretation of the
predicate symbols). I is also called a model of A. A is valid if A is true under every
interpretation. These notions can be extended to sets of formula sin a canonical
fashion.

It should be noted that there is a fine distinction between boolean valuations and
first-order valuations. Boolean valuations can only analyze the propositional struc-
ture of formulas. They cannot evaluate quantified formulas and therefore have to
treat them like propositional variables. In contrast to that first-order valuations can
analyze the internals of quantified formulas and extract information that is unacces-
sible to boolean valuations.

For instance, a boolean valuations would interpret the logical structure of the for-
mula
(Vx)(PxnQx) = (Vx)Px as PQ=-P, which is obviously not a tautology. In con-
trast to that, every first-order valuation would go into the details of (Vx)(PxQx)
and (Vx)Px and evaluate to true. Thus the formula is valid, but not a tautology.

For the same reason, the formula (Vx)(PxQx) A (3x)(—Px) is truth-functionally
satisfiable but not first-order satisfiable, since there is no first-order valuation (with
a non-empty universe) that can make it true.

First-order valuations provide a more specific analysis than boolean valuations
can give. They agree on quantifier-free formulas, however (Exercise!), and in that
sense first-order logic is a canonical extension of propositional logic.
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9.2 First-Order Tableaux

Since the evaluation of quantified formulas usually requires the evaluation of the
formula for all possible elements of the universe, truth tables are unsuited for prov-
ing first-order formulas correct. Universes are usually infinite and even in a finite
universe, the search space would quickly explode. The extension of the tableaux
method to first-order logic, on the other hand, is quite straightforward. Let us con-
sider an example.

F(Vx)(Px=-0x) = ((Vx)Px=-(Vx)Qx)
T(Vx) (le = QOx)

F(Vx)Px ‘:> (Vx)QOx

T (Vx)Px
F (V)‘C)Qx

Up to this point we have proceeded as in propositional logic. Now we have to
start decomposing quantifiers. The formula (Vx)Qx is false if Ox can be made false
for at least one element k of the universe. Since the elements of the universe do not
belong to the syntax of the formulas, we substitute x by a parameter a instead.

In the following step we decompose 7' (Vx)Px. We know that (Vx)Px is true if Px
is true for all elements of the universe. This means we can substitute any parameter
for x and we choose a again, since this is useful for completing the proof. The
remaining proof is straightforward and we get

F(Vx)(Px=Q0x) = ((Vx)Px=> (Vx)Qx)

T (Vx) (flx = Ox)
F(Vx)Px‘:> (Vx)Ox
(k)P
F(V)‘c)Qx
Fba

T Pa

TPa=-Qa

FPa Qa
! !
Why did we decompose F (Vx)Qx before T (¥x)Px in the proof?

The parameter « that we substituted for x was supposed to indicate that Ox can
be made false by some yet unknown element of the universe. Since we do not know
this element, a should be a new parameter — this way we make sure that we don’t
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make any further assumptions about a by accidentally linking it to a parameter that
was introduced earlier in the proof.

If we were to decompose 7'(Vx)Px before F (Vx)(Ox then we would not be able to
use a as parameter for Q, since it has already been used for P and is not unknown
anymore. If we decompose F (Vx)Qx first, then « is still new. Choosing the same a
for P is a decision we make afterwards.

In informal mathematics, quantifiers are handled in exactly the same way. When
proving
(Vx)(Px A Qx) = (Vx)Ox we assume (Vx)(PxQx) and then try to show (Vx)Qx. For
this purpose we assume «a to be arbitrary, but fixed, and try to prove Qa. Since we
know (Vx)(PxQx), we also know that Pa A Qa holds for the arbitrary a that we just
chose and conclude that Qa is in fact the case. Note that it was crucial to have the «
before instantiating (Vx)(Px A Qx).

9.3 Extension of the unified notation

The above example shows that there are two different ways to handle quantifiers in
tableaux proofs.

In the first case, we have formulas of the form 7'(Vx)A and, by duality, F(3x)A,
which we call formulas of type y of universal type. y-formulas are decomposed
into TBla/x] (and F'Bla/x], respectively), where a is an arbitrary parameter. These
formulas are often denoted by y(a).

