
CS4860 Lecture 24 Type Theory Concepts

Robert Constable

November 20, 2018

1 Lecture Summary

We have studied constructive logics and evidence semantics from the beginning of the course. We
have not discussed in detail why and how L.E.J.Brouwer changed the meaning of the standard
logical operators such as “or” and “implies” and “not” and “there exists” and so forth. Brouwer
said that our understanding of mathematics is grounded in human intuitions about basic actions
such as counting, organizing evidence for easy access, examining it and transforming evidence step
by step.1 In this lecture, we will look further into how type theory organizes Brouwer’s insights,
especially his insight that all mathematical truths are experienced truths. This will help explain the
role of types and type theory in creating and organizing mathematical knowledge.

Computer scientists are in a good position to understand Brouwer well and extend the reach of
his insights and the means of applying them to modern problems. Computer scientists need and
aspire to create tools that help people experience truths and confirm conjectures or refute them. We
are accustomed to learning relationships by computing. For example, to know whether a number
is prime is a matter of executing a sequence of attempts to factor that number.

We are also accustomed to visual evidence as Ariel Kellison discussed in her lecture on Euclidean
Geometry. She proved that if we have two separated points, say a#b, and we are given any point
c, then we can tell whether c is separated from a or from b. The point c can’t be equal to both
a and b since these points are separated. Therefore if we look closely around the points a and b,
we will detect (with our magnifying glass) that c#a or c#b. In this geometric argument, we must
understand how to find and record evidence for the disjunction. We know that we can perform
an inspection and collect evidence about point c. We know this because we have imagined a
computation we can perform in principle that must yield exactly the information we need to make
a decision. Our capacity for gathering evidence by computation is at the heart of both mathematics
and computer science.2

Computer scientists are comfortable using computation to find and create evidence, and they
are accustomed to finding specific kinds of information using operations on data. In the case of

1In his philosophical writings [1, 3] Brouwer also considered a broader role for this approach to understanding.
2We have not proposed that constructive geometry vocabulary, such as line segment, needs to be used in daily

life, like calling the 10 yard line the 10 yard line-segment.
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geometry, some of the data is determined from a construction or from a given configuration of
points by close inspection. Sometimes the data arises from other constructions that can be made
using the points, such as constructing a circle that intersects a line or another circle in ways we can
detect. Geometers draw diagrams to reveal relationships among points and lines. Visualization is
a way to create relationships that reveal truths we can directly experience.

2 The role of types in creating and organizing evidence

A key reason that type theory is especially appropriate as a foundation for constructive and in-
tuitionistic mathematics is that types provide a way to create, classify, and organize evidence.
The methodology for creating types facilitates the discovery of new forms of evidence and thus for
discovering new computational truths. The constructive type theory we created and implemented
in Nuprl is known for its rich variety of types, more than in the type theories implemented by
Agda or Coq.3 It is highly likely that researchers imagine new types as we include more concepts
from homotopy theory, category theory, and other branches of mathematics and computer science.
Homotopy theory traces its roots to Brouwer who was also one of the creators of topology. Some
of the most deep and useful types we have added over the past five years have arisen from working
with the Cornell systems group on asynchronous distributed protocols. That work led us to the
notion of event structures and asynchronous processes which we will not cover in the course, but
could be the topics of a student project.

We have already discussed the critical idea of canonical elements of a type and canonical names
for types. It is essential to say when two canonical elements are considered equal. Some types are
abstract such as types for algebraic structures such as groups, rings, and fields. When we formalize
these algebraic structures we will introduce another Nuprl type called dependent records. In the
algebra we do not specify what the equality relation is, but we assume there is such a relation on the
underlying objects that form the algebraic structure. The canonical names with a precise equality
provide the basis for computation on the type. The data format must support the operations
that characterize the type, such as addition for natural numbers. These operations give rise to
non-canonical expressions, such as (12 + 5) or (17 x 15) and so forth.

In the case of Euclidean Geometry, the basic objects are points; however, there are no canon-
ical objects that faithfully describe points – despite Euclid’s efforts to define them, e.g. Euclid
Definition 1: A point is that which has no part. This definition has been criticised for over two
thousand years. It is not a paradigm for type theory. The best we might do for a canonical object
is to have the canonical name pta where we take a to be an Atom or a name or something else
atomic. It might be interesting to investigate this approach. What we also provide are constructors
that build points. We can build them by bisecting segments or intersecting circles or intersecting
segments and so forth.

3On the other hand, RedPRL and Lean are open to having rich type systems, but they are still in flux.
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2.1 Enumeration of types discussed

1. universes U

2. integers Z

3. atoms Atom

4. empty V oid

5. product A×B

6. dependent product x : A×B(x)

7. disjoint union A + B

8. function space A→ B

9. dependent function x : A→ B(x)

10. set types {x : A|B(x)}

11. quotient A//R

12. partial A

13. intersection A ∩B

14. dependent intersection A : Ui ∩ (A⇒ A)

15. recursive types rec(x.T )

2.2 Comparison to set theory

It is a widely held belief that most of modern mathematics can be formalized in set theory, in
particular using Zermelo/Fraenkel set theory with the Axiom of Choice [2], abbreviated as ZFC.
This theory is formalized using nine axioms expressed in classical first-order logic, FOL. The axioms
are named as follows: Ax1 Extensionality, Ax2 Pairing, Ax3 Union, Ax4 Power Set, Ax5 Subsets,
Ax6 Choice, Ax7 Infinity, Ax8 Replacement, Ax9 Foundation. FOL can be axiomatized classically
with at seven axioms. So in principle, sixteen primitive logical notions suffice to axiomatize classical
mathematics.

We can approximate the axiomatic basis for constructive type theory as having fourteen basic
types with an introduction and elimination rules for each, so with approximately twenty eight
primitive logical notions. In addition, type theory includes computation rules for using elements of
the types. These are rules for reducing the non-canonical forms, about another fourteen rules for
a total of about 42 rules, say 26 more rules than for ZFC. As compensation we get a programming
language with precise logical rules. The programming language helps us experience the logical truths
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and apply them. It enable us to experiment with alternative ways of expressing an idea. In due
course we will be able to express computational complexity concepts in type theory, and this will
deepen our understanding of the evidence we use to experience mathematical truths.

Unlike with set theory, the character of type theory is to explore new types as a way to enrich
the experiences we can evaluate to understand the dynamic computational reality of modern math-
ematics. Therefore we expect to see more types and more computation rules. We have experience
with how these concepts are used to understand more deeply and control more effectively our phys-
ical reality. What we are only beginning to understand is the nature and potential of an abstract
synthetic reality which we will share with our intelligent machines to enrich our notion of cyber
space. We are already seeing the emergence of cyber physical systems that connect these worlds.
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