
Applied Logic Fall 2018 Final Lecture

December 4, 2018

Abstract

This offering of Applied Logic has used type theory to unify and relate the key concepts in logic, starting with
the Propositional Calculus both classical (PC) and intuitionistic (iPC). Following that subject we studied
First-Order Logic, both classical (FOL) [28] and intuitionistic (iFOL) [10]. We noted that for the standard
classical foundation of mathematics, Zermelo/Fraenkel Set Theory with the Axiom of Choice (ZFC), FOL is
sufficient.

We noted that type theory connected these fundamental ideas in mathematics with basic notions needed for
the foundations of computer science. One of the important ideas not often covered in this course is Judith
Underwood’s result [29, 30] that the decision procedure for iPC allows us to know when a specification is
not “programmable.” We studied this important result in Lecture 15 after the class was familiar with and
comfortable with types.

Already in Lecture 2 we informally introduced the idea that type theory is a good foundation for computer
science, in part because programming languages use types to to classify data and specify programming tasks.
This was major theme in the course right from the start. We introduced early on in Lecture 5 the notion of
evidence semantics to explain the role of types in logic. We illustrated evidence using Euclidean Geometry
[20]. Here we also introduced the notion of synthetic algorithms in contrast to numerical algorithms.

By Lecture 22 we looked at how C.A.R. Hoare [15, 16, 17] and John McCarthy [23, 24] used types to describe
programming tasks. We discussed the influence of Principia Mathematica [31] in the development of modern
type theory. We briefly mentioned the effort to create a programming language, SETL [25] based on set theory
rather than type theory. The SETL effort did not attract much support.

In Lectures 24 and 25 we looked at other basic research articles that helped establish type theory in computer
science, in particular the work of McCarthy [24] and Scott [26, 27] and the article of Martin-Löf [22] in which
he discovered the connections of type theory to computer science and mentioned some early articles. He did
not pursue the connection in detail himself. On the other hand, he had a large impact on computer science
in Sweden, and the abiding interest there has led to the long term development of the proof assistant Agda
[4]. The French were also drawn into type theory based on fundamental results of the logician Girard [11].
They built the first version of the Coq systems based on this work. When my good friend Gilles Kahn [18, 19]
merged the Coq project with the OCaml project, Coq took its modern shape which is much closer to Nuprl.
In this lecture we look forward at the on-going development of type theory and its role in both mathematics
and computer science. We will say a bit more about the value of dual-prover-technology, as in Coq/Nuprl,
where the Coq proof assistant is used to prove the correctness of Nuprl’s rules.

1



1 Type Theory and Proof Assistants of the Future

Over the last fifty years there has been a steady increase in the effectiveness of proof assistants. We see in them
the increasing importance of automated reasoning in solving open problems in mathematics and computer science.
Proof assistants are also used to build highly reliable software with provable properties. Active researchers in
this area predict advances that will be regarded as game changing. We expect that the US and EU will continue
the highly productive cooperation, dating back to de Bruijn’s Automath [9], to the creation and deployment of
modern proof assistants, such as Agda [4], Coq [7, 8, 2], and HOL [12, 14], and Nuprl [6] among others.

Below we briefly enumerate some new mechanisms which we believe will significantly improve the reasoning ca-
pabilities of proof assistants. We have been experimenting with these new reasoning mechanisms using Nuprl.
The results are promising. These mechanisms will significantly increase the value of proof assistants. Our future
research will validate this claim by implementing, applying, and demonstrating the new proposed mechanisms.
We have recently enriched the type theory implemented by Nuprl, this provides the richest logical foundation
known for testing the proposed new reasoning mechanisms.

The PRL research group also intends to explore the use Nuprl in giving a rigorous formal account of concepts in
quantum physics, inspired by the article Constructive Mathematics and Quantum Physics [5]. We have an op-
portunity here since one of the PRL group researchers whom you have met, Ariel Kellison, has a degree in physics.

1. The PRL Group at Cornell is one of the few research groups that extensively uses two proof assistants, Coq
and Nuprl. We use Coq to prove the correctness of Nuprl rules and explore extensions to those rules. This
has allowed us to implement strong criteria for the foundational value of proof assistants for which Vladimir
Voevodsky had also advocated. There is very interesting research required to enhance the reasoning power
of the Coq/Nuprl combination and extend the capabilities and reach of modern proof assistants
[3]. If there is time in the final lecture, we will look at how Dr. Bickford recently changed the definition of
the Nuprl equality type (x = y in T).

A consequence of the definition of the equality type is that (t = t’ in T) is always a type in context H if T
is a type in context H and t and t’ are closed terms (so they are in Base). Thus (t in T) is always a type
for T a type and t a closed term.

2. Tactics, decision procedures, and a collaboration infrastructure are central to the automated rea-
soning mechanisms of the Nuprl proof assistant. The Formal Digital Library, FDL, is a key unique
resource for this proof assistant [21]. The FDL is the dynamic repository for all formal definitions, theo-
rems, proofs, and tactics. It enables communication among users and the proof assistant who coordinate
on solving problems and proving theorems. We plan to deploy these new AI techniques to help us im-
prove the effectiveness of both Nuprl proofs and the Coq proofs used to augment and support the Nuprl
implementation.

3. Adding transformations. This role for transformations came from thinking about how to go beyond the
504 tactics [13, 1], tacticals, and transformation scripts we now use to assist in proof construction. One
transformation that is especially clear and useful arises from thinking about how to extend results from Real
Analysis to Complex Analysis. It is in part inspired by a quote from Bishop and Bridges that suggests a high
level script for how the basic arithmetical results of complex analysis could be algorithmically constructed
using the extensive formalization of real analysis as a template. We believe that there are effective ways to
“implement” these templates. This investigation led us to thinking about reasoning mechanisms that go
beyond tactics and yet can be implemented.