In the other case, we have formulas of the form F (Vx)A and, by duality, 7' (3x)A,
which we call formulas of type O of existential type. d-formulas are decomposed
into FB[a/x] (and T Bla/x], respectively), where a is a new parameter. These for-
mulas are often denoted by 6(«) and the requirement that a must be new is usually
called the proviso of the rule.

Altogether we have now four types of inference rules.

o B Y
2 BT, Y
o, B a arbitrary parameter
1)
o(a)

a new parameter

Here is another example proof

!In calculi that use terms instead of parameters, the y-rule allows a to be an arbitrary term (repre-
senting some object) whereas in the 6 rule a must be a new variable, representing the fact that the
element of the universe is unknow.



120 9 First-Order Proof Systems

F—((¥x)Px) v (ParPb) —a

F((Vx)Px) —a

FPanPbh P
r(Pr «—(a). y(b)

X X

Note that in this proof, the y-formula 7' (¥x)Px had to be instantiated twice to
complete the proof. In general, formulas of universal type may be used arbitrarily
often in a proof and therefore validity in first-order logic is not decidable.?

9.4 A liberalized 6 rule

The proviso of the § rule, which requires a to be a new parameter, is quite restric-
tive and makes formal proofs more complicated than they have to be. Actually, the
proviso is more restrictive than it has to be. It is possible to liberalize the § rule by
replacing it by the following requirement:

provided a is a new parameter

or a was not previously introduced on the same path by a & rule, does not occur in 8, and

no parameter in 0 was previously generated by a 0 rule

In other words, if a does already occur in the proof then we may use it in a &
rule if it was generated by some 7 rule. The rationale is that this y rule could also be
applied later and use the parameter a at that point ... after the 8 rule has introduced
it. Thus the fact that the 7y rule appears earlier in the proof should not affect the
parameters that the § rule is permitted to use.

The following example shows the advantages of using a liberalized 6 rule. In the
proof on the left, the (original) the & rule, which can only be applied after the first
application of the y rule, cannot use the parameter a because it already occurs in the
proof. It has to use a new parameter b instead and we have to apply the y rule again
to get the formula F Pb. Using the liberalized 0 rule instead makes the proof on the
right much shorter.

2 This argument only appeals to the intuition. The actual proof of the undecidability of first-order
logic is more complex, since one has to show that there is no other way to determine that a formula
is not valid.
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V@), y(b) — F(3x)((3y)Py= Px) Na) —

F(3y)Py=Pa

o — o —

o(b) — T (3y)Py o(a) —

9.5 Transforming tableaux proofs into Refinement logic proofs

In propositional logic we could use booleanization to relate the truth table se-
mantics of tableaux to the evidence semantics of refinement logic. This technique
can be extended to first-order logic if the domains under consideration are finite.
In this case a universally quantified formula (Vx)B corresponds to the formula

F(3x)((3y)Py=Px)

F(Ely)f"y :>PD
T(3y)Py

FPa

T Pa

X

Blaj /x] A...ABlay,/x] and a universally quantified formula (3x)B to Bla; /x]v...vB[a, /x],

where ay,..,a, are (representatives of) all the elements of the universe, and the de-
cidability of atomica formulas would propagate to all formulas of first-order logic.

Beyond finite domains all bets are off. We cannot guarantee the decidability of
formulas anymore and evidence will be increasingly hard or impossible to construct.
To what extent the booleanization of evidence can be extended to first-order formu-
las in these cases stillneeds to be researched.

If the decidability of formulas can be guaranteed, we can translate tableaux
proofs into refinement logic proofs using the same method as in propositional logic.
We convert tableaux into block tableaux, convert the block tableaux rules into rules
that generate proofs with only one F-formula, and perform a syntax translation that
separates the 7-formulas from the F'-formulas by putting a between them and then
drops the signs. This leads to decomposition rules that are mostly identical to the
rules of the propositional refinement calculus, except for the rules orR1,, orR2,
impliesL, notL, and — as the example of (3x)((Jy)Py=>Px) in Section 9.4 shows
— exR.3 For these rules we provide refinement logic proof fragments that simulate
their behavior. The proof fragments for orR1*, orR2*, impliesL*, and notL* have
already been discussed in our account of propositional logic. The simulation of the
rule exR" is given below.

exR": H F+ (Ix)B by Use_decidability_of (3x)B
1 H, ((3x)B)v—((Zx)B) + (3x)B by orL
1.1 H, (3x)B + (3x)B by axiom
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1.2 H, —((3x)B) + (3x)B by exR a
1.2.1  H, =((3x)B) + Bla/x]

All other rules do not introduce additional F'-formulas and immediately translat
into the corresponding rules of refinement logic. Table 9.1 summarizes the transla-
tion of the tableaux rules into refinement rules.

