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Abstract

This offering of Applied Logic has used type theory to unify and relate the key concepts in logic, starting with
the Propositional Calculus both classical (PC) and intuitionistic (iPC). Following that subject we studied
First-Order Logic, both classical (FOL) [28] and intuitionistic (iFOL) [10]. We noted that for the standard
classical foundation of mathematics, Zermelo/Fraenkel Set Theory with the Axiom of Choice (ZFC), FOL is
sufficient.

We noted that type theory connected these fundamental ideas in mathematics with basic notions needed for
the foundations of computer science. One of the important ideas not often covered in this course is Judith
Underwood’s result [29, 30] that the decision procedure for iPC allows us to know when a specification is
not “programmable.” We studied this important result in Lecture 15 after the class was familiar with and
comfortable with types.

Already in Lecture 2 we informally introduced the idea that type theory is a good foundation for computer
science, in part because programming languages use types to to classify data and specify programming tasks.
This was major theme in the course right from the start. We introduced early on in Lecture 5 the notion of
evidence semantics to explain the role of types in logic. We illustrated evidence using Euclidean Geometry
[20]. Here we also introduced the notion of synthetic algorithms in contrast to numerical algorithms.

By Lecture 22 we looked at how C.A.R. Hoare [15, 16, 17] and John McCarthy [23, 24] used types to describe
programming tasks. We discussed the influence of Principia Mathematica [31] in the development of modern
type theory. We briefly mentioned the effort to create a programming language, SETL [25] based on set theory
rather than type theory. The SETL effort did not attract much support.

In Lectures 24 and 25 we looked at other basic research articles that helped establish type theory in computer
science, in particular the work of McCarthy [24] and Scott [26, 27] and the article of Martin-Löf [22] in which
he discovered the connections of type theory to computer science and mentioned some early articles. He did
not pursue the connection in detail himself. On the other hand, he had a large impact on computer science
in Sweden, and the abiding interest there has led to the long term development of the proof assistant Agda
[4]. The French were also drawn into type theory based on fundamental results of the logician Girard [11].
They built the first version of the Coq systems based on this work. When my good friend Gilles Kahn [18, 19]
merged the Coq project with the OCaml project, Coq took its modern shape which is much closer to Nuprl.
In this lecture we look forward at the on-going development of type theory and its role in both mathematics
and computer science. We will say a bit more about the value of dual-prover-technology, as in Coq/Nuprl,
where the Coq proof assistant is used to prove the correctness of Nuprl’s rules.
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1 Type Theory and Proof Assistants of the Future

Over the last fifty years there has been a steady increase in the effectiveness of proof assistants. We see in them
the increasing importance of automated reasoning in solving open problems in mathematics and computer science.
Proof assistants are also used to build highly reliable software with provable properties. Active researchers in
this area predict advances that will be regarded as game changing. We expect that the US and EU will continue
the highly productive cooperation, dating back to de Bruijn’s Automath [9], to the creation and deployment of
modern proof assistants, such as Agda [4], Coq [7, 8, 2], and HOL [12, 14], and Nuprl [6] among others.

Below we briefly enumerate some new mechanisms which we believe will significantly improve the reasoning ca-
pabilities of proof assistants. We have been experimenting with these new reasoning mechanisms using Nuprl.
The results are promising. These mechanisms will significantly increase the value of proof assistants. Our future
research will validate this claim by implementing, applying, and demonstrating the new proposed mechanisms.
We have recently enriched the type theory implemented by Nuprl, this provides the richest logical foundation
known for testing the proposed new reasoning mechanisms.

The PRL research group also intends to explore the use Nuprl in giving a rigorous formal account of concepts in
quantum physics, inspired by the article Constructive Mathematics and Quantum Physics [5]. We have an op-
portunity here since one of the PRL group researchers whom you have met, Ariel Kellison, has a degree in physics.

1. The PRL Group at Cornell is one of the few research groups that extensively uses two proof assistants, Coq
and Nuprl. We use Coq to prove the correctness of Nuprl rules and explore extensions to those rules. This
has allowed us to implement strong criteria for the foundational value of proof assistants for which Vladimir
Voevodsky had also advocated. There is very interesting research required to enhance the reasoning power
of the Coq/Nuprl combination and extend the capabilities and reach of modern proof assistants
[3]. If there is time in the final lecture, we will look at how Dr. Bickford recently changed the definition of
the Nuprl equality type (x = y in T).

A consequence of the definition of the equality type is that (t = t’ in T) is always a type in context H if T
is a type in context H and t and t’ are closed terms (so they are in Base). Thus (t in T) is always a type
for T a type and t a closed term.

2. Tactics, decision procedures, and a collaboration infrastructure are central to the automated rea-
soning mechanisms of the Nuprl proof assistant. The Formal Digital Library, FDL, is a key unique
resource for this proof assistant [21]. The FDL is the dynamic repository for all formal definitions, theo-
rems, proofs, and tactics. It enables communication among users and the proof assistant who coordinate
on solving problems and proving theorems. We plan to deploy these new AI techniques to help us im-
prove the effectiveness of both Nuprl proofs and the Coq proofs used to augment and support the Nuprl
implementation.

3. Adding transformations. This role for transformations came from thinking about how to go beyond the
504 tactics [13, 1], tacticals, and transformation scripts we now use to assist in proof construction. One
transformation that is especially clear and useful arises from thinking about how to extend results from Real
Analysis to Complex Analysis. It is in part inspired by a quote from Bishop and Bridges that suggests a high
level script for how the basic arithmetical results of complex analysis could be algorithmically constructed
using the extensive formalization of real analysis as a template. We believe that there are effective ways to
“implement” these templates. This investigation led us to thinking about reasoning mechanisms that go
beyond tactics and yet can be implemented.

4. Having data about Nuprl theories might help explain the new formal techniques we plan to explore. For
the library of constructive real analysis Mark collected some data: 272 definitions, 1,731 objects. In Reals-2
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there are 80 definitions and 449 lemmas. Having data about our library and results might be a valuable
resource.
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