4. Having data about Nuprl theories might help explain the new formal techniques we plan to explore. For
the library of constructive real analysis Mark collected some data: 272 definitions, 1,731 objects. In Reals-2

2



there are 80 definitions and 449 lemmas. Having data about our library and results might be a valuable
resource.

References

[1] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and Evan
Moran. Innovations in computational type theory using Nuprl. Journal of Applied Logic, 4(4):428–469, 2006.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development; Coq’Art: The
Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[3] Mark Bickford, Liron Cohen, Robert Constable, and Vincent Rahli. Computability beyond Church-Turing
via Choice Sequences. In ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 266 – 279,
2018.

[4] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda – a functional language with dependent
types. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, LNCS 5674,
Theorem Proving in Higher Order Logics, pages 73–78. Springer, 2009.

[5] Douglas Bridges and Karl Svoil. Constructive mathematics and quantum physics. International Journal of
Physics, 39:503 – 515, 2000.

[6] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

[7] Thierry Coquand. Metamathematical investigations of a calculus of constructions. In P. Odifreddi, editor,
Logic and Computer Science, pages 91–122. Academic Press, London, 1990.

[8] Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Gérard Huet, Pascal Manoury, Christine
Paulin-Mohring, César Muñoz, Chetan Murthy, Catherine Parent, Amokrane Säıbi, and Benjamin Werner.
The Coq Proof Assistant reference manual. Technical report, INRIA, 1995.

[9] N. G. de Bruijn. The mathematical language Automath: its usage and some of its extensions. In J. P.
Seldin and J. R. Hindley, editors, Symposium on Automatic Demonstration, volume 125 of Lecture Notes in
Mathematics, pages 29–61. Springer-Verlag, 1970.

[10] M. Fitting. Intuitionistic model theory and forcing. North-Holland, Amsterdam, 1969.

[11] Jean-Yves Girard. Interprétation Fonctionelle et Élimination des Compures de l’Arithmétic d’Ordre
Supérieur. PhD thesis, Université Paris VII, 1972.

[12] Michael Gordon and Tom Melham. Introduction to HOL: A Theorem Proving Environment for Higher-Order
Logic. Cambridge University Press, Cambridge, 1993.

[13] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mechanized logic of compu-
tation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, NY, 1979.

[14] John Harrison. HOLLight: A tutorial introduction. In Formal Methods in Computer-Aided Design (FM-
CAD’96), volume 1166 of Lecture Notes in Computer Science, pages 265–269. Springer, 1996.

[15] C. A. R. Hoare. An axiom basis for computer programming. Communications of the ACM, 12(10):576–
580,583, 1969.

[16] C. A. R. Hoare. Notes on data structuring. In Structured Programming. Academic Press, New York, 1972.

[17] C. A. R. Hoare. Recursive data structures. International Comput. Inform. Sci., 4(2):105–32, June 1975.

[18] Gilles Kahn. Natural semantics. In G. Vidal-Naquet F. Brandenburg and M. Wirsing, editors, STACS ’87,
volume 247 of Lecture Notes in Computer Science, pages 22–39. Springer-Verlag, Berlin, 1987.

3



[19] Gilles Kahn. Constructive geometry according to jan von plato. V5.10, 1995.

[20] Ariel Kellison, Mark Bickford, and Robert Constable. Implementing Euclid’s straightedge and compass
constructions in type theory. Annals of Mathematics and Artificial Intelligence, Sep 2018.

[21] Lori Lorigo. Information Management in the Service of Knowledge and Discovery. PhD thesis, Cornell
University, 2006.

[22] Per Martin-Löf. Constructive mathematics and computer programming. In Proceedings of the Sixth Interna-
tional Congress for Logic, Methodology, and Philosophy of Science, pages 153–175, Amsterdam, 1982. North
Holland.

[23] J. McCarthy. Computer programs for checking mathematical proofs. In Proceedings of the Symposium in
Pure Math, Recursive Function Theory, volume V, pages 219–228. AMS, Providence, RI, 1962.

[24] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

[25] E. Schonberg, J. Schwartz, and M. Sharir. An automatic technique for the selection of data represntations
in SETL programs. ACM Transactions of Programming Language Systems, 3(2):126–143, April 1981.

[26] D. Scott. Constructive validity. In D. Lacombe M. Laudelt, editor, Symposium on Automatic Demonstration,
volume 5(3) of Lecture Notes in Mathematics, pages 237–275. Springer-Verlag, NY, 1970.

[27] D. Scott. Logic and programming languages. Comm. Assoc. Comput. Mach., 20:634–641, 1977.

[28] R. M. Smullyan. First–Order Logic. Springer-Verlag, New York, 1968.

[29] Judith L. Underwood. A constructive completeness proof for the intuitionistic propositional calculus. Tech-
nical Report 90–1179, Cornell University, 1990.

[30] Judith L. Underwood. The tableau algorithm for intuitionistic propositional calculus as a constructive com-
pleteness proof. In Proceedings of the Workshop on Theorem Proving with Analytic Tableaux, Marseille,
France, pages 245–248, 1993. Available as Technical Report MPI-I-93-213 Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany.

[31] A.N. Whitehead and B. Russell. Principia Mathematica, volume 1, 2, 3. Cambridge University Press, 2nd
edition, 1925–27.

4