We conclude this section with a few examples.

Example 9.3. (Translation of tableaux roofs into refinement logic)
The block tableau for (Vx)(Px=-0x) = ((Vx)Px=-(Vx)Qx) translates immediately

without requiring decidabilities
F(Vx)(Px= 0x) = ((Vx)Px= (Vx)Qx)

T(¥x)(Px=Qx), F'(¥x)Px= (¥x)Qx (V) (Px= 0x) = ((¥x)Px= (¥x)0x)

T (Vx) (Px= Qx), T (Vx)Px, F (Vx)Qx (Vx)(Px=Qx) + (Vx)Px=(Vx)Qx

'_
1
‘ 1.1 (Vx)(Px=Qx),(Vx)Px b+ (Vx)Ox
T (Vx)(Px=Qx), T (Vx)Px, FQa 1.1.1 (Vx)(Px=0x),(Vx)Px F Qa
é 1.1.1.1 (Vx)(Px=0Qx),Pa F Qa
T (Vx)(Px=> ‘X), T'Pa, FQa 1.1.1.1.1 Pa=>Qa,Pa - Qa
1.1.1.1.1.1 Pa=Qa,Pa - Pa
(P TPa, F )
(Pa= Qa). TPa, I'Qa 1.1.1.1.1.2 Pa=Qa,Pa - Pa
FPa, TPa, FQa TQa, TPa, FQa
X X

3 In principle, all signed formulas may be decomposed multiple times in a tableau proof, since
the tableaux calculus does not explicitly exclude that. But this option has a significant effect only
in the case of the y-rules, where it enables us to instantiate the y-subformulas several times with
different parameters. As a result the 7'V-rule will create multiple 7-formulas, which is captured in
the allL rule for refinement logic, and the F'3-rule will create multiple F-formulas, which is not
permitted for exR.

impliesR
impliesR
allR
allL a
alll a
impliesL
axiom
axiom
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T F
o S, TANB S, FAAB B
S, TA,TB S, FA
S,FB
B S,TAVB |5, FAVB o
S, TA S,FA,FB
S,TB
B S, TA=B S, FA=B o
S, FA S, TA, FB
S, TB
o S, T-A S, F-A o
S, FA S, TA
x S, TA, FA
0 S, T(3x)B S, F(3x)B Y
S,TBld' /x]| S, FBla/x]
S, T(Vx)B S, F(Vx)B o
S,TBla/x] | S, FBld /x]
left right
andL S,AABFC SHAAB andR
S,A,B-C SkA
SEB
orL S,AvB+C SHAvB orR1*
S,AFC S,-A+B
S,B-C
SEAVB orR2*
S,—BF A
impliesL* S,A=BFC SFA=B impliesR
S,—-CHA S,A+B
S,B-C
notL* S,-AFC St -A notR
S,—CFA S,AFf
axiom S,AFA
exL S,(I)BFC S+ (3x)B exR" a
S,Bld' /x| -C| S,~(3x)B+ Bla/x]
alll a S,(¥x)BFC |SF (Vx)B allR
S,Bla/x]|-C | St Bld/x]

Table 9.1 Translation of tableaux rules into refinement rules
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The block tableau for —((Vx)Px) v (PanPb) and its translation are shown below. The
translation needs to preserve the disjunct eliminated by the application of orR2. We
use Decide A as abbreviation for the proof fragment consisting of an application of

the rule Use_decidability_of A followed immediately by orL.
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F=((Vx)Px)v (PanPD)

Fo((v)P), FPanPh b = ((vx)Px) v (PanPb) by Decide (Vx)Px

1 (Vx)Px F =((Vx)Px)v(PanPD) by orR2

T (Vx)Px, FPanPb 1.1 (Vx)Px - PanPb by andR
/\ 1.1.1 (Vx)Px + Pa by alll a
T(Vx)f"X, FPa T(Vx P‘x FPbi 1.1.1 (Vx)Px,Pa - Pa by axiom
i 1.1.2 (Vx)Px - Pb by alll b

TPa,‘ Fha TPb" FPb 1.1.2.1 (Vx)Px,Pb - Pb by axiom

X x 2 =((Vx)Px) B —((Vx)Px)v(ParPb) by orR1

2.1 =((Vx)Px) F —((¥x)Px) by axiom

The block tableau for (3x)((Jy)Py=-Px) and its translation are shown below. The
translation needs to preserve the conclusion which is eliminated by the application
of exR.

F(3x)((Fy)Py= Px)
)Py=Px) by Decide (Zx)((Jy)Py= Px)
FE)((F) P}:s[L E@‘(%fx?? P;}éPx) - (EIx)((Ely)PyéPx)y ’ b; axiom
F(3x)((3y)Py= Px), T(B)P§; ¥Ry Py = Px) F (3x)((By)Py= Px) by exR «
‘ =(3x)((Fy)Py=-Px) + (Iy)Py=Pa by impliesR
F(3x)((3y)Py=Px), TPb, FRalx)((Jy)Py=Px),(3y)Py + Pa by exL
—(3x)((3y)Py=Px),Pb F Pa by notL
F(3y)Py=Pb, TPb, FPa ~(.),Pb F (30)((3y)Py= Px) by xR b
T(3y)Py, FAb, 7Pb, FPa () Pb = (3y)Py=Pb by impliesR
=(...),Pb,(3y)Py = Pb by axiom

X

9.6 Exercises

Questions

(1) Solve the first group of exercises on page 56 of Smullyan’s book. Submit your
solutions for the second, third, and last one.

(2) Give Refinement Logic proofs for the seventh and last of the above exercises and
construct the evidence terms from the proofs.
Show by giving counterexamples why the converse is not valid.

(3) Solve the second group of exercises on page 56 of Smullyan’s book. Submit your
solutions for the sixth and the last one.

(4) Solve the exercise on page 63 of Smullyan’s book.
(In contrast to Homework 5 (4) you now have to prove that the given formula is not finitely
satisfiable)



Chapter 10
Correctness, Completeness, and Compactness

10.1 Overview

Now that we have introduced a proof calculus for first-order logic we have to address
the usual questions again, that always come up when dealing with formal proof
systems.

(1) Is the tableau method correct? Can we be sure that a proven formula is in fact
valid?

(2) Is it complete? Can we prove every valid formula with the tableau method?

(3) Isitdecidable? Does it always tell us whether a formula is valid or not?

(4) What about compactness? What does the satisfiability of finite sets of formulas
tell us?

(5) Are there proof strategies for building first-order tableaux that are more success-
ful or more efficient than others?

10.2 Correctness of First-Order Tableaux

To prove the correctness of the tableau method, one has to show that the origin
of a closed tableau is unsatisfiable or, equivalently, that a tableau is satisfiable and
cannot be closed whenever the formula at its origin is satisfiable. The basic structure
of the proof is the same as the one for propositional logic, so we just formulate the
key insights here.
Let % be an arbitrary universe and v be a first-order valuation of E% (¢ is the

identity mapping).

Fi: ais true under v, if and only if &, and o, are true under v

F>: B is true under v, if and only if at least one of 8, and 3, is true under v

F3: yis true under v, if and only if (k) is true under v for every ke %

Fy: 0 is true under v, if and only if & (k) is true under v for at least one k€ %

125
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These facts follow immediately from the definition of first-order valuations on
E? . As a consequence we can show the following laws about the satisfiability of
sets of formulas with parameters.
Let S be any set of formulas
Gi: If S is satisfiable and o €S, then SU{ x|, o, } is satisfiable
G»: If S is satisfiable and 8 €S, then at least one of SU{f3,} and SU{j3,} is satisfiable
Gs: If S is satisfiable and y<S, then SU{y(«a)} is satisfiable for every parameter a
Gy: If S is satisfiable and d €S, then SU{d(a)} is satisfiable for every parameter « that
does not occur in §
The first three laws are obvious but the last one is not, as it shows how to represent
the semantical “for at least one k€% by a syntactical requirement “for every new
parameter a”.

Proof. Let 7% be a universe, v be a first-order valuation, and ¢ be a mapping from
the set of parameters to % such that all A<S are true under ¢ and v. Since J €S,
there must be at least one parameter a such that §(a) is true under ¢ and v.!
, o(b) if b occurs in §

Let k=¢(a) €% and define ¢'(b) = b otherwise .

Then all A<S are true under @’ and v (nothing has changed) and for every pa-
rameter o' that does not occur in S we have ¢’ (a') = @(a) = k and thus Emv[§(a’)?']
=v[6(a)?] =¢. Hence SU{8(a")} is satisfied by (% ,ve’)

The remainder of the correctness proof is almost identical to the propositional
case. We have to prove that every tableau with a satisfiable origin contains at least
one satisfiable path.

Theorem 10.1. Let .7 be an arbitrary tableaux whose root is satisfiable. Then there
is a path ¥ in 7 that is uniformly satisfiable.

Proof. We use structural induction on tableau trees.

base case:  If .7 has just a single point, then let ¥ be the path consisting of the
root of 7.

step case:  Assume the statement holds for some .7. Let 7| be a direct extension
of .7 and I be a model for the root of .7 . Since .7 and 7, have the same root
there is a satisfiable path ¥ in 7.
We consider 5 cases (the first 3 are identical to what we had before)

(1) If 7 does not extend .7 at ¥, then ¢ is a satisfiable path ¢ in .7 ,.

(2) If .7 extends.” at ¥ by some o, then we know that & is on ©. Thus ¥ =voq;,
is a satisfiable path in .7, by Gi.

(3) If.7 extends .7 at ¥ by B, and 3, then 8 is on © and ¥ =0of3, or ¥ =0°f3,
is a satisfiable path in .7 | by G,.

4) If 7, extends 7 at ¥ by some y(a), then ¥ is on ¥ and ¥ =¥°y(a) is a
satisfiable path in .7 by G3.

! This is not entirely true if there are elements u in the universe that have no parameter a with
¢(a) = u. In that case the proof argument needs a few more details.
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(5) If 7 extends .7 at ¥ by some 8(a) then & is on ¥ and a does not occur in
any of the formulas of ¥. Thus ¥ =0°6(a) is a satisfiable path in .7, by Gg.

As a consequence, every closed tableau has an unsatisfiable root, which means
that the (unsigned) formula at the root of the tableau must be valid.

10.3 Completeness

Proving the completeness of a first-order calculus gives us Godel’s famous com-
pleteness result. Godel proved it for a slightly different proof calculus, and the proof
that we will show here goes back to Beth and Hintikka. Let us briefly resume the
propositional case.

The key to the completeness proof was the use of Hintikka’s lemma, which states
that every downward saturated set, finite or not, is satisfiable. We then showed that
every open and complete path is in fact a Hintikka sequence. Putting these two
things together we reasoned that the root of an open and complete tableau must be
satisfiable. Thus a complete tableau for a valid formula cannot be open which means
that every tableau for a valid formula will eventually close.

We will prove the first order case along these lines, but have to keep in mind that
several things have changed.

e The definition of a valuation now includes quantifiers.

e The definition of Hintikka sets must take ¥ and 6 formulas into account.

e The notion of a complete tableau needs to be adjusted, because there is now the
possibility of non-terminating proof attempts.

Fortunately, we can easily make the necessary adjustments and then proceed as
before. First, let us define first-order Hintikka sets. A Hintikka Set for a universe U
is a set S of U-formulas such that for all closed U-formulas A, a, B, v, and & the
following conditions hold. _

Hy:If A1s atomicand A € S then A ¢ S
Hy:lf €S then a, e SAna,eS
Hy:If B < S then B,eSvp,cS
H;:1f y € § then VkeU. y(k) € S
Hy:1If 6 € S then JkeU. 6(k) € S

The first axiom expresses the openness of S while the other four state that it
is downward saturated. Note that because of axiom H,, Hintikka sets are usually
infinite, unless the universe is finite. But the proof of Hintikka’s lemma that we
discussed a few weeks ago did not depend on the fact that the set is finite, so it can
easily be adapted to the first-order case.

Theorem 10.2 (Hintikka Lemma). Every Hintikka set is uniformly satisfiable
Proof. Because of axiom H; we can define a valuation that satisfies all the atomic

formulas in S.

Define v(P (k1. ... k) = {f if FP(ki,....k,) € S

t otherwise
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To show that v satisfies every formula Y €S we proceed by structural induction
on formulas, keeping in mind that the cases for v and § are straightforward general-
izations of those for o and .
base case:  If Y €S is an atomic formula then v[Y]=¢ by definition.
step case:  Assume the the claim holds for all subformulas of Y.

e IfYisof type o then a,,o, €S, hence by assumption v[ot,|=v[ct,]=t. With the

definition of first-order valuations we get v[Y]=r.

e IfYisoftype B then B, €S or B,€S, hence v[B,]=t or v[B,]=t and thus v[Y|=t.

e IfY is of type v then y(k)<S and hence v[y(k)|=t for all kU, thus v[Y]=t.

If Y is of type O then §(k)<S and h S (k)]=t f keU, thus v[Y]=f.
I.\Iow wﬁa(t) al;,(])‘auet the %%m(pl)e%engrsls OF %Cgaggea(lu. In tﬁg S}S)rrg;e)osietionalucsa‘éL, ]th{S

meant that the tableau cannot be extended any further, because all formulas have
been decomposed. Since the propositional tableau method terminates after finitely
many steps, this was easy to define. In the first-order case, however, we have to be a
bit more careful.

We know that because of y-formulas proofs may have infinite branches. But that
is not the main problem, since Hintikka’s lemma also works for infinite sets. How-
ever, not every infinite branch in a tableau is automatically a Hintikka set.

Consider for example, the formula J3x,y.P(x,y), which is certainly not valid.
Thus F3x,y.P(x,y) is satisfiable and because of the correctness of the tableau
method we know that every proof attempt will fail. But does every failing proof
attempt actually give us the Hintikka set that we need to reason that F3x,y.P(x,y)
must be satisfiable?

Certainy not. Just imagine we start decomposing the main formula, which is a
Y formula, over and over again. Then we can go on and on forever without ever
touching the inner ¥ formula and we get an infinite branch that does not satisfy the
third Hintikka axiom for this inner y formula.

So our completeness proof cannot rely on an arbitrary attempt to find a tableau
proof. After all, completeness only says that it must be possible to prove every valid
formula correct with the tableau method but it doesn’t require that any attempt will
succeed. And the fact that we weren’t able to find a proof with a not so bright
approach doesn’t mean that there is none at all.

Fortunately, we can design a systematic approach that is guaranteed to find a
tableau proof, provided there is one. And we will show that using this systematic
method we will find a tableau proof for every valid formula.

Essentially, a systematic method only has to describe a treatment of y formulas
that guarantees axiom H,. The ¢, B, and 6 rules make sure that the other Hintikka
axioms are always satisfied.

How can we make sure that all y formulas are eventually covered completely?

We have to proceed similarly to an enumeration of lists of integers. We modify
the extension procedure for tableaux in a way that each y formula, and thus every
other formula as well, will be revisited on a regular basis.
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A systematic procedure for proving a first-order formula X

Start with the signed formula FX and recursively extend the tableau as follows:
e [fthe tableau is already closed then stop. The formula is valid.

Otherwise select a node Y in the tableau that is of minimal level wrt. the still

unused nodes and extend every open branch ¥ through'Y as follows:

— IfY is a extend © to ¥U{a,Q,}.

— IfY is B, extend © to two branches YU{B,} and BU{B,}.

— IfY is ¥, extend ¥ to YU{y(a),y}, where a is the first parameter that is not
on V.

— IfY is 8, extend O to YU{8(a)}, where a is the first parameter that does not
occur in the tableau tree.

Thus the procedure always copies a y formula to the end of a branch when it is
being considered. This way we make sure that it is considered over and over again,
but that all the other formulas on the branch are decomposed before that. Thus in
the end all the formulas are being used, because we have only denumerably many
parameters. This method is not very efficient, but it works.

Using the systematic procedure we can give a new definition of complete tableau.
A systematic tableau is called finished if it is either infinite or finite and cannot be
extended any further. With this definition we immediately get the following result.

Lemma 10.3. [n every finished systematic tableau, every open branch is a Hintikka
sequence.

A detailed proof for this lemma would show by structural induction that the sys-
tematic method does in fact cover all the required formulas. Together with Hin-
tikka’s lemma we get.

Corollary 10.4. In every finished systematic tableau, every open branch is uni-
Sformly satisfiable.

As before, the completeness theorem is now an immediate consequence.

Theorem 10.5 (Completeness theorem for first-order logic).
If a first-order formula X is valid, then X is provable. Furthermore the systematic
tableau method will construct a closed tableau for FX after finitely many steps.

The first statement follows from the above corollary by contraposition and the
fact that the systematic tableau method always “constructs” a finished tableau. As
for the second, a closed tableau can only have finite branches, which — according to
Ko6nig’s lemma — means that it must be finite.

Note that correctness and completeness is preserved again if we require an afomi-
cally closed tableau, i.e. a tableau where branches only close if there is an atomc for-
mula and its conjugate. Correctness follows from the fact that an atomically closed
tableau is certainly a closed tableau, while the systematic tableau method makes
sure that we construct a Hintikka sequence if the tableau does not close (which is
the case if it does not close atomically). Hintikka’s lemma thus implies
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Corollary 10.6.
If a first-order formula X is valid, then X the there is an atomically closed tableau
for FX.

The corollary, together with the systematic method, also has another important
consequence that will be relevant for the compactness of first-order logic.

Theorem 10.7 (Lowenheim theorem for first-order logic).
If a first-order formula X is satisfiable, then it is satisfiable in a denumerable
domain.

The proof for this theorem is based on the observation that the systematic tableau
method uses only denumerably many parameters to build a Hintikka sequence if the
tableau doesn’t close. Since a tableau with a satisfiable formula at its root cannot
close, it must contain an open branch ¥ with at most denumerably many parameters.
As this branch is uniformly satisfiable it satisfies X in a denumerable domain (the
subset of the domain U that represents the set of parameters on ).

Thus if the formula is intended to describe properties of, for instance, the real
numbers there will be a denumerable subset of the real numbers in which the prop-
erty is already satisfied.

10.4 Decidability Issues

While the tableau method could be used as decision procedure for propositional
logic, this will not work in first-order logic anymore. If a formula is not valid, the
systematic method may lead to an infinite tableau. This is, however, not a deficiency
of the tableau method. In fact, there is no correct and complete proof method for
first-order logic that always terminates, as first-order logic is known to undecidable.

Nevertheless, in some cases the tableau method can decide that a formula is in-
valid although the proof is not finished yet. Whenever we have constructed a branch
¥ that represents a Hintkka set (over the finite domain of the parameters that occur
on 1), then we know that the origin /X of the tableau is satisfiable and hence X
must be invalid. In these rare cases, the Hintikka branch gives us a counterexample
for the validity of the formula.

Example:  Consider the invalid formula [(Vx Px) = (Vx Qx)] = Vx(Px
= Qx).
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o FI(Vx Px) = (Vx Qx)] = Vx(Px = Qx)

B TLvVx Px) = (Vx Qx)]

S FVx(Px = Qx)

o F(Pa = Qa)

TPa
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The tableau to the left can-
not be extended anymore in
any meaningful way and has
one open branch ¥, which is
a Hintikka set for the 2 ele-
ment domain U = {a,b}. In
this branch the marked «, 3,
¥, and O points are fulfilled for
the domain U, since all formu-
las are true under the atomic

and Pb and t to Pa.

F .
Qa In particular,

| valuation that assigns f to Qa

5 F(Vx Px) T(Vx Qx) ¥ original formula

| ‘ [(VxPx) = (VxQx)]

F (Pb) T(Qa) = Vx(Px = Qx) evaluates

It is possible to build this “Hintikka Test” into the tableau method and use it to
prove that certain formulas cannot be valid. However, there are many formulas that
are neither valid nor falsifiable in any finite domain. Any tableau proof attempt for
these will run infinitely and at no stage of the proof will we know whether the
formula is valid or not.

There are also formulas that are falsifiable, but not in any finite domain. However,
the tableau method is “finite” and therefore not suited to produce counterexamples
for them.

10.5 Compactness

The final important property of first-order logic that we have to investigate is com-
pactness: Given a set F of first-order formulas, what does the satisfiability of finite
subsets tell us about the satisfiability of the whole set. In propositional logic we
have shown that a set S is uniformly satisfiable if all of its finite subsets are. We
gave three proofs for that: one using tableau proofs and Konig’s lemma, one giving
a direct construction of a Hintikka set, and one using Lindenbaum’s construction,
extending S to a maximally consistent set, which turned out to be a proof set.

In first-order logic the question of compactness leads to a spin-off question. Can
we extend Lowenheim’s theorem to sets of formulas and prove “if a set of formulas
is satisfiable then it is satisfiable in a denumerable domain”? This is the so-called

to £ under this interpretation.
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Skolem-Lowenheim theorem and it follows from an extended form of compactness,
which gives us uniform satisfiability over a denumerable domain if we know that
all finite subsets are satisfiable? In the following we will use the tableau method to
prove these facts.

Recall that in the propositional case we proved compactness by systematically
constructing an tableau for the set S, using the fact that every finite subset of S is
satisfiable to ensure that the tableau is infinite. We then used Konig’s lemma to
show that this tableau has an infinite branch, which in turn must be a Hintikka set.
The construction of the tableau made sure that S is a subset of that set and hence
satisfiable.

We will proceed in a similar fashoion for first-order logic. First, we define a firs?-
order tableau for a set S of pure formulas (i.e formulas without parameters). Such a
tableau starts with an arbitrary element of § at its origin and is then constructed by
applying either one of the four rules «, , ¥, or 8, or by adding another element of S
to the end of an open branch. The elements of S so added are called the premises of
the tableau. We call a tableau complete if every open branch is a Hintikka set for the
universe of parameters and contains all the elements of S. Obviously every closed
tableau is complete as well.

We first show that a complete tableau can be constructed for every set of first-order
formulas.

Lemma 10.8. For every denumerable set S there is a complete tableau for S.

Proof. We construct the desired tableau by combining our systematic proof proce-
dure with the construction of a tableau for S that we used in the propositional case.
Arrange S as a denumerable sequence X1,X2,X3,...,X,-. ..

We begin by placing X; at the origin of the tableau. This concludes stage 1. In
stage n+1 we extend the tableau constructed at stage n as follows.

e If the tableau is already closed then stop. The formula is valid.

e Otherwise select a node Y in the tableau that is of minimal level wrt. the still
unused nodes, extend every open branch ¢ through Y as in the systematic proce-
dure, and add X4 to the end of every open branch.

By construction every open branch in the resulting tableau is a Hintikka set for

the universe of parameters (we used the systematic method) and contains the set S.

Using the method for constructing complete tableaux we can find an unsatisfiable
finite subset for every set of formula that has a closed tableau.

Lemma 10.9. [f a pure set S has a closed tableau, then a finite subset of S is
unsatisfiable.

Proof. Assume S has a closed tableau .7 and consider the set S, of premises of .7.
By Konig’s lemma, .7 must be finite and so is S,. S, must be unsatisfiable, since
otherwise every branch containing S, would be open (recall that by construction the
elements of the branch are derived from the formulas in S, using tableau rules only.)

Now we use contraposition to prove “denumerable compactness.
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Theorem 10.10.
If all finite subsets of a denumerable set S of pure formulas are satisfiable, then
S is uniformly satisfiable in a denumerable domain.

Proof. Let 7 be a complete tableau for S. Since all finite subsets of S are satisfiable,
7 cannot be closed due to the above lemma, so it has an open branch 9. Since .7 is
complete, ¥ is a Hintikka set for the denumerable universe of parameters contained
in S. Thus S is uniformly satisfiable in a denumerable universe.

Theorem 10.10 gives us the two desired results and another insight as immediate
consequences.

Corollary 10.11 (Compactness of First-Order Logic).
If all finite subsets of a pure set S are satisfiable, then S is uniformly satisfiable

Corollary 10.12 (Skolem-Lowenheim theorem for First-Order Logic).
If a pure set S of is satisfiable then it is satisfiable in a denumerable domain.

Corollary 10.13.
If no tableau for a pure set S can close, then S is satisfiable in a denumerable
domain.

The last corollary leads to a lot of interesting results about theoretical proper-
ties of first-order logic that we won’t discuss in this course. Those of you who are
interested may study Smullyan’s chapters VI and VII.